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A method of equivalent local potentials is applied to separable interactions which fit the So

two-nucleon phase shifts. The method of generating equivalent local potentials used in this

paper is independent of the boundary conditions imposed on the solutions of the nonlocal equa-
tion; consequently, all solutions of the nonlocal equation lead to the same equivalent local po-
tential. The uniqueness of the equivalent local potential obtained by the present method is con-
sidered to be useful for the purpose of understanding nonlocal interactions. The Yamaguchi,
the one- and two-term Tabakin, and the case-IV Mongan potentials are studied. The equiva-
lent local Yamaguchi potential is similar to low-energy local two-nucleon interactions which

do not have short-range repulsion. The two-term Tabakin potential results in an equivalent
local potential with short-range repulsion, The occurrence of spurious states in the one-
term Tabakin potential is related to a class of zeros of this separable interaction in coordi-
nate space. The case-IV Mongan potential results in an equivalent local potential with

strong short-range attraction. Further study of this interaction revealed a spurious state
at 19.6 BeV which causes the wave function to have an additional node at experimentally
relevant energies. The paper is concluded with an examination of the problem of construct-
ing separable interactions which have short-range repulsion. lt is shown that such interac-
tions have a pronounced tendency to produce spurious states.

I. INTRODUCTION tions of the equivalent local equation by

The use of separable interactions to fit the two-
nucleon phase shifts is well established, ' ' and at-
tention is now being directed toward the develop-
ment of methods~ which may provide a. greater
understanding of these interactions. In general
these methods involve a comparison between the
characteristics of separable or nonlocal potentials
and the more familiar phenomenology of local po-
tentials. However, the usual practice with regard
to the nucleon-nucleon interaction has been to re-
strict the comparison to such features as the

phase shifts or T matrix elements. Until recently,
no attempt has been made to relate the separable
form of the interaction to an "equivalent" local
form in coordinate space. %bile an equivalent-
local-potential analysis of the type considered
here is quite common in optical-model studies'
where only the average features of the interaction
are of interest, a number of ambiguities in the def-
inition of these potentials have rendered a detailed
interpretation questionable. Recently, Coz and the
present authors@7 have shown that a more precise
definition of an equivalent local potential exists,
and that a unique potential and solutions to an

equivalent local equation can be obtained once two
independent solutions of the nonlocal equation are
known. The form of this equivalent local potential
was first derived by Fiedeldey, ' who used two par-
ticular solutions of the nonlocal equation. In this
method of equivalent local potentials, the solutions
to the nonlocal equation are related to the solu-

The function A(r), which is called the damping
function, represents the main difference between
the nonlocal and equivalent local equations in co-
ordinate space.

Previously, we have applied the method of equiv-
alent local potentials to several nonlocal Hartree-
Fock nucleon-nucleus potentials. ' The calculations
yield equivalent local potentials which are qualita-
tively in agreement with conventional local poten-
tials. Their energy dependence varies slightly
over the energy range for which the original non-
local potentials are applicable. The damping func-
tions calculated in this application are smaller
than one in the interior of the nucleus, and the non-

local wave function is said to be damped relative
to the equivalent local wave function. This is con-
sistent with previous results obtained by other
methods. ' It has since been learned that the origin
of this damping is probably due to the nonlocal two-
nucleon interactions used in the original Hartree-
Pock calculations rather than to the nonlocality
which is the result of the exchange term in the
Hartree-Fock equations. Subsequent calculations'
with R locR1 two-nucleon 1nterRction 1ndicate that

' the exchRnge term results ln R small amount of
antidamping [A(r) & 1], much smaller than the
damping [A(r) ~ 1] obtained when a nonlocal two-
nucleon interaction is used. The nonlocality of the
two-nucleon interaction appears to be more impor-
tant than the nonlocality due to the exclusion prin-
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ciple. For this reason, we have made a study of
several current nonlocal two-nucleon interactions.

In this paper, we apply the method of equivalent
local potentials to separable interactions which fit
the '80 phase shifts" from 0 to 350 MeV. Our pur-
pose is to determine if the equivalent local poten-
tials obtained from these interactions are similar
to phenomenological local two-nucleon interac-
tions" throughout this energy range, and, in par-
ticular, to determine if short-range repulsion is
reproduced. We mould also like to see if the damp-
ing functions obtained by this method are similar
to the damping functions obtained previously. '

H. SUMMARY OF THE METHOD

These solutions have the property

f (k, r)=f, *(k*,r)
The quantity

J(k, r)=(2ik) '[f (k, r)f„'(k, r) f,-(k, r)f '(k, r)I

is the Wronskian of the pair of irregular solutions
normalized so that

Equation (6) applies to the irregular solutions for
both Eqs. (1) and (2); but for a local potential,

The method used to construct an equivalent local
potential is described in previous work, e'~ and in
this summary we will state the results and men-
tion some specific properties. For the purposes
of this paper, a real and symmetric nonlocal poten-
tial is considered, and the results which will be
stated are valid only for nonlocal potentials that
satisfy these conditions. In the coordinate repre-
sentation, the s-wave radial equation for a non-
local potential is

Q„"(k,r)+O'P„(k, r) = V(r, s)g„(k, s)ds . (1)
0

for all k and x, since the %'ronskian of two linear-
ly independent solutions is a constant. One of the
important differences between nonlocal and local
potentials is the fact that the VYronskian of two lin-
earl. y independent solutions of the radial equation
for a nonlocal potential is not a constant. The
quantity J'„(k,r) represents an intrinsic difference
between nonloeal and local potentials, and devia-
tions of J'„(k, r) from 1 are a measure of the non-
Iocallty of R potentlRI Rs R functlo11 of k Rnd J'. An
integral expression for J'(k, r),

The solutions of this equation are related to the
solutions of an equivalent local equation

Q~ "(k, r) +k'(b~(k, r) = V(k, r)Q~(k, r) (2)

where

Q(k, r, s ) = (2ik) '[f (k, r)f+ (k, s ) f, (k, r)f (k, s )],—

by the expression

P„(k, r) =A(k, r)P (k, r).
V(k, r) and A(k, r) are called the equivalent local
potential and damping function, respectively.
Equation (3) is common to all methods of con-
structing an equivalent local potential which are
based on a comparison of Eqs. (1) and (2) in the
coordinate representation. The difference between
this method and previous methods' is that in this
method Eq. (3) is used to relate two linearly inde-
pendent solutions of Eqs. (1) and (2). One of the
features of this method is that any convenient pair
of linearly independent solutions may be used.
This is because the equivalent local potential and
the functional form of the damping function are in-
dependent of the boundary conditions imposed on
the solutions used to calculate them. '

The linearly independent pair of solutians used
in this paper are the "irregular solutions" f,(k, r)
which satisfy the boundary conditions

(4)

shows the distinction between nonloeal and local
potentials more clearly. In the limit as V(s, f)
—V(s)5(s —f), J'(k, r) is 1. If the nonlocal poten-
tial is symmetric, J(k, r) satisfies

W'e mention these properties of the Nronskian
for several reasons. First, the properties of the
%ronskian are independent of any method of con-
structing Rn equivalent local potential. Moreover,
since the construction of an equivalent local poten-
tial implies a transformation from Eq. (1), where
the Wronskian is not a constant, to Eq. (2), where
the W'ronskian is a constant, the differing proper-
ties of WronsklRns for nonlocRI Rnd IocRI poten-
tials should be taken into account in some way.
Second, Wronskians are intimately related to lin-
ear independence, the one feature that distinguish-
es the present method of constructing an equiva-
lent local potential from previous methods. Third,
and most important, the %'ronskian of the pair of
irregular solutions is identical, apart from a con-
stant factor, to the radial probability current den-
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sity. The radial probability current density S(k, r)
is related to J'(k, r) by

S(k, r}= (ekym) J(k, r}
The constancy of the %'ronskian for a local poten-
tial, Eq. (8), is equivalent to the statement that
real local potentials conserve radial probability
current density, or conserve flux locally. Non-
local potentials do not conserve flux locally, but
symmetric nonlocal potentials conserve flux glob-
ally, or conserve probability current, by virtue
of Eq. (11). Linear independence and Wronskians
are directly related to the probability current den-
sity. Accordingly, we call J(k, r) the radial prob-
ability current density, or radial current when no
confusion can arise.

The equivalent local potentia1 and damping func-
tion obtained by the present method are

1 J" 3 J' 1
V(k, r) + — ——

li V(r, s) —Q(k, r, s)ds
2 g 4 g J g

(12)

G(k, r, r')=k 'sink(r r'-)

p, (k, r) =g&,n, (r)E', (k).

D(k) is the determinant of the matrix with ele-
ments

C, , (S) S, , f=f-C(ds, s),s, (s)S;s, (s)d. sds, .

(18)

and E,'(k) is the determinant of the matrix obtained
by replacing the lth column of the matrix with ele-
ments D, , (k) by s,'(k, 0), where

s,'. (S,s)=f' s""s,. (s)ds.

By substituting the irregular solutions into Eq.
(9), the radial current for a separable nonlocal
potential becomes

1 I'" [f (k,r)p, (k, ) sf, (k-, )pr(k, s)]ds

W(k, r) = J(k, r)"'. (13)

It may be shown' that the equivalent local potential
is real for real values of O'. Provided that the

J(k, r) is positive, the damping function is also
real. Both V(k, r} and J(k, r) depend parametrical-
ly on k2. This energy dependence is a reflection
of the dispersion inherent in wave equations with
nonlocal potentials relative to equations with ener-
gy-independent local potentials. It may be shown

that the nonlocal and equivalent local potentials
have the same bound-state energies and scattering
phase shifts. Once the solutions to the nonlocal
equation have been generated, the equivalent local
potential and damping function are quite easy to
evaluate.

IH. SOLUTIONS OF THE NONLOCAL EQUATION

If the nonlocal potential has the separable form

V(r, s) =g J).,n,.(r)n, (s), (14)

( )
')) G (k r r )p (k r )dr

(16)

then the solutions of Eq. (1) can be obtained by
algebraic methods. All phenomenological separa-
ble two-nucleon interactions have this form. The
irregular solutions satisfy the integral equation

f (S )=s"" f C(d, s, s')J—( (s(s'', s)f, (d, s)dsds'

(15)
and are given by

(2o)
Another solution of Eq. (1) that wiH be used is the
regular solution

t." G(k, r, r')p(k, r')dr'

where

p(k, r) =+X,n, (r)JV, (k}

(21)

(22)

JV, (k) = (2fk)-'[E,'. (k) -E;. (k)]. (23)

A few comments about the determinant D(k) are
in order. D(k) is the Fredholm determinant of the
integral equations for the regular and irregular
solutions to Eq. (1). The Fredholm determinant
D'(k) of the integral equation for the physical wave
function is often referred to in studies of both lo-
cal and nonlocal potentials. The zeroes of D'(k)
correspond to the spectrum of the integral equa-
tion for the physical wave function. The determi-
nant D(k) is rarely discussed in either nonlocal-
or local-potential analyses. For local potentials
this is understandable, since the integral equa-
tions for the regular and irregular solutions are
Volterra equations, and the Fredholm determinant
for a Volterra integral equation is identically
equal to 1. For nonlocal potentials the integral
equations for the regular and irregular solutions
are Fredholm integral equations. Consequently,
the integral equations for these solutions have a
spectrum that corresponds to the zeros of D(k).
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The spectrum of D(k) is important in the study of
nonlocal potentials, in some cases as important
as the spectrum of D'(k). The zeros of D(k) cor-
respond to effects that cannot occur for short-
range local potentials, and are called spurious
stRtes for this reRson. For short-range IocRI po-
tentials, D'(k) cannot be zero for real values of k.
For nonlocal potentials, D'(k) can be zero for real
values of k, and these zeros are called continuum
bound states. Since D'(k) and D(k) are related by

D'(k) = D(k)+PXP, (k) e', (k, 0)

and since D(k) can be zero for real values of k, it
is apparent that there may be some connection be-
tween spurious states and continuum bound states.

None of the currently acceptable separable two-
nucleon interactions, which are used to approx-
imate local potentials, have been studied for the
purpose of determining whether these interactions
admit spul ious stRtes. Kith 16gal d to the present
study, two properties of spurious states are im-
portant. First, for energies near spurious-state
energies, the correspondence between nonlocal
Rnd IocRI potentlRIS 18 tenUoUs, Rnd the equlvRlent
local potentials obtained by the present method
exhibit behavior which would be termed "patholog-
ical" if it occurred for a local potential. This can
be seen by noting that D(k) occurs in the denomi-
nator of J(k x) ln Eg. (20). When D(k) ls near zero
it is possible for Z(k, r) to have zeros; and when
D(k) is zero, Z(k, r) is infinite. Since Z(k, r) oc-
curs in the denominator of V(k, r) in Eq. (12), it is
clear that the zeros of J(k, r) lead to p'oles of
V(k, r). Second, the occurrence of spurious states
at one energy may cause effects Rt energies which
are far removed from the spurious-state energy.
These effects may be apparent in the equivalent
local potential.

IV. YAMAGUCHI POTENTIAL

Some time ago, Yamaguchi" demonstrated that
a single separable potential provides an adequate
account of the binding energy of the deuteron and
the low-energy two-nucleon scattering parameters.
Since many of the more recent two-term separa-
ble potentials which fit the two-nucleon phase
shifts use the Yamaguchi potential for the attrac-
tive term, it is convenient to study this potential
first.

The Yamaguchi potential is'3

V(& s )
—y e

—8(r + s i

and a linearly independent pair of solutions follow
directly from Eq. (16). The bound- or antibound-
state energy is obtained from

where the wave number o. is positive or negative
according to whether the state is bound or anti-
bound. The wave function for this state is

-I 40
0 I 2

DlSTANCE (FERM)5)

FIG. 1. Equivalent local Yamaguchi potential. The
dashed line is the Hulthen potential which has the same
bound-state enexgy and wave function as the Yamaguchi
potential.

f'(io., r)=e "—e

The bound-state wave function for the Yamaguchi
potential is identical to the wave function for the
fir st bound state of the Hulthen potential with
range (P —o.') ' and depth -(P' —n'). A Hulthen
potential with these parameters is used for com-
parison with the equivalent local Yamaguchi poten-
tial. The parameters for the Yamaguchi potential
which fit the deuteron binding energy (2.2255 MeV)
and the 3S, scattering length (5.411 F) are A.

= -7.533 F 3 and P = 1.4054 F '. By taking the
same range for the 'S, potential, the 'So scatter-
ing length (-23.671 F) is fit with 1=-5.237 F

The construction of the equivalent local Yama-
guchi potential is not difficult. The radial current
for the Yamaguchi potential is obtained from Eq.
(20)' lt 1s

Xe ~'sin(kr)
k(P'+ k' —~/2P)

'

The equivalent local potential is obtained from Eq.
(12) and is plotted in Fig. 1. The 'S, parameters
were used for this plot, Results for the 'So param-
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eters are not substantially different, since the non-
local potentials for both partial waves have the
same range. The smaller strength of the 'So po-
tential leads to a corresponding smaller strength
of its local equivalent and an almost imperceptible
shift in the extremal points of the radial current
and equivalent local potential.

Both the radial current and equivalent local po-
tential become oscillatory for k & 1. For 0 &1, the
equivalent local potential is reasonable and tracks
mith the Hulthen potential for distances greater
than 0, 5 F. The deviations from the Hulthdn poten-
tial curve for these distances can be attributed
to the differences in the ranges of the Yamaguchi
and Hulthen potentials. The equivalent local poten-
tial and the Hulthen potential differ for distances
less t,han 0.5 F. This is due to the fact that a con-
tinuous nonlocal potential cannot lead to poles in

the equivalent local potential unless the radial
current has zeros. Since the tmo-nucleon interac-
tion is not well known for distances less than 0.5

F, the structure of the equivalent local potential
for small distances does not prejudice its physi-
cal content. It is somewhat interesting that the
deviations begin to occur at about the same dis-
tance that the tmo-nucleon interaction begins to be
poorly determined,

V. T%0-TERM TABAKIN POTENTIAI.

Tabakin' has parametrized tmo-term separable
interactions which fit the nucleon-nucleon scat-
tering data reasonably mell. Our analysis is re-
stricted to the 'SO partial wave where the first
term is an attractive interaction of the Yamaguchi
type. Tabakin's purpose in introducing the second
term was to construct a repulsive part of the inter-
action which would dominate at high energies in
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much the same way as a repulsive core in a local
interaction. Since the equivalent local Yamaguchi
potential does not exhibit short-range repulsion,
its occurrence in the equivalent local Tabakin po-
tential would have to be due to the second term in
Tabakin's interaction.

The nonlocal Tabakin interaction to be used in
Eq. (1) is given in coordinate space by

V(r, s) = -g,(r)g,(s) +h, (r)h, (s),
where

h, (r) = Pe
2dh

sindhi + coeds

all parameters are defined in Tabakin's paper. '
The resulting 'SO equivalent local Tabakin inter-
action is shown in Fig. 2 as a function of x for in-
cident laboratory energies of 10, 60, 160, 260,
and 310 MeV. The variation with energy is smooth
and the repulsive core is evident, becoming
stronger with increasing energy. The form of the
separable interaction seems to be such that at-
tractive and repulsive effects are spread out in
the equivalent local potential and tend to weaken
one another. Perhaps the most striking differ-
ence between the equivalent local potential and
the usual local interactions that we have come to
accept' is the lack of both height in the repulsive
core and depth in the attractive region of the po-
tential. However, the 'So phase shifts have re-
cently been fit with local potentials that have
"supersoft" cores. '4 Apart from its energy de-
pendence, the equivalent local Tabakin potential
is similar to these supersoft nucleon-nucleon po-
tentials.

The damping function A(h, x) is shown in Fig. 3

for the same energies. It is remarkably similar
to the damping function for the Yamaguchi poten-
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FIG. 2. Equivalent local potential for the two-term
Tabakin potential.

FIG. 3. Damping; function for the two-term Tabakin
potential.
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tial. The shape, depth at the minimum point, and
energy dependence are almost identical, and in
both cases the damping of the nonlocal wave func-
tion with respect to the equivalent local wave func-
tion tends to disappear at high energies. The
damping function is also similar to those obtained
from the nonlocal nucleon-nucleus potentials' de-
rived from the Hartree-Fock calculations with
nonlocal two-nucleon interactions. Since these
calculations used the two-term Tabakin potential
for the two-nucleon intera, ction, this sixnilarity
indicates that the damping is due to the nonlocality
of the Tabakin potential and is not a property of
the Hartxee-Fock exchange term. This is consis-
tent with the observations in Ref. IO.

eV

eV

=l0 MeV

eV

eV

-9
0

I l I ) I

0.5 l.0 l .5 2.0 2.5 5.0 5.5 4.0
r {FERM[S)

FIG. 4. Radial current for the one-term potential.

VI. ONE-TERM TABAKIN POTKNTIAI.

Tabakin' has also fit the '~, phase shifts with a
one-term separable potential. While a one-term
separable potential is computationally simpler than
the two-term potentials'2 used to simulate the re-
pulsive core, the one-term Tabakin potential dif-
fers from interactions usually considered in that
it ha, s a spurious or continuum bound state. The
physical significance of these states, which do not
occur fox' short-range local potentials, is uncertain.
Bolsterli" has emphasized that a continuum bound
state is the same as a resonance with zero width,
and that an additional interaction will spread the
width and lead to an observable resonance in the
cross section. Brady et al."have argued that the
wave function for the one-term Tabakin potential,
which has an additional node, is more like the
wave function for an attractive local potential with
one bound state than a potential with no bound
states and a repulsive core. The objections to the
one-term Tabakin potential are cogent, and the ef-

ficacy of using separable potentials with spurious
states is questionable. Our puxpose in studying
the one-term Tabakin potential is to determine if
the method of equivalent local potentials can be
used to provide information about separable poten-
tials with spux'ious states.

Figure 4 shows J(k, r) for the one-term Tabakin
potential as a function of ~ fox the energies used
previously. Since J(k, r) can be negative, the
damping function (13) and the relation between the
nonlocal and equivalent local wave functions (3)
are undefined. The behavior of V(k, r) as a, func-
tion of r is dominated by poles which are the re-
sult of J(k, r) passing through zero. It is clear
from Fig. 4 that the equivalent local potential can
bear no resemblance to a typical local nucleon-nu-
cleon interaction at any energy. The radial cur-
rent is drastically different from those obtain pre-
viously; however, both J(k, r) and V(k, r) are well
defined by Eqs. {9)and (12) and provide useful in-

rxnatlon fox' studying spurious states.
Referring to Fig. 4, we note that the extremal

point of J(k, r) at 0.5 F is invariant to changes in
the energy. This extremal point coincides with a
zero of go(r), and it has been shown' that extremal
points of this type can lead to zeros of Z(k, r) as
the strength of the nonlocal potential is increased
from zero. [J(k, r) is identically equal to I if the
strength of the potential is zero ]The. two-term
Tabakin potential also has zeros, but they are not
of the type discussed here. The zeros of g,(r) cor-
respond to zeros of a nonlocal potential V(r, x')
which are independent of one of the coordinates,
whereas the zeros of the two-term Tabakin poten-
tial depend on both of the coordinates. The othex'
two zeros of g,(~) near 2.0 F also lead to zeros of
J(k, r) which are not shown in Fig. 4, as the effect
occurs between 240 and 260 MeV. %e have not
been able to show that zeros of potentials of the
type that occur in the one-term Tabakin potential
necessarily lead to zeros of J(k, r); we can only
state that these zeros are related to spurious
states and are a possible source of trouble.

The spurious state of the one-term Tabakin po-
tential occurs at a laboratory energy of 240 MeV.
As shown in Fig. 5, this state corresponds to a
zero of the Fredholm determinant D(k). Bolsterli"
has pointed out that the Fredholm determinant
D'(k) is also zero at 240 MeV, but it is clear from
Eq. (24) that D'(k) cannot be zero unless both D(k)
and N, (k) are zero at the same energy. The con-
fluence of zeros of D(k) and N, (k) is a very special
case. It occurs in the one-term Tabakin potential
because the paxameters of the potential were in-
tentionally adjusted so that the spurious-state en-
ergy [D(k) = 0] coincides with the energy at which
the relative phase shift passes through zero [N,(k)
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VII. CASE-IV MONGAN POTENTIAL

Mongan' has recently constructed a number of
separable interactions which fit the two-nucleon
phase shifts. The case-II and case-IV 'So poten-
tials are identical and are referred to as the case-
IV potential in this paper. This potential is in-
teresting because both the attractive and repulsive
terms of the interaction are of the Yamaguchi type.
Exact solutions of the nonlocal equation can be ob-
tained easily once the solutions for the Yamaguchi
potential are known. The case-IV Mongan poten-
tial is

V(r, r~) = X e ~"&"+' l —A. e 8&&"+" &8 A

in the coordinate representation. The values of

40

20 . -

0 . .
Z
LLII-

-20--

-400

FIG. 5. Fredholm determinant D(A) for the one-term
Tabakin potential plotted as a function of energy.

=0]. Since D(k) can be zero independent of D'(k),
it is the zeros of D(k) that cause spurious states
We will return to the discussion of spurious states
later; at this point, it is sufficient to note that the
undesireable properties"'" of the one-term Tabak-
in potential can be related to the zeros of D(k).

the parameters used to fit the 'So phase shifts are
3454 8 F ) P~ 6 157 F

~
A A 28 293 F

pA= 1.786 F '. The inverse ranges are as given
in Table IV of Mongan's second paper. ' The
strengths are modified in the transformation to
the coordinate representation. The strength pa-
rameters used in this paper are related to the
parameters in Mongan's paper by

A. = —'&C'/41. 468.

Exact expressions for the solutions of the nonlocal
equation were used in this study of the case-IV
Mongan potential.

The equivalent local potential for the case-IV
Mongan potential is shown in Figs. 6 and 7. Two
plots were necessary to show the very strong short-
range attraction. The change in the equivalent lo-
cal potential with energy is continuous and no sig-
nificant repulsion was observed in this energy in-
terval. While the equivalent local potential is a
continuous function of r for each energy in the en-
ergy range for which the case-IV Mongan potential
fits the phase shifts, the very strong attraction is
surprising, since the original separable potential
is supposed to exhibit short-range repulsion. In
fact, the case-IV Mongan equivalent local potential
seems strong enough to have a bound state. For
this reason, the potential was examined in greater
detail.

A test of the case-IV Mongan potential was made
to determine if this potential has spurious states.
The test used is very simple and may be conve-
nient to apply to other potentials. The test is
based on the observation' that the Fredholm de-
terminant D(k) satisfies

limD(k) = 1.

Then, if

limD(k) &0,
A~O

0

~ —5000

I-
5 -IOOOO

~o
Q. -I 5000

~-20000
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I- -60--2
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f(FERMIS)
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+ -30000
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FIG. 6. Long-range part of the equivalent local
potential for the case-IV Mongan potential.

FIG. 7. Short-range part of the equivalent local
potential for the case-IV Mongan potential.
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FIG. 8. Fredholm determinant D{k) for the case-IV
Mongan potential plotted as a function of energy on a
semilog scale.

D(k) must have at least one zero in the interval
0 «k -~. In other words, there must be at least
one spurious state. For the case-IV Mongan po-
tential, we find

limD(k) = -9.48,
k~O

and conclude that the case-IV Mongan potential
has a spurious state. If

limD(k) &0,
0~0

the test would have been inconclusive, since a
positive value of D(k) at one energy may not guar-
antee that it is positive at all energies. Neverthe-
less, it is quite easy to calculate D(k) at zero en-
ergy, and the test provides a quick way of check-
ing potential before more complicated calculations
are attempted. A plot of D(k) for the case-IV Mon-

gan potential is shown in Fig. 8. The spurious
state is at 19.6 BeV.

In view of the very high energy of the spurious
state, its relevance for a two-nucleon interaction
below 0.5 BeV can be questioned. Figure 9 shows
the zero-energy wave function for the case-IV
Mongan potential as calculated from Eq. (21). The
fact that this wave function has a node demon-
strates that the spurious state at 19.6 BeV does
have an effect at experimentally relevant energies.
Most likely, the extra node is due to the negative
sign of D(k). This is consistent with the results
for the one-term Tabakin potential which also has
negative D(k) and an additional node. The case-IV
Mongan potential is not like local potentials which

0.04
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D -0.06—
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-O. I 0—

-O. I 2—

-O. l 4
0

I

0.08 O. I6
r (FERM t S)

0.24 0.32

FIG. 9. Zero-energy wave function for the case-IV
Mongan potential.

have short-range repulsion, long-range attraction,
and no bound states. The correspondence between
the node in the zero-energy wave function and the
strong short-range attraction in the equivalent lo-
cal potential is consistent with our suspicions.
Under ordinary circumstances, two-nucleon cal-
culations are not checked to insure that the high-
energy behavior of a given interaction is consis-
tent with the nonrelativistic potential model. The
main reason we checked was because the case-IV
Mongan equivalent local potential did not look like
a local potential that would fit the '~o phase shifts.

Sprung" has used the Marchenko" method to
construct an equivalent local potential from the
~ matrix element of the case-IV Mongan potential.
The potential obtained (see Fig. 2 of Ref. 17) is
very similar to the Reid soft-core potential" and
quite different from the potential obtained by the
method used in this paper. The "Marchenko equi-
valent" local potential of the case-IV Mongan po-
tential would not yield a zero-energy wave func-
tion with a node. The reason for this difference
between the properties of the two types of equiva-
lent local potentials can be understood by examin-
ing the Marchenko method. The starting point for
the Marchenko method is the integral

s(*)=—' f [s(s) —s] "*ss,

where S(k) is the S matrix element. This integral
is evaluated by transforming it to a contour inte-
gral in the upper half of the k plane and determin-
ing the residues of the poles of the integrand, a
procedure that is meaningful only if the number
of poles of S(k) inside the contour is stable. If the
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symmetry of the case-IV Mongan potential is de-
stroyed by applying a small perturbation, for
example, by writing one of the terms as

Sy -(g+ 6)r'
t

where & may be arbitrarily small but finite, then
S(k) for the perturbed potential will have a pole
on the real axis at the zero of D(k). This pole can
alter the resulting Marchenko equivalent local po-
tential significantly. It should be emphasized that
the instability just mentioned is a property of the
case-IV Mongan potential, and is not a defect in
the Marchenko method. Sprung" has also con-
structed the Marchenko equivalent local potential
for the two-term Tabakin potential. In this case,
the comparison between the local potentials ob-
tained by the two methods is more favorable.

VIIL APPEARANCE OF SPURIOUS STATES
IN SEPARABLE INTERACTIONS WITH

STRONG REPULSIVE TERMS

The spurious state obtained for the case-IV Mon-

gan potential is not of the same type as the spuri-
ous state for the one-term Tabakin potential. In
the latter potential, the spurious state can be re-
lated to a class of zeros of the nonloeal potential
in the coordinate representation. The spurious
state for the case-IV Mongan potential is due en-
tirely to the magnitude of the "repulsive" term
in the interaction. To show how separable poten-
tials with a "repulsive" sign can lead to spurious
states, we return to the Yamaguchi potential.

For the Yamaguchi potential, the Fredholm de-
terminant of the matrix given by Eq. (18) is

1
D(k) = 1-

gP k2+P

If A. &0, then ~D(k)~ ~ 1 for all k in the strip -P
&Im(k) &P. There is no possibility of D(k) being
zero in the domain of definition of the solutions to
the nonlocal equation. If A. & 0, then ~D(k) ~

& 1 for
all k in the strip, and it is possible for D(k) to be
zero or negative. It is apparent in this case that
the zeros of D(k) occur for k' real; they are on ei-
ther the real or imaginary axis in complex k space.
As A, is increased from zero, a pair of zeros will
move from Imk = +P, and will meet at k = 0 when
A = 2P'. As A is increased further, the zeros of D(k)
will move out onto the real axis of the complex k
plane. The energy of this spurious state moves
to higher energies as A, is increased. For all en-

ergies below the spurious state, D(k) will be nega-
tive. It is clear that there is a limit to the amount
of repulsion that can be allowed without introducing
a spurious state.

While we have used a very simple potential as an
example, it is apparent that similar effects can
occur for any separable interaction whose strength
has a repulsive sign. Indeed, they have occurred
for the case-IV Mongan potential. It should be
emphasized that the occurrence of spurious states
is very dependent on the numerical values of the
parameters used in a given nonloeal potential.
Consequently, any attempt to fit phase shifts with
potentials that are not local should be accompanied
by an investigation of the number of nodes of the
wave function.

IX. CONCLUSION

In this paper, we have applied a method of equiv-
alent local potentials to separable two-nucleon in-
teractions which fit the '8, phase shifts. For those
separable interactions which do not admit spurious
states, we have found a reasonable correspondence
between the equivalent local potentials obtained
from these interactions and phenomenological lo-
cal potentials which fit the same phase shifts.
This result is consistent with previous observa-
tions on other nonlocal potentials and their local
equivalents. '" Most of the equivalent local poten-
tials obtained thus far are reasonable in terms of
a correspondence with phenomenologieal local po-
tentials. For those which are not reasonable, the
method has been used to detect spurious states
which occur in the original nonlocal equation. We
conclude that the method is a useful tool for study-
ing the properties of nonlocal potentials.

In these applications, we have encountered prob-
lems with separable potentials that are supposed
to exhibit the short-range repulsion that is charac-
teristic of local two-nucleon interactions. While
we have not made a thorough study, our results
indicate that there are definite limits to the amount
of repulsion that can be safely considered with
separable nonlocal interactions.
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Regge poles describing shape resonances ("quasimolecular states") are found to play a
prominent role in many optical-model scattering amplitudes and appear to be directly re-
lated to the Gruhn-Wall "dip" often observed in the reflection coefficient g(l). The Blair
smooth-cutoff model is generalized to include such a Regge pole and used to fit angular dis-
tributions for elastic 60+ ~60 and e+ 60 scattering, in the 20-30-MeV (c.m. ) energy range.
It also appears that the smooth-cutoff (strong-absorption) model itself can be interpreted as
the result of many overlapping inelastic Regge resonances.

I. INTRODUCTION

A long-standing problem in elastic o-nucleus
scattering at energies well above the Coulomb bar-
rier is the strong rise of the angular distributions
at backward angles. Although both the optical
model with strong absorption and the smooth-cut-
off model' reproduce the diffractionlike angular
distribution in the forward hemisphere, neither
has so far been very successful in simultaneously
describing the strong, oscillatory backscattering.
Bryant and Jarmie' have noted that the- shape of
this backward-angle scattering is strongly remini-
scent of the glory effect, which is a grazing-ray
phenomenon, ' and indeed Gruhn and Vfall4 found
that a, narrow dip superimposed on the smooth-cut-
off model at an l value near l =kR aided materially

in raising the backward-angle scattering. More
significantly, Cowley and Heymann' have recently
shown that adding a Regge pole at l =kA to the
smooth-cutoff model permits an impressive fit to
their elastic e+' 0 cross sections over the full
angular range.

A direct-channel Regge pole is simply a conven-
ient means of describing resonances in several ad-
jacent l values simultaneously; the fact that the
data seem to call for such resonances near l =OR
implies considerable transparency of the interac™
tion at the nuclear surface, in spite of its strong
absorption near the center. This is reminiscent
of the interaction responsible for heavy-ion scat-
tering, for a, growing body of opinion suggests
that it, too, is strongly absorptive at small im-
pact parameters but highly transparent at large


