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To consider deuteron-induced reactions within the shell model, it is necessary to include
single-particle states with two particles in continuum single-particle states. Expressions
are derived for operators whose matrix elements give the transition amplitudes for the pro-
cesses encountered in deuteron-induced reactions. Each of these operators can be written in
terms of a single operator which satisfies an integral equation whose kernel involves the
Green's function for two noninteracting particles in the presence of a common potential. This
operator is discussed at length. Using single-particle Gamow states, a method is formulated
to approximate the connected part of this operator by an operator of finite rank. This approx-
imation is then tested numerically and is found to be effective. Finally, there is a discussion
of the implications of the approximation in the scattering amplitudes of interest.

1. INTRODUCTION

The shell-model approach to nuclear reactions
has generally been restricted to considering sin-
gle-particle states with at most one particle in a
scattering eigenstate of the single-particle Hamil-
tonian. ' Therefore, only single-nucleon reaction
channels may be considered within the model.
Furthermore, one is restricted to considering
only those virtual excitations in which all but one
particle are in bound eigenstates of the single-
particle Hamiltonian. However, since the deuter-
on is weakly bound, a shell-model treatment of
deuteron-induced reactions must generally include
single-particle states with two particles in continu-
um single-particle states. Therefore, in consider-
ing deuteron-induced reactions within the shell
model, the three-particle aspects of the problem
must be confronted. The complications which are
inherent in existing formulations of the three-
particle problem have meant that it is necessary
in calculations to assume the simplest possible
structure for the nucleus. This has restricted cal-
culations to deuterons incident on an inert nucleus.
Shanley' has considered the deuteron-z-particle
system using an approach developed by Amado. '

This approach assumes that the dynamics of each
two-particle subsystem is dominated by a few two-
particle correlated states. In terms of the propa-
gators for these states and their form factors,
coupled equations which have the form of two-parti-
cle, multichannel Lippmann-Schwinger equations
are written for the various amplitudes of interest.
These equations represent the summing, to all or-
ders, of diagrams for two-particle correlated
states propagating along with the third particle
which is free, and the subsequent breakup of the
correlated state, giving three free particles. One
member of the original pair then forms a corre-
lated pair with the third particle, while the other
originally paired particle propagates freely. This
is all to say that Amado's approach assumes that
the three-particle wave function is a superposition
of two-particle correlated states with the third
particle free, and then gives a prescription for
calculating the amplitudes of these states which in-
volves the solution of a set of coupled Lippmann-
Schwinger-like integral equations. Since the num-
ber of coupled equations is proportional to the
number of correlated pair amplitudes, it is gener-
ally necessary to assume that only a few two-parti-
cle correlated states in each two-particle system
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are important in the three-particle wave function.
This paper describes an approach to deuteron-

induced reactions which is suggested by the shell-
model approach to nuclear reactions. It is as-
sumed that a major portion of the three-particle
wave function consists of a product of two single-
particle shell-model states coupled by an effective
interaction. As mentioned previously, two-parti-
cle continuum states must be considered and a
large part of the paper is devoted to a discussion
of their properties. In Sec. 2 expressions in terms
of a single operator are derived for the amplitudes
encountered for a deuteron incident on an infinitely
massive, structureless target. In terms of single-
particle states, both bound and in the continuum,
it is shown that singular terms in the kernel of the
integral equation for this operator can be isolated
in a kernel of finite rank. For this development it
is first necessary to discuss the Green's function
for two noninteracting particles in a common po-
tential. This is done in Sec. 3. In Sec. 4 we intro-
duce a finite-rank approximation for part of this
Green's function, and then we show the results of
numerical calculations designed to test the approx-
imation. In Sec. 5 we discuss within this approxi-
mation the operator introduced in Sec. 2.

We neglect the Coulomb part of the proton inter-
action with the core throughout the payer.

2. ELASTIC, BREAK-UP, AND
STRIPPING AMPLITUDES

Primarily for the sake of completeness, a dis-
cussion of break-up and stripping as well as elas-
tic scattering amplitudes for a deuteron incident
on an inert core follows. The results apply to any
three-particle system where two of the two-parti-
cle subsystems may be bound. However, things
will be discussed in a way which is convenient for
a shell-model approach to deuteron-induced reac-
tions. Our approach is close to Baz's. 4

We have a three-particle problem and we as-
sume the only interactions are the pairwise inter-
actions: V„, the neutron-nucleus interaction; V~,
the proton-nucleus interaction; and V„~, the neu-
tron-proton interaction. Then the Hamiltonian for
the system is written as

incident on the nucleus and

g(„~&(E)= (E+it —Ho —V„~) '. (2.3)

g"& (E) also satisfies the homogeneous equation
D,K

y(+& (Z) = G(+& (E)V y(+& (E)

where

G(„'+&p (E) —= (E + is -Ho - V„- Vq )
' .

(2.4)

where p, is the reduced deuteron-target mass. It
is convenient to define the vectors T, (E, K) and

T,(z, K)

T,(E, K) = (V„+Vq) g(+& (E), (2.6a)

T2(E, K) = v„q((&"& (E), (2.6b)

which satisfy the coupled equations

T,(Z, K) = (V„+V, )G(„,&, (z)T,(z, K),

T2(E& K) = V„p &f&(& K
+ V„pg(~& (E)T, (E& K) .

Further note

@n.&('V.( Go"(E)= C's, &('

(2.7a)

(2.Vb)

(2.8)

which is just a way of writing the adjoint of the
Schrodinger equation. In terms of the two-particle
transition operator in the three-particle Hilbert
space which satisfies the operator equation

f„,(W) = V„, + V G, (W)f„,(W),

where

Go(W):—(W —Ho)
'

(2.9)

is the three-particle free Green's function, one
has the operator identity

V„„g„(W)= f„(w)G (W) . (2.10)

The elastic scattering amplitude AK, K(E) is given

by

A;, ;(z)=(c, ;„(v„+v, )g('& (E)). (2.11)

The energy E is related to the deuteron binding en-
ergy B~ and the momentum K by

E= -H, + ~K~'/2i(, (2.5)

H=HO+ V„+Vp + V„p, (2 1) Using Eqs. (2.6b) and (2.8) this amplitude may be
written

where H, is the kinetic energy operator for the
system. Let us denote the relative deuteron-nu-
cleus momentum by K. Then for a deuteron inci-
dent on the nucleus the wave function for the sys-
tem satisfies the inhomogeneous equation

AK. K(E) =(en K, V„pG,"&(E)T,(E, K)).

Now define the operator X"&(E}by

G."'(E)T,(z, K) -=X'"(E)V~4.,~.

(2.12)

(2.13)
0,"';(E)=Co,-+g'. (E)(v. + V, )y,"~(z), (2.2)

where C ~ K is the wave function of a free deuteron
Substituting Eq. (2.7a) into Eq. (2.7b) and using
Eq. (2.10) gives
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X'+'(E)V„~ 4'»
&&

= Go"'(E)[V„+Vq]G&„+&q(E)

x [1+t&~&(E)X&'&(E)]V„~4n K .

where

g„„(w)= G„„(w)—G,(w) . (2.23)

(2.14)

Then in terms of the operator X(W) which satis-
fies the equation

x(w) = G, (w) [v„+v, ]G„„(w)[1+f„,(w)x(w)],

(2.15a)

the elastic scattering amplitude is given by

A-, -(E) = lim (4 -, V„+(W)V„4& -). (2.16)
W~E+i e

For the break-up amplitude it is obviously appro-
priate to consider the vector (V„+U~ + V„~)g"&&(E),
where

(V„+Vq + V„q) g&& &&(E)
= T, (E, K) + T, (E, K) .

(2.17)

A little operator algebra gives

T, (E, K) + T, (E, K) = [1+ (V„+ U, )G'„",,(E)]

x [1+f&„;&(E)x"&(E)]V„,4 n K.

(2. 18)

Denoting the three-free-particle state by p pg p

where p and q are any two linearly independent mo-
menta in the center-of-mass coordinate system,
then the breakup amplitude is given by

B--„(E)=(g -„, T, (E, K)+ T2(E, K)) . (2.19)

The operator 1+ (V„+V~)G&„;&~(E) is the Hermitian
conjugate of the incoming wave operator for the
system in the absence of the n-p interaction.

For the neutron stripping amplitude, denote the
wave function for a free proton incident on a bound
neutron-nucleus state by p„p where k is the rela-
tive proton bound-state momentum. Then the strip-
ping amplitude to the nth bound state is given by

g„„(w)= G, (w)[v„+ v, ]G,(w)

+ G, (w) [v„+v, ]g„„,(w) . (2.25)

Following Faddeev' define the two operators
g„", (W) and 8~,~(w) by

g„"&f&(w) = G,(w) v„„,G, (w) + G, (w) v„„,g„„(w).

(2.28)

Then

8„, (w) 8". ,(w=) + 8'.„(w),
where

[1 —Go(W) V„]g„",~(w)

(2.27)

= G, (w) v„G,(w) + G, (w) v„g'„„(w).

(2.28)

The two-particle transition matrix satisfies the
equation

The kernel 8„,~(W)t„~(w) is connected since it in-
volves only terms in which all three particles are
interacting. Loosely speaking, the neutron and pro-
ton have been allowed to interact to all orders giv-
ing t„~(w) and then the next interaction must in-
volve the neutron or the proton and the core. Con-
nectivity is a necessary condition for compact-
ness" which is a necessary property of the ker-
nel if the usual methods for solving the equation
are to be used.

It is convenient to decompose 8„,~(w) into par-
tially and completely connected parts. From the
operator identity

G„+~(w) = Go(W) + G, (W) [V„+V~]G„,~(W),

(2.24)

one obtains

s„,&, -(E)=(p. , &, [v„+v, ly,"&~(E)) .

Just a little operator algebra yields

(2.20)
f„(w) = V„+t„(w)GD(H )V„,

therefore

(2.29a)

S„k K(E) = lim (p„k, [1+VpG„~q (W)]
W~E ~]+ifn, k

&&[1+f„,(w)x(w)]v„, 4 „-),
where

E„-„= B„+ik ['/2iL, , -

(2.21)

(2.22)

1+Go(W)t„(w) = [1 —GO(W) V„] (2.29b)

Substituting Eq. (2.30) into Eq. (2.28) and using Eq.
(2.29a) gives

8"„~q(W) = Go(W)t„(w)GO(w)+ Go(w)t„(w) g„,p(w) .

(2.30)
where p~ is the proton-bound-state reduced mass.

In each amplitude the full three-particle dynam-
ics is contained in the operator X(W) which satis-
fies the operator equation

Interchanging n and p in this equation gives the
equation satisfied by 8'„,~(w). Therefore,

8.„(w)=G.(w)ff. (w) f,(w)]G.(w) 8:„(w),
x(w) = g„„(w)+ 8„„(w)f„,(w)x(w), (2.15b) (2.31)
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G, p(w) = (W H„-H~) '. — (2.32)

Eigenstates of II„+H~ are the products of single-
particle eigenstates of H„and H~, while eigen-
values of H„+ EI~ are the sums of single-particle
eigenvalues. Therefore, matrix elements of
G„,~(w) is singular at energies corresponding to
the sum of single-particle Gamow state energies,
i.e. , G„,~(w) has a pole term at E„+E"n ~P

r„r,r„'r,~

G„~q(w) =

~n ~P

where I'„z& is the neutron (proton) single-particle
Gamow state and r„» is the corresponding time-
reversed state. ' Near such energies the pole con-
tributions to 8„,~(W)t„~(w) cannot be treated by per-
turbation theory. At this point we cannot be ex-
plicit about the nearness. All that is required in
the present discussion is the observation that
there is a neighborhood where an iterative solu-
tion is not possible. When one proceeds along the
lines suggested by Weidenmuller and co-workers'

where Q'„,~(W) is connected, i.e., any and all
terms in the interaction of Eq. (2.30) beyond the
inhomogeneous term involve the interaction of
both the neutron and proton with the nucleus. The
first two terms of Eq. (2.31) are partially con-
nected. The first term includes the neutron-core
interaction to all orders and the second, the pro-
ton-core interaction to all orders.

Complete numerical solution of the integral equa-
tion corresponding to Eq. (2.15b), as it stands, is
not generally within the capability of existing com-
puters. Therefore the problem is: How does one
obtain reliable approximations for the required
matrix elements of X(w)? An iterative solution is
the first method which comes to mind. Roughly
speaking, the validity of such an approximation de-
pends on the "size" of the kernel g„,~(W)t„&(w).
This notion was formulated in a precise manner by
Weinberg' for the discussion of the convergence of
iterative solutions to integral equations which
arise in two-particle scattering theory. The ker-
nel g„,~(w)t„~(W) is much more complicated than
the kernel considered by Weinberg, and therefore
we follow a more intuitive approach which is close,
in spirit, to the approach suggested by Weiden-
muller and co-workers for including single-parti-
cle continuum states in the shell-model approach
to nuclear reactions.

From this point on, unless explicitly stated, we
assume the target or core is infinitely massive.
G„,~(w) is then the Green's function for two non-
interacting particles in a potential and is written
in terms of the single-particle HamiltoniansH„and
Hp as

or by Romoe to treat single-particle Gamow states,
several problems are encountered. Weidenmuller
approximates the single-particle continuum contri-
bution to the shell-model Green's function by a
finite rank approximation using Weinberg states.
Such an approach is generally not possible for deu-
teron-induced reactions where two-particle con-
tinuum states cannot be neglected. If one writes
for g„,~(w), following an approach analogous to
Rorno's,

g„„(w)= [8„„(w)—8„„(w))+g„„(w)
= S...(w) &.„(w), (2.34)

(P
where g„,&(w) is generally a sum of terms like the
single term in Eq. (2.33), and attempts to treat
8„,&(w) perturbatively, two problems arise. First
the interaction t„&(w) is not restricted to a region
around the nucleus as is the residual interaction
when only one single-particle continuum state is
included. Therefore one would generally encount-
er difficulties in evaluating matrix elements of
t„~(W) in terms of the Gamow states in the residue
of g„,~(W), since it is generally necessary to in-
clude single-particle resonance Gamow states in

g„,~(W). The properties of such states a,re dis-
cussed in the Appendix, and we only note in pass-
ing that the radial part of a resonance Gamow
state increases exponentially at large single-parti-
cle radial separation. Secondly b„,~(w) must in-
clude all the branch points in G„+~(w). In this
case there is not only a branch point at the two-
particle continuum threshold which in this case is
a logarithmic branch point; there are also square-
root branch points at each single-particle Gamow-
state energy corresponding to one of the valence
particles being in that single-particle Gamow
state. ' In the next section the operator g„,~(W) is
discussed in detail and the preceding discussion
is expanded.

3. DISCUSSION OF THE GREEN'S
FUNCTION 6n+p(V)

The first two terms in Eq. (2.31), Go(W)[t„(W)
+ t~(w)]G, (w), which we shall eall the impulse
terms, do not contain pole singularities since only
one of the valence particles is interacting in each
term. Therefore the pole singula, rities in g„,~(w)
are contained in the connected term g'„,~(w).
Since the connected term involves both valence
particle-core interactions, it presumably is well
described by a few low-lying single-particle angu-
lar momentum states. This will shortly be made
more precise.

In order to investigate the analytic properties of
matrix elements of g„&(w) it is convenient to ex-
press G„+~(W) in terms of the single-particle
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SPECTRUM OF p-CORE SYSTEM

where

G,(w} = g,„(w) *g„(w) . (3.7)

X X The impulse terms G,(W)[t„(w)+ t~(w)]G, (w) are
given by

I„ip(w) = go„(W) *gq(w) +g„(w) +go„(w), (3.8)

SPEC7 RUM OF n-CORE SYSTEM

and the completely connected part, 8„',~(w), by the
convolution of the single-particle operators which
contain the valence particle-core interactions

8:,&(W) =g.(W) *g,(w) . (3.9)

Green's functions

g„(w) = (w —H„)-'

and

(3.1a)

FIG. 1. The cut z plane for the integrand of the
convolution in Eq. (3.3).

For the sake of simplicity, we neglect spin and as-
sume the valence particle-core interactions are
central, then the single-particle operators are
diagonal in the orbital angular momentum. Using
Eq. (3.3) it follows that in configuration space

g, (w) = (w-H, )-'

by the convolution"

G.„(w)=g.(w) *g, (w)

(3.1b)

(3.2)

= H & .(&.)1;...(&,)1;„.*(~.')~...,'(t",)
'n m„
lp mp

The convolution is defined by the integral

g„(W) *g~(w) = . dzg„(z)g~(w —z),1

PTER

J'
8

,'3.3)

where the contour l", encircles in counterclock-
wise direction singularities of g„(z) which lie on
the real z axis. The integrand is defined in the
cut z plane shown in Fig. 1, where the path I", has
been folded back from the lower lip of the p-core
continuum cut and pulled around the P-core bound-
state poles. This is allowed since the only singu-
larities in the portion of the z plane through which
the contour has been distorted are the bound-state
poles. Anticipating the limit S"- E+ ie, 8' has
been given a positive imaginary part.

Upon defining the single-particle free Green's
functions by

(3.10)

where the convolution is written in terms of the
single -particle partial-wave Green's functions
which are discussed in the Appendix. Using the
partial-wave decomposition of Eq. (3.5), the con-
volution appearing in Eq. (3.10) may be decom-
posed into disconnected, partially connected, and
connected contributions. For the potentials gener-
ally used in the shell-model approach to nuclear
reactions g is well represented by a few low-lying
pa. rtial waves. And thus g„',~(w) can be expected
to be well approximated by a sum over a limited
number of single-particle partial waves.

We now turn to the evaluation of the connected
part of the convolution in Eq. (3.10),

go~y)(w) = (W H o)))» (3.4)

g„»( ) =go„»(W) +go„»(w) V„»g„»(w)

=go.&p)(w) +g.g&(w) . (3 5)

This is taken as the definition of g„»(w), which
thus includes to any and all orders the n(p)-core
interaction. The convolution (3.2) may then be
written as a sum of four terms

G.„(w)=g..(w) ~g»(W)+g. .(W) *g,(W)

+g„(W) ~g»(w)+g„(w) +g)(W), (3.8)

where Ho„» is the neutron (proton) kinetic energy
operator, the single-particle Green's functions
may be written

(3.11)

where, according to the definition in Eq. (3.3),

8;, (W, r„,r, ))r„', r,')

= 1
dzg, (z, r„,r„')g, (W-z, r„r,').

Z

(3.12)

Since the single-particle Green's function has a
square-root branch point at threshold in the ener-
gy plane, it is convenient to introduce the single-
particle momentum variables in the usual manner J
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kg= [2m@(W s)P,
and rewrite Eq. (3.12) as

(3.13)
which the integrand is single-valued. In doing this
we are guided by work done for the two-channel S
matrix by Cox" and Kato" as discussed by New-
ton. " The transformation

g;, (W, r„,r~ir„', r~)
u = (k„—4) (kq+ 4) (3.16)

1
dk„k„m„'g, (k„,r„,r„')g, (k~, r~, r~) .

(3.14)

I et us assume the single-particle potentials are
less singular than r ' at the origin and vanish
identically beyond some finite distance. Then the
single-particle Green's functions are meromor-
phic in the entire 0 plane. " This assumption is
made to simplify the discussion. The results are
certainly applicable for a finite-range single-parti-
cle potential like the Woods-Saxon potential if
some care is exercised. Now the integrand of Eq.
(3.14) is a meromorphic function of k„and k~. As
a function of k„, it is apparent from Eq. (3.13)
that the integrand has branch points at +6, where

moves one of the branch points to the origin and
the other to infinity. At this point we let m„=m~
= m. Then

k„=a(1+u)(1-u) ',
k,

= 2is u"'(1- u) '. (3.17a)

This new Riemann surface is opened up by setting
u=t, so that

(3.17b)

to=(1 —f)(1+i) ',
so that

(3.18)

It is then convenient to introduce the variable + by

(3.15)

It is convenient to introduce a variable in terms of

(a)

I

p, b pb

k„((u) = &((u+ (u ')/2,

k, (tc) = a((u —(c )/(2t') .

The convolution (3.14) may now be written as

(3.19)

I

En, b En, b

Kn "

Kp =

[-,+

[ ')

K *-ixh

Kp --0
&rrrrrrrrrrrrrrrrrrrr, 'rrrrr rrrrr

(i,-) KnalX Kpn0 (i,+)

(b)

X X

Eftb E

I

W

Kp"- fx

(+,—i)

+,+]

+,-)

FIG. 2, The cut z planes and the contours of inte-
gration for integrals in Eq. (3.25).

FIG. 3. The ~ plane for negative energy. The signs
of the real and imaginary parts of k„within a given re-
gion indicated in the brackets [ ], while the signs for
k& are indicated within the braces ( ) . The paren-
theses along the axis indicate the sign and whether k„
and k& are pure real or imaginary, respectively. The
physical region which corresponds to both k„and k&

having positive imaginary parts is indicated by the shad-
owed region.
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&f„i,(W~ ra ~ rp Ir.'i rp) function p, (r„) as

2mp, (r„)p, (r„')
(P, ,(k„, r„,r'„) =

n n, b

(3.23)

where

f((u) = ik „((u)kp((u) lm (u

(3.20)

(3.21)

Of course the same expression holds for a p-core
bound-state pole. The proton bound-state pole
terms in a given partial wave may be subtracted
from g, (k», rp, rp) to give

The partial-wave single-particle Green's func-
tion has a pole singularity at a positive imaginary
momentum related to the single-particle binding
energy -Eb by

g,' (k„„,') =g, (k„„r,') —Q tg (kp, rp, r,'),
p

=—g, (k», r», r») -S, (k», r», rp) .

k, = i(-2mZ»)'". (3.22) (3.24)

For a bound state in a given partial wave of the n-
core system, the pole term may be written in
terms of the normalized radial bound-state wave

Since the pole terms depend on kp2, they do not
have a branch point at threshold. Therefore we
decompose the integral as

1 1
Q', , (W, r„,r»Ir„', r»)=2 . ~f(v)g, (k„,r„,r„')ls, (k», r», r»)+2 . d(uf((u)g, (k„,r„,r„')g,' (kp, r», rp),

1 2' 3

(3.25)

where the integrand of the first term is defined in
the cut g plane shown in Fig. 2(a) and the second
in Fig. 2(b). The integration contours in each term
are indicated. Again 8' has been given a positive
imaginary part which is taken to zero after the in-
tegral is evaluated. The figures shown are appro-
priate for positive energy. The corresponding fig-
ures for negative energy are obvious and are not
shown. The & plane for negative energies is shown
in Figs. 3 and 4. The shadowed region is a map of
the physical region. For positive energies the co

plane is shown in Figs. 5 and 6 with the physical
region again shadowed. For both positive and neg-
ative energies the contours I', and F2 may be
closed. F, may be closed by a large semicircle
in the upper half of the z plane and F, by a large
semicircle in the lower. The contribution from
the semicircle vanishes in each case, since the
contours are in the physical region of both single-
particle Green's functions. The only singularities
within the closed contours are the single-particle
bound-state poles, and therefore the integrals cor-
responding to F, and F, may be immediately evalu-
ated by the residue theorem. Although it really
is not necessary, we shall evaluate these integrals
in the & plane. The discussion will be useful later
when contributions from other Gamow-state poles
are evaluated. The contours I', and F2 in the co

plane are shown in Fig. 4 for negative energies
and Fig. 6 for positive energies. To evaluate the
residue of the F, integral we first consider the de-
nominator, k2 —kp „ofone of the pole terms in
Eq. (3.4) which near the pole may be written as

The factor in braces has zeros given by

&u+ =ik b. '+(b, ' —k ')"'a
P,b P,b P,b

= ikp, h ' + k„(h, p,)n (3.27)

, E

t

X Ell, bI

FIG. 4. The ~ plane for negative energies showing
the paths of integration in Eq. {3.25) and the positions
of the bound states.

2kp»(kp —kp») = 2k»»[6(&u —(u ') (2i) ' —k», j,
=k»»h{(u' —1 —2uukp»4 'I(i(u) '.

(3.26)
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From Eq. (3.19) we have

k„+ ik~ = &co . (3.28)

2k» «(k« k«-«) = k««n((u —(up «)((u —(u««)(ZM)

(3.29)

Therefore, the pole position in the w plane is giv-
en by &u~ «. Rewriting Eq. (3.26) as

which near the pole appears as

2k««k„(n, p«)((u —(u««)(i(u) '.
Therefore, the integral I", is justdu&, g, (k„,r„,r„') =g p& ( ~)p, (r«)gI"[k„(n, p«), r„,r„'].k„k, p„(r,)p„(r,')

b
n 1, , - «

(3.30a)

The minus sign is canceled in the evaluation since the contour I', encircles the pole in a counterclockwise
direction. From Fig. 2(a) it is apparent that g, (k„,x„,r„) is evaluated on the upper lip of its continuum

n
cut and therefore one uses g,'+'(k„, r„,p„') in Eq. (3.30a). The argument may be repeated for F, to obtain

n

1 k„k«P, (r„)P, (r„')

2
. +k k (a )

"," kt k«, r«, x~)= Q p, (r„)p, (r„')gI"'[k«(&, n«), p, r~] .
pn nb P y b n b

tlb

(3.30b)

In this way all the pole terms of Q'„,~(W) corre-
sponding to one of the valence particles being in a
bound state may be isolated. Note that poles cor-
responding to both valence particles in bound
states are contained only in Eq. (3.30a), since in
Eq. (3.30b) the p-core bound-state poles have been
subtracted from the p-core Green's function. Each
term in Eq. (3.30a) and Eq. (3.30b) contains a cut
starting from the energy of the single-particle
bound state in that term. The momentum is evalu-
ated on the upper lip of the cut when appropriate
and is either positive real or positive imaginary.

Neither Eq. (3.30a) nor Eq. (3.30b) contains the
poles of g„',~(W) corresponding to both valence
particles in resonance Gamow states. They are

therefore contained in the contribution to Eq.
(3.25) from the I', contour. We may isolate some
of these contributions by distorting the path I"

3 to
pick up terms corresponding to certain nonbound
n-core Gamow states. First consider the integral
r, for positive energies. The zero of energy has
been set at the two-particle threshold in G„,«(W).
Referring to Fig. 3 one sees that for u in the sec-
ond quadrant, k~ takes on values in its upper-half
plane; and k„ takes on values in its lower-half
plane. Therefore the only singularities in the inte-

2
n b X

JX

K„-[-,+]

+«+

(i,+)

Kn=o

+1

+,-]

{+,i)
&X&xXXXXXXXXXXXxX&& Kp-P &+ —

/ )

)

0

FIG. 5. The w plane for positive energy with the
same conventions enumerated in Fig. 3.

FIG. 6. The ~ plane for positive energy with the
same conventions enumerated in Fig. 4.
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grand of the I', integral arise from poles in g,ln
since g, does not contain any singularities in the
upper-half plane of its momentum variable. Again
from Fig. 3, for (d in the second quadrant, one
sees that n-core resonance-momenta lie inside the
line ~&v~=1; virtual state momenta, on the line ~~~
= 1 and time-reversed-resonance-momenta lie out-
side this line. Proceeding just as when the bound-
state pole contributions were evaluated, the non-
bound neutron-core Gamow-state pole contribu-
tions may be evaluated to give for the I', contour

The contour I",' is the contour I', after 1", has been
moved through the poles included in the sum. In
this manner the pole terms in g'„,~(W) correspond-
ing to a finite set of n-core Gamow states can be
written in terms of the p-core Green's functions.
These Green's functions have cuts in the total en-
ergy plane emanating from the n-core Gamow-
state energies. Further note that for ~ in the
second quadrant and Im» -Re&, Imk~ & -Imk„.
Using Eq. (3.19), it is easy to show all neutron-
core resonances whose momenta satisfy ~imk„~

& ~Rek„~ are included in this segment for all nega-
tive energies. These are the so-called proper
resonances.

For consideration of positive energies, it is
necessary to discuss the analytic properties of
G„,~(W) in more detail. It has been shown that ma-
trix elements of G„,~(W) contain cuts in the W

plane starting from the single-particle binding
energies. These cuts may be taken along the real
W axis in the direction of increasing energy. In
addition, there is a logarithmic branch point at
the two-particle threshold. Returning to Fig. I
which shows the cut z plane for the integrand in
the convolution (3.12), one sees that continuation
in W corresponds to moving the proton threshold
branch point about in the z plane. Branch points
in G„,~(W) arise from pinching the contour of inte-
gration between the single-particle bound-state
poles of one particle and the threshold branch
point of the other as the integrand is continued in

The two-particle threshold branch point of
G„,~(W) arises from the pinch which occurs when
the two single-particle threshold branch points
are brought together. Therefore one goes from
the upper lip to the lower lip of the two-particle
continuum cut in G„,~(W) as one continues the inte-
grand in W so as to bring the proton threshold
branch point from the upper lip of the neutron con-
tinuum cut around the neutron threshold to the low-

er lip of this cut.
Poles in G„,~(W) arise from pinching the con-

tour between two single-particle poles Bs the inte-
grand is continued in W. Such a pinch occurs at
physical energies when the contour is pinched be-
tween two single-particle bound-state poles.
Poles at unphysical energies arise from the pinch
between two single-particle poles, at least one of
which corresponds to a nonbound single-particle
Gamow state. Above the two-particle threshold in

G„,~(W) the nearest pinches occurring at unphysi-
cal energies are reached by continuing the inte-
grand in W as shown in Fig. 7(a). The first
pinches in such a continuation occur when some
proton Gamow-states pole pinches the contour
against a neutron Gamow state encountered after
going through the neutron continuum cut from
above. In terms of the neutron energy Riemann
surface, these are neutron states whose Gamow
energies lie in the lower half of the unphysical
neutron energy sheet. The corresponding single-
particle momentum has a positive real part and a
negative imaginary part. These are the neutron
resonance states. On the other hand pinches with
time-reversed neutron Gamow states would be en-
countered by continuing the integrand in 8' so as
to pull the proton branch point around the neutron
threshold and then up through the neutron continu-

(a)

(b)

FIG. 7. The distortion of the n-core continuum cut
and the path of integration as the convolution integrand
is analytically continued in W is shown in (a). The two-
particle continuum cut in G„+&(W) is shown in (b).
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um cut from below. In the cut energy plane for
G„,~(W) shown in Fig. 7(b), where the bound-state
poles and cuts have been omitted for simplicity,
the first analytic continuation proceeds from the
upper lip of the continuum cut while the second
requires continuation of G„, (W) around the two-
particle threshold. Therefore above this thresh-
old, poles in G„,~(W) closest to the physical re-

gion, which is the upper lip of the cut, generally
correspond to pinches which include a neutron
resonance pole. These poles lie within the circu-
lar segment I~I = 1 in the first quadrant of the e
plane. Contributions from these poles are picked
up as one distorts the contour I", within this re-
gion. Therefore we have

8;, (W, r„,r~~r„', r~) = g p, (r~)p, (r~)g,"'[k„(n,p,,), x„,rJ + g p, (r„)p, (r„')g~&+l [k~(h, n,), r~, r~]
Py Ny

+g 1',„(r„)1',„(r„')*g~'l [k~(a, n~), ~„r,'] +
2

. d~ f(&u)gi'(k„, r„, r„')g'i,'& (k„~„~~),r'
(3.31)

where the prime on the sum indicates the integra-
tion path I", depends on neutron Gamow states in-
cluded. By including appropriate neutron states in
the sum, one can isolate the poles in 8» (W) with-
in a given energy region in terms involving the con-
nected part of the single-particle Green's functions.
In addition these terms include some of the cuts
which are contained in Qf, (W). Therefore the
term involving the integral over the contour I",'
can be expected to vary slowly with energy.

4. HNrvx mwx wppRoxmmsow eoR 8'. ..(N )

As discussed in Sec. 2, the poles in 6'„,~(W)

give rise to large contributions to the kernel
8„+~(W)f„~(W). This is to say that near poles of

g„,~(W) the perturbation series for Eq. (2.15a)
does not converge. Therefore these contribu-
tions must be treated nonperturbatively which is
straightforward if they can be included in a kernel
of finite rank. From Eq. (3.31), it is apparent
that the poles close to the physical region can be
included in a kernel of finite rank if the single-
particle Green's functions can be approximated
by operators of finite rank which include the sin-
gle-particle Gamow states close to the physical
single-particle energy region.

The residue of Bf, (W, r„,r~~x„', r~) at poles cor-
responding to a neutron Gamow state with energy
e„and proton Gamow state with energy e~ follows
from Eq. (3.31) as

lim (W —e„-e~)8;, (W, r„,r~)r„', r~)
N~e +en P

(4.1)

Z'(~) is a normalized Gamow-state wave function,
either bound or unbound, as discussed in the Ap-
pendix. f'(v) is the corresponding time reversed

Gamow state. If either or both e„and e were
binding energies, the corresponding normalized
bound-state wave functions would appear,

A finite rank contribution to the kernel results
froxn extracting pole contributions from the con-
nected part of the single-particle Green's func-
tions as

t

g(k, r, x')=mQ 2'
(

* )+g"(k, r, r'), (4.2)

where the partial-wave and particle subscripts
have been omitted. y, (r) is the normalized Gamow-
state wave function9 "'6 for the momentum k,; and

y, (r), the wave function for the time-reversed mo-
mentum -k,.*. The sum generally includes bound,
resonance, and virtual states. For deuteron-in-
duced reactions, we have argued that two-particle
continuum states cannot be excluded. Therefore,
if the pole terms were extracted in this manner,
it would generally be necessary to evaluate matrix
elements in terms of product states of two unphysi-
cal single-particle Gamow states. Here unphysi-
cal simply means Gamow states whose momenta
lie in the lower-half A plane. Both wave functions
in such a product grow exponentially and there-
fore, it would be necessary to resort to the spe-
cial methods which have been introduced '" for
evaluating the integrals encountered in evaluating
the matrix elements.

Another approach is suggested by the observation
that a finite rank approximation to the connected
part of the single-particle Green's function fol-
lows fro'm a finite rank approximation to the va-
lence particle-core potential. Weinberg states
could presumably be used to construct such an ap-
proximation. However a more straightforward
approach involves the use of single-particle Gam-
ow states to construct a finite rank approximating
potential. This is discussed fully in Ref, 15, and
we only present a review here. Denote the row



1052 R. C. FULLER

vector whose elements are a finite set of Gamow
states for a given partial wave by y(r):

y(r) = (y, (r), "., y.(r)) .

y(r) is the row vector of the corresponding time-
reversed states. Introduce a finite rank potential
by

is evaluated at momenta corresponding to & in the
second quadrant of the co plane shown in Fig. 3.
These momenta are in the upper-half k plane.
Using Eq. (3.19), as previously mentioned it is
easily shown that for Im~ &-Re~ in the second
quadrant, Imk~ & -Imk„. Further it is easily
shown that this region of the w plane includes, for
all negative energies, all the so-called proper
neutron resonances. Turning to positive energies
for g'„,~(W) the single-particle Green's functions
appearing with the bound-state wave functions are
evaluated at positive real momenta. The proton
Qreen's function associated with neutron Qamow
states is evaluated at momenta in the upper-half
momentum plane corresponding to i+i (1 within
the first quadrant of the & plane shown in Fig. 5.
Again it is easily shown using Eqs. (3.19) that for
Im& &Rem in this region, Imk~ & -Imk„. This dis-
cussion will be useful later when we discuss ma-
trix elements in terms of the states which form
the finite rank approximation to g„',~(W}.

One would like to approximate 8'„,~(W} by a fi-
nite rank operator. The previous discussion
shows how a finite rank operator can be construct-
ed which includes the poles and some of the cuts
in g„,~(W) close to physical energies. It is diffi-
cult to aetermine with any rigor how well and un-
der what conditions the finite rank operator can ap-
proximate g'„,~(W). Therefore certain matrix ele-
ments of a finite rank operator constructed using
the methods described were compared with these
same matrix elements of 8;, (W) which were eval-
uated numerically.

The matrix element 8;, (W, r„,r~ir'„, r~) may be
n p

evaluated numerically using Eqs. (3.20), (3.25),
and (3.30). The discontinuity of g, (k„,r„,r„')
across the neutron continuum cut in Fig. 1 is given
by

(4.3)

V'(r, r') = V(r)y(r)A 'yt(r')V(r'), (4 4)

where V(r) is the valence particle-core interac-
tion and A is the matrix

A= d~y~x Vryr .
0

(4 5)

The partial-wave Green's function for this poten-
tial is given by

g"+'(k, r, r') =g,"'(k, r, r')+ s(k, r)S '(k)s "(r') .

(4.6)

B(k) is the matrix

X (k)

= A — dh dr'y ~ x V r g,"' k, r, ~' V r' y r' .
0 0

(4.7)

The partial-wave free Green's function is given by

go+, '(k, r, r') = 2mk '(-)' "u, (kr&)u)', "(kr,), (4.8)

where r, (r,) is the lesser (greater) of r and r',
and u, (kr) and u)I( rk) are the Bessel-Riccati and
Hankel-Riccati functions, respectively. "For a cut-
off potential, the matrix elements in B(k) are en-
tire functions of the momentum k." s(k) is the
row vector

(4.9)

and s t(k, r), the column vector

(k, r) Jd 'gP(k, r,=r')V(r')r(r);'
0

s (k, r) = dr'g,"(k,r, r')V(r')yt(r') . (4.10)
0

The Green's function g"+'(k, r, r') has poles corre-
sponding to the Gamow states included in the poten-
tial V'(r, r') at the positions and with the residues
of the partial-wave Green's function for the poten-
tial V(r) This res.ult is independent of the nor-
malization of the Qamow states.

For large r, an element of either s(k, r) or
s(k, r} is proportional to e' ". Returning to
Eq. (3.31), we see that for negative energies in
9„',~(W), the single-particle Green's functions
which appear with bound-state wave functions are
evaluated at either positive real or positive imagi-
nary momenta. The proton Green's function asso-
ciated with the unphysical neutron Gamow states

= —4fmk„'Lg, ")(k„,r„)(,")(k„,r„') -u, (k„r„)

x u, (k„r„')],

(4.11)

where )i),")(k,r) is the scattering wave function dis-
cussed in the Appendix. The contribution from the
contour I, in Eq. (3.25) as shown in Fig. 2(b) may
then be written as

C,(E, r„,r~jr„', r~)

-2

(4.12)
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I [ I I
I l I I

Si
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0
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FIG. 10. The same plot as Fig. 9 for the values of
r/a indicated.

I I

0.2 0.4 Q.6 P.S

r/a

I

t.o
I

I.2
I

I.4

FIG. 11. Plot of the imaginary part of the off-diagonal
connected Green's function G&&(E, r, r ) 2, 2) for E = 2.39
MeV with same conventions as followed in previous
Green's function plots.

bound state and a resonance, Bf,(W, x„,rplr„', rJ,)
has a pole corresponding to both valence particles
being bound, a second pole close to the physical
region and below the two-particle continuum
threshold corresponding to one particle bound and
the other resonating, and a third pole close to the
physical region above the two-particle threshold
corresponding to both valence particles resonating
with the core. The bound state occurs at -109.4 .

MeV, the bound-resonance pole at W= -53.8
-0.34i MeV, and the resonance-resonance pole at
W=1.58 —0.68i MeV. Figure 8 shows the real
part of the completely diagonal matrix element

8»(E +fe, r, rlr, r) plotted against r/a for E
= -51.3 MeV which is close to the bound-reso-
nance pole energy. Also shown is the finite rank
approximation obtained by replacing the single-
particle Green's functions which appear in the con-
tributions from the contours I', and I', in the first
two terms of Eq. (3.31) by the Green's functions
given by Eq. (4.6). The four Gamow states whose
momenta are given in Table II were used to con-
struct the finite rank potential in Eq. (4.4). This
approximation for Q»(W, r, r lr, r) includes only
poles corresponding to one of the valence particle
bound and the other in one of the Gamow states

0.2 0.4 0.6 0.8
r/a

I

I.o &.2 i.4 &.6 &.8

FIG. 12. Plot of imaginary' part of the diagonal con-
nected Green's function vs r/a for E= 71.1 MeV with
same conventions as previous Green's function plots.

whose wave function is included in the separable
potential. The approximation for the imaginary
part which is better than the approximation for
the real part is not shown. %e may conclude that
two-particle continuum states are relatively unim-
portant well below the two-particle threshold.

Figures 9 and 10 show the imaginary part of the
completely diagonal matrix element g,',(E, r, rl
r, r) plotted against x/a. The energy in this
case is 2.39 MeV which is close to the resonance-
resonance pole. In this case the finite rank ap-
proximation includes in addition to the first two
terms in Eq. (3.31) the resonance, neutron Gamow
state in the third term of Eq. (3,31). The single-
yarticle Green's functions are approximated in
the same way as those in Fig. 8. Figure 11 shows
the imaginary part of the off-diagonal matrix ele-
ment 8,",(E, r, rl2, 2) at the same energy plotted
against r/a. The finite rank approximation is cal-
culated just as in Figs. 9 and 10. This approxima-
tion includes the resonance-resonance pole. The
agreement for the real part for both the diagonal
and off-diagonal terms is at least as good as the
imaginary part shown. Figure 12 again shows a
comparison of diagonal matrix elements as a func-
tion of r/a. The finite rank approximation was cal-
culated in exactly the same way as those shown in
Figs. 9-11. The energy in this case is 71.1 MeV,
far above the energy region of the poles included
in the finite rank approximation. The result indi-
cates the finite rank approximation which includes
only the poles close to the physical region does
not grossly misrepresent the connected part of the
Green's function at energies far from these poles.

Figure 13 shows a comparison between the im-
aginary part of the finite rank approximation con-
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structed in the same manner as in Fig. 12. In this
case the n-core interaction is the square-well po-
tential whose parameters appear in the second col-
umn of Table I while the p-core interaction is the
same as previously used. The Gamow-state mo-
menta for the n-core interaction are given in the
second column of Table II. This potential is just
sufficient to bind a single p-wave state. There-
fore Bf,(w, r„, r~~ r„', r~) has a bound-state pole at
-57.7 MeV and a second pole close to the physical
region slightly below the two-particle continuum
threshold at W= -2.16 -0.335i MeV correspond-
ing to a bound neutron state and a resonating pro-
ton state. The Green's function in Fig. 11 is eval-
uated at -0.493 MeV. The finite rank approxima-
tion includes the first two terms and the reso-
nance neutron state in the third term of Eq. (3.31).
The proton Green's function is again calculated
with the four Gamow-state separable potential.
The approximation does not include the two-parti-

cle continuum cut and this calculation indicates
the pole contributions are more important than
contributions from this cut.

These calculations indicate that the connected
part of the Green's function g;, (W, r„,r~) „', r~)1 nl Pis well approximated by this method for energies
in the neighborhood of the poles of the Green's
function.

5. CONCLUSIONS

We now turn to a discussion of the implications
of the finite rank approximation for 8'„,&(W). We
will find that it is possible to write matrix ele-
ments of X(W) as a sum of two types of terms-
one associated with the impulse or partially con-
nected contributions and the other resembling a
sum of resonance contributions. Following
Glockle and Heiss" we write the set of partial-
wave equations for Eq. (2.15a) as

, , x....(Llvr„, x~lr„',, r')= 8, , (I., wv„, r [r'„, r')0. .. l. .. P f dr„'dr' Jdrdr tl, (tw, r„,,r, li„, t )

1

, , t;; (I,, W, r„,~pl&,' &u) r f X~ v(L»~' &'olr'„, r~),nP nP nP nP (5.la)

where we have assumed the angular momentum of
the core is zero. Then the total angular momen-
tum L, is just the sum of the individual, valence-
particle angular momenta. To obtain» t, , (L, W)1 nlP 1 nl P
one is confronted with the usual problem of obtain-

I I I I I

I

ing the appropriate matrix element of the interac-
tion of two particles in a potential. " In this case
the interaction is energy dependent and nonlocal.
We rewrite Fq. (5.1a) in the usual schematic
fashion

,X,i(L, W) = 5, p 8, (L, W) + Q 8,(L, W)

x,tg(L, W) fX, (L, W) . (5.1b)

In terms of the impulse or partially connected
term and the connected term we have

g, (L, W) =I, (L, W)+ g', (L, W) . (5.2)

-10

-12—
I

0.4 0.6 0.8
I I I

I.O 1.2 I.4 I.6 I.8 2.0
r/a

Referring to Eq. (3.1a) and the discussion in the
previous section, we approximate g;(L, W) by an
operator of finite rank

g;(L, W) = ~x, (L, W))A„(E) '(S, (L, W) ~, (5.3)

where ~x, (L, W)) [(x,(L, W) ~] is generally a row
[column] vector of ket [bra] vectors, and A, ~(E)
is generally a matrix. Within this approximation
we introduce an operator, X,,(L, W) whose matrix
elements are to approximate those of,X, (I., W) as
the solution to the equation

,X, (L, W) = [I,(L, W) + 8;(L, W)]5„
FIG. 13. Plot of imaginary part of the diagonal con-

nected Green's function for the valence-particle poten-
tial parameters indicated in the text. The energy is
E= -0.493 MeV. The same conventions apply as in pre-
vious Green's function plots.

+ g [I,(I., W) +8',(L, W)],f;(L, W);X,,(I., W),

(5.4)
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Proceeding in the usual manner, ' the solution
may be written in terms of the operator, Q, ,(L, W)

which satisfies the equation

, Q, ,(I., W) = 6„,+ Q I, (I., W)

and its transpose, Q, ,r(L, W), which satisfies

, Q, , (L, W)=5„i+ Q, Q,+(L, W);t, (I., W)I;(L, W)

(5.5b)

x,t;(L, W);Q, .(L, W) (5. 5a)

,X,,(L, W)=Q, Q;(L, W)I;(L, W)+Q, Qt. (L, W)~x;(L, W))[b, '(I, , W)] I,(xP(L, W)~;, Q, , (L, W), (5.6)

(5.7)
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APPENDiX

In this Appendix we shall present a short discus-
sion of the Gamow-state wave function. Chapter 12
of Newton's book" is a good reference for the gen-
eral statements made here concerning potential
scattering. The regular solution of the radial
Schrodinger equation for the lth partial wave satis-
fies the boundary condition

where the matrix A(L, W) is given by

& L~ W ii' ~i z, E 5ii'+ gi L, W i~i L W i Qi' L~ W xi' L
l

Matrix elements of the kernel I(L, W)t(L, W)

appearing in Eq. (5.5a) do not contain singulari-
ties in W close to the physical region. The poles
close to the physical region in the full kernel

8„,~(w)t„~(w) have been isolated in the finite
rank approximation to g„',~(w). Even so further
investigation is required to determine when, and
even if, Q(L, W) may be obtained by a perturba-
tion expansion of Eq. (5.5a). In any case the first
term in Eq. (5.6) is associated with the impulse
term in the valence particle-core Green's func-
tion G„+~(w). The second term contains the con-
tributions from the two-particle states associated
with the poles of 8'„,~(w) close to the physical
region. These states are modified through the im-
pulse terms by Q (W) and mixed by the effective
interaction

,T, (L, W) = Q, t;(L, W);Q, (L, W) . (5.8) lim r ' 'cp, (k, r) =1.
0

(A1)

Further note that matrix elements of,X,,(L, W) are
singular at those energies W, where

Two linearly independent solutions which generally
are not regular at r =0 may be introduced by bound-
ary conditions at infinity

det[n(L, W, )]=0. (5.9)
(A2)

We note in passing that the approximation, Q", (L, W)
= 1 gives for the deuteron elastic scattering ampli-
tude, Eq. (2.16), a sum of impulse scattering
amplitudes and resonance-like terms.

In evaluating matrix elements which arise in Eq.
(5.6), one should refer to the discussion in Sec. 4

on the behavior in configuration space of the prod-
uct states which appear in Eq. (5.3). The results
of the discussion in Sec. 4 indicate that for a suf-
ficiently short-range n-p interaction the relevant
matrix elements in Eq. (5.6) are certainly well
defined for all negative energies if only proper
neutron resonance and time-reversed resonance
states are considered along with the valence parti-
cle bound states. For positive energies, when

necessary, matrix elements may be obtained by
analytic continuation from negative energies.

Therefore the S matrix is given by

Si(k) = (-)'6" '(k) [6'I"(k)1 '. (A6)

These two solutions span the solution space and,
therefore, p, (k, r) may be written as the linear
combination

y, (k, r) = (2ik) '[6:I '(k)f' (k, r) —6:I'(k)fI '(k, r)] .

(A3a)

The partial-wave scattering solution corresponding
to an outgoing scattered wave may be written as

g',"(k, ~) = ki'rp, (k, r)[6:I"(k)] ', (A4)

yI"(k, r) = —,
' i"'fe ""—PI '(k)[6'I"(k)] 'e'"") .

(A5)
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For the cut-off potentials considered in this paper,
F~&'(k) a,re entire functions of the momentum k.
Therefore poles of S,(k) correspond to zeros of
F',"(k). The zeros of FI"(k) in the upper balf of
the k plane lie along the positive imaginary axis,
are finite in number, and correspond to bound
states. Those in the lower half k plane are either
pure imaginary and correspond to virtual states or
they occur in pairs symmetric about the imaginary
axis and correspond to resonances. From Eqs.
(A1)-(A3), it follows that there exist solutions
regular at the origin and purely outgoing at large
r for those momenta k~ such that

PIP(k„) =0,

V&;"(k„)=- —VI"(k)
dk k=k

(A9)

the residue follows as

R, „(r,r') —= lim (k —k )gIp(k, r, r'),
k k~

y, (k-„, r)y, (k„,r')[c„G P (k )] '.
(A10a)

Using the extended definition of the inner product
introduced in Ref. 15 (also see Rorno'), it was
shown in this reference that the inner product
I, „(y)of the Gamow-state wave functions &&,(k„,r)
satisfies the equation

since

y, (k, r) = (2ik ) '0', '(k )f' (k, r)

= c f',"(k,r) .

The two-particle Green's function is given by

g',"(k, r, r')= y, (k, r)f' -(k, r)[FI"(k)] '.

(A3b)

(A8)

c PI" (k„)= 2k„I,-i&&pj .

Further

y, (-k„*,r) = rp, *(k„,r) .

(A11)

Therefore E&l. (A10a) may be written as

R, „(r,r') =
&&,(k„,r)y, *(-k *,r')( 2kI, „(y/) ',

(A10b)

Since y, (k, r) and f' (k, r) are proportional at k„,
the residue of g',"(k, r, r') at k„ is a separable func-
tion of x and r'. For

which is the result used in E&l. (4.2) since
, (-k *,r) is the time-reversed solution corre-

sponding to y, (k„,r)
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