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Decay of 3Z.5-min ~36Th and 9.1-min ~36Pa
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(Received 7 November 1983)

The decays of Th and its Pa daughter were studied by y-ray spectroscopy. By means of ra-
diochemical methods and a continuous separation technique pure sources of parent and daughter
were prepared so that each was free (or almost free) of the other. For" Th, 14 of the 17 observed y
rays are new; for ~Pa 16 new y rays were found. Absolute intensities of all the y rays were deter-
mined with the aid of 4rr beta measurements on 236Pa. A new decay scheme is proposed for 23 Th
and a considerably expanded one is given for '6Pa. The half-lives determined are 37.5+0.2 min for

Th and 9.1+0.1 min for Pa.
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The identification of 37-min Th was first reported in
1973 independently by Orth et al. ' and by Kaffrell and
Trautmann. The former produced ' Th by the (p,3p) re-
action on U with 100-MeV protons, while the latter
produced it with 140-MeV bremsstrahlung on 38U

through the (y, 2p) reaction. They chemically separated
the thorium and observed the growth decay of the previ-
ously studied 9-min Pa daughter activity. '" Orth
et al. also performed electromagnetic isotope separation
on their thorium samples in order to remove strong in-
terference from neutron-deficient thorium isotopes. They
were able to assign four y rays to the decay of Th and
they proposed a partial decay scheme.

In this pa,per we report on considerably more extensive
studies of the y-ray spectra and decay properties of both

Th and Pa. Neutrons (30—160 MeV) from the
Brookhaven medium energy intense neutron facility
(MEIN), were used to produce 2 Th by the U(n, 2pn)
reaction while production of interfering neutron-deficient
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TABLE I. Gamma-ray energies Ez and intensities Iz follow-
iug decay of 37.5-min Th. Ir as ) rays per 100 disintegra-
tions.
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FIG. 1. Spectrum showing y rays from the decay of 37.5-min
23 Th; energies are shown in keV. Peaks from other nuclides are
identified by the following letters A 31-min "Th. 8 18 7-1
~~ Th; C, 22-min ~ Th; D, 9.1-min 3 Pa.

110.8(1) 4.2(12)
112.8(2) 0.24(9)
131.6(10)'
196.0(1) 0.69(14)
229.5(1) 0.56(8) 0.56(28)'
308.7(1) 0.42(5)
340.1(1) 0.67(9)
392.4(1)' 0.17(3)
414.8(3)' 0.13{3)
434.3(1)' 0.67(9)'
549.2(1) 0.32(9)
567.1(3) 0.13(3)
581.1(2) 0.20(4)
586.4(2)' 0.09(4)
599.7(1)' 0.24(3)
646.6(1) 0.72(11)
678.1(1) OL47(7)

719,9(1)' 0.21(3)

'Not placed in level scheme.
Normalized to I~=0.56 found in this work.

'This y ray, from a 2'6Th- ' Pa equilibrium source, was used for
normalizing the I~ values (Iz ——37.0 for the 642.3-keV y ray of
9.1-min Pa).
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Th isotopes was minimized. Chemical separations, in-
cluding the continuous milking technique, were used to
greatly reduce interference from the 9-min Pa daughter

y rays when studying the 37-min Th parent, and like-
wise, to remove all Th activities when measuring the y ra-
diation of Pa. In this way it was possible to uncover
many more y rays and improve the measurements of ener-

gies and intensities of previously observed transitions.
Modified and expanded decay schemes are proposed and
discussed.

II. EXPERIMENTAL

Targets of natural uranium metal (1—2 g) were irradiat-
ed 30—60 min with spallation neutrons (30—160 MeV,

—1 && 10"n/cm sec) at the MEIN facility. In one case a
more intense source of Th was prepared by irradiating
0.5g of U metal directly with the 200-MeV proton beam
(5 pA) for 30 min (the p, 3p reaction).

The most important steps of the chemical separation
procedure for Th include the following: dissolution of
U in 12 N HC1, fuming to dryness with HNO3+HC104,
adsorption of Th+ onto an MP-1 anion exchange column
from 10K HNO3 (while U, Np, and rare earths pass
through), elution of Th+ with 12N HC1, extraction of Th
from the acetic acid buffer (pH 3) into the TTA reagent,
and back extraction with 1.0% HCl. Chemical yields were
usually -70% and were estimated from the Th activity
present in natural U targets. The y-ray measurements
started about 45 min after the end of bombardment. For
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FIG. 2. Spectrum showing y rays from the decay of 9.1-min ' Pa; energies in keV.
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TABLE II. Gamma-ray energies Ez and intensities I& fol-
lowing decay of 9.1-min Pa. I& as y rays per 100 disintegra-
tions.

45.2
68.8'

104.3(1}
222 4(1)
243.6(2)
279.0(1)
300.0(1)
333.7(1)
349.7(2}
366.6(1)
423.1(1)
453.4(5)'
526.7(2)
538.1(1)
550.6(1)
583.5(2}
587.0(2)
594.5(3)
617.1(2)
626.9(2}'
642.3(1)
674.5(2)
687.5(1)
696.3(2)b

740.8(2)b

860.6(1)
870.4(2)
874.1(2)
884.0(2)
917.0(3)
921.2(2)
942.4(2)
958.0(2)
966.8(2}

Iy
This
work

g 0.3
~0.15
& 0.21

0.23(3)
0.53(3)
0.15(3)
0.82(4)
0.23{4)
0.78(9)
0.95(5)

(0.5
0.31(3)
0.58(9)
1.08(6)

~0.2
&0.2

0.32(5)
0.21(4)
0.23(5)

37.0(20)
0.21(7)
9.9(5)
0.19(4)
0.33(5)
0.76(2)
0.69(6)
0.51(5)

~0.15
1.37(8}
0.4(1)
0.87(6)
0.84(9)
0.91(8)

Ref.

0.2
0.51
0.07

0.6
0.63

0.2

0.31
0.7

Ey
(keV)

975.0(2)
990.9(2)

1006.3(5)
1023.1(3)
1065.0(2)
1155.9(1)'
1177.7(2)
1225.9(1)
1234.9(1)
1283.7(1)
1291.6(1}
1517.8(1)
1559.6(1)
1587.0(2)'
1604.9(2)
1617.1(1)
1662.4(2)
1749.0(2)'
1762.7(1)
1773.5(3)'
1807.8(1}
1865.5(2)
1907.5(1)'
1917.2(2)'
1927.0(2)
1934.1(2)
1948.1(2)'
1972.7(1)
1981.0(3}
2041.3(1)
2078.5(S)
2086.5(2)
2181.6(3)

Iy.
This
work

0.19(5)
0.55(6)
~0.15
0.58(5)
0.32(4)
0.40(5)
0.36(5)
0.80(6)
1.09(7)
1.14(7)
1.09(7)
1.25(7)
2.2(2)
0.66(6)
0.4(1}
0.91(8)
0.60(6)
0.33(4)
6.0(3)
0.30(3)
2.24(12
0.24(3)
0.60(8)
0.06(2)
1.02(7)
1.07(7)
0.91(9}
1.02(9)
0.51(5)
1.67(9)

~0.09
0.93(8)
0.18(5)

Iy
Ref.

4

0.30

1.07
0.63

1.9
0.11
1.00
0.06

'y ray observed but intensity not reported.
Not placed in level scheme.

'Normalized to Iz ——37.0 at 642.3 keV.

the preparation of Pa isolated from its parent the puri-
fie ' Th was absorbed from 1.8N HC1 onto a DOWEX-
50 cation exchange column and the Pa daughter was elut-
ed off with the same solution, which was then fed directly
through a 2 cm' flat cell placed near a Ge(Li) detector.
Alternatively, the solution was collected and the Pa
coprecipitated with Fe(OH)I, or the solution was collected
and evaporated on a very thin plastic film (10 LMg/cm ) to
prepare a Pa source for 4Ir beta counting. For obtain-
ing relatively "clean" Th y-ray spectra, the 00%EX-
50 cation exchange column itself was placed near the
Ge(Li) detector while -95%%uo of the Pa daughter activi-
ty was being flushed away.

The y-ray spectra were measured with calibrated Ge(Li)
detectors (50 cm, FWHM -2.0 keV at 1332 keV). For
detailed observation of the lower energy y and x ray radia-
tion ( & 150 keV), a 1-cm thick Ge detector was used. The

spectra were recorded on magnetic tapes with a computer-
ized 4096 channel analyzer system and were analyzed later
with the INTRAI. code. Decay curve analysis was done
with the cLSQ code. For measurements of total disin-
tegration rates a 4m beta gas-flow proportional counter
was used.

III. RESULTS

In order to establish y-ray intensities on an absolute
basis (y s per disintegration)„ it was necessary to prepare
pure carrier-free sources of 9-min Pa and measure both
their absolute p-decay rates (4Ir counter) and their abso-
lute y-decay rates [642.2 keV with a calibrated Ge(Li)
detector]. In four separate experiments, pairs of Pa
sources were prepared, a stronger one for the y measure-
ment and a weaker one for the 4m P measurement.
Corrections of a few percent were made for the presence
of a long-lived component in the decay of the P sources.
The strong and weak sources were related to each other
via the convenient 312-keV y ray of 27-d Pa. The
weighted mean of the absolute intensity of the 642.3-keV
y ray of Pa was found to be 37+2 per 100 disintegra-
tions. The intensities of all the other y rays were then
normalized to this value. The y-ray intensities of the
parent 37-min Th were also put on an absolute basis
through measurements of sources in which parent and
daughter were in equilibrium; proper account was taken of
the parent/daughter ratio (0.76).

Figure 1 shows the y spectrum of a purified thorium
source from which the protactinium was being removed
continuously. The y rays belonging to the decay of Th
are indicated by the energy in keV labeled above the
peaks. Each of these was shown to decay with the proper
half-life. Peaks belonging to other nuclides are designated
by the code A —D, which is explained in the caption. The

Pa daughter peaks (D) are suppressed by a factor of
-20 below the equilibrium values, and uranium j:x-ray
peaks are absent. Table I shows the Th y rays observed
in this work and in the experiments of Orth et al. uncer-
tainties in the last digits are given in parentheses, and the
energies are those determined here; the I& values are all re-
lated to the absolute intensity of 37.0 for the 642.3-keV y
ray of the Pa daughter. The intensity of the 110.8-keV
y ray was corrected for contributions from I 6Th (111.1
keV) and from Pa E~, x rays (111.5 keV). The 112.8-keV

y ray observed in this work decayed consistent with a 37-
min half-life. Orth et al. observed the 131.6-keV y ray in
their spectrum of mass separated Th, but in our Th
sources this peak was masked by contributions from other
isotopes. The 14 new y rays reported here were revealed
mainly because of the continuous milking technique
which suppressed the y radiation of the 9-min Pa
daughter activity. An accurate value of the Th half-life
was obtained by carefully following the decay of four

Th- Pa cquilibriuID sources. Tbc weighted average
fol T}y2 obtained fl'OII1 tile two most llltellse peaks (642.3
and 687.5 keV) is 37.5+0.2 min, which is in good agree-
ment with 37.5+1.5 and 36+3 min reported previously. '

Figure 2 shows the y-ray spectrum of 36Pa being con-
tinuously separated from its I 'I"h parent. All y rays at-
tributed to Pa are labeled with the energy in keV above
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the peaks. Table II compares our measured absolute in-
tensities I7 with those reported previously ' (renormal-
ized to I7 ——37.0 for the 642.3-keV peak). The E7 values
are those determined here, and uncertainties in the last di-
gits are shown in parentheses. Upper limits shown for I&
indicate that the peaks were clearly observed but their at-
tribution to Pa is not certain. For those y rays where
Trautmann et al. , reported intensities, agreement with
our I7 values is excellent. In addition, we found 16 new y
rays and we measured I7 for 26 y rays observed by Traut-
mann et al. , but for which they did not report intensities.
The well-known 45.2-keV transition was not seen because
it is highly converted. By carefully following the decay of
the 642.3- and 687.5-keV y rays in five highly purified

Pa sources, the half-life was determined to be 9.1+0.1

min, in agreement with 9. 1 0.2 min reported previously.

IV. DISCUSSION

Based on the Pa decay data of Trautmann et al. ,
Schmorak proposed a tentative decay scheme. With this
as a framework we added the new data and now propose
the expanded and modified version shown in Fig. 3, into
which about 75% of the y transitions are accommodated.
From a balance of the y-transition intensities it follows
that 48% of the Pa P decay is to the 1, IC =0
3.78-nsec state in U at 687.5 keV. Another 30% decay
to higher levels, and about 20% decay to the 0+ and 2+

levels of the K =0+ ground state band. The 56.5-keV
transition between the 744.0- and the 687.5-keV levels was
not observed here (because it is highly converted), but it
was seen previously in the decay of the 100-nsec U iso-
mer at 1053 keV.

Numerous levels in U were discovered over many
years by means of various nuclear reaction studies9
and radioactivity experiments. ' Each process is usually
selective in terms of the kind of excited states which are
produced. Coulomb excitation, (p,p') and (d,d') reactions,
and two-nucleon transfer reactions produce mostly collec-
tive states with 17=(—1) and I=0+,2+,4+, . . . , 1

3,5, . . . , . On the other hand, (d,p) reactions excite
mostly two-particle negative parity neutron states which
involve the unpaired neutron from the target U ground
state, —', [743]„. In (n, y) reactions the neutron-capture
states usually have I =3 or 4, and they depopulate by
E1 transitions to I =2+—5+ states. Beta decay is also
selective because the final states produced are mostly
those with I=ID+a+1 (where Io is the parent spin). Thus
P decay of Pa, with Io 1, prov——ides a very useful means
of preferentially populating low-spin states in 235U. In
this way seven additional new levels were identified above
1110keV.

Assignment of the Pa ground state to Io ——1 and
@=0,1 was based on the following considerations: 48%
of all the P decays (logft =6.8) are to the I=1,J =0
level at 687.5 keV; an Io ——2, E=2 assignment is ruled out
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FIG. 3. Decay scheme proposed for the decay of 9.1-min Pa; deexcitation of levels in U.
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because this P transition to the 687.5-keV level is not K
forbidden; and an Io ——0, K =0 assignment is ruled out be-
cause &6% of the P decays are to I=2 levels. The prob-
able positive parity assignment was deduced by taking into
account the microscopic structure of the states connected
by the P transitions. According to the Nilsson level dia-
gram, the E =0 octupole state of U may be formed
mostly by the configuration closest to the Fermi surface:

[743]„,—', [624]„ and —', [622]„,—,' [752]„. How-

ever, weak excitation of this level in the U(d, p) reaction,
with a —', [743]„ground state, suggests that the former
component is weak and therefore that the latter com-
ponent is the major one. The large Ip (logft=6. 8) may
therefore be related to this final configuration. The parent
configuration for 9&Pa&4~ may be deduced in the usual
way from the known Nilsson configurations of neighbor-
ing odd Z and odd X nuclei: —,

'
[400]~ or —, [530]~, and

—,'+[631]„. However, these configurations would result
in a strongly retarded P transition to the K=0 octupole
state, —,

' [622]„,—,
' [752]„,, because it would require

simultaneous change of two particles. Also, P transition
to the K=0+ ground state would be unhindered first for-
bidden. Neither of these predictions is supported by the
observations: logft=6. 8 for the former transition and
logft & 7.7 for the latter. The most probable Pa ground
state configuration is —, [651]~,—, [622]„.The P transi-
tion to the 1 octupole state is then a one-particle unhin-
dered first forbidden transition

[651)p, -', [622]„~-', [752]„, , —,' [622]„, ,

with b,0= 1, b,nz ——0, and b,A= 1, and P transition to the
K=O, I =0+ ground state is the strongly hindered al-
lowed transition —, [651]&~—, [622]„. Thus, the spin
and parity of the Pa ground state can be assigned as
I"=1'+'.

The lifetime of the K=O, I =1 state in U is
known to be unusually long (3.78 nsec), with
3(E 1;1 ~0+ ) = 10 W.u. instead of 10 —10
which is normal for actinides. The reasons for such
strong retardation are not known, but it is interesting to
examine the experimental and theoretical ratios
[8(EI;I ~0+)]/[8(E1;1 ~2+)] for transitions from
the E=O, I=1 and the K=1,I=1 octupole states
to the K=O, I=0+ and 2+ states, respectively. For the
687.5-keV K=O, I=1 level the experimental ratio is
0.22, while the theoretical Alaga rule prediction' is 0.5;
for the 966.6-keV E=1, I= 1 level the experimental
ratio is 1.97 and the theoretical one is 2.0. Thus for the
687.5-keV K=O state in U a large nonadiabatic effect
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FIG. 4. Decay scheme proposed for the decay of 37.5-min
Th; deexcitation of levels in Pa.

influences both the absolute values of B(E 1) and their ra-
tios.

In Fig. 4 we propose a tentative decay scheme for Th
in which 11 of the 18 y ray transitions are included.
Placement of each level is supported by observation of two
to four ingoing and/or outgoing y rays. Q =1.0 MeV
was taken from the estimate in Nuclear Data Sheets, and
the Il-ray branchings I~ were calculated with the assump-
tion that the y transitions are all M1. The relatively
small values of logft ( &6.7) for most of the observed P
branches suggest that I=1 or 0 for the corresponding
levels in Pa. Orth et al. ' suggested a different partial
decay scheme, but theirs was based on only four observed

y rays.
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