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Analytic expressions for the Dirac treatment of nucleon-nucleus scattering
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We extend earlier work on analytic evaluations of nucleon scattering amplitudes to the Dirac
treatment. The resulting closed form expressions are accurate and show how the two-body and tar-
get input influence scattering observables. The insight available should be quite useful as the Dirac
equation description of proton-nucleus scattering becomes the standard approach.

I. INTRODUCTION

In this paper we extend earlier work on analytic evalua-
tions of nucleon scattering amplitudes to particles
described by the Dirac equation. The resulting closed
form expressions are accurate and allow one to see by in-
spection how the two-body and target input influence
scattering observables. The insight available should be-
come increasingly useful as the Dirac equation description
of proton-nucleus scattering becomes the standard ap-
proach. We first review the situation in nucleon-nucleus
scattering.

At intermediate energy both the optical model (Ker-
man, McManus, and Thaler') and the equivalent eikonal
(Glauber ) treatments of hadron nucleus scattering have
been quite successful at describing the general features of
the cross sections, often yielding descriptions that are
quite accurate in detail. These treatments are based on the
Schrodinger equation and the impulse approximation.
Amado, Dedonder, and Lenz (ADL) have shown that the
the eikonal integrals can be evaluated analytically in a sys-
tematic asymptotic treatment. The analytic treatment
demonstrates explicitly in what way each of the target
density and projectile-nucleon interaction variables affects
the final cross section. The approach can be generalized
to the inclusion of spin, ' inelastic scattering including
spin, and even coupled channels processes. In addition
to making manifest the connection between input vari-
ables and observable features of the scattering, the analytic
approach allows for the derivation of data-to-data rela, -

tionships directly connecting elastic and inelastic cross
sections and spin observables.

Mathematically, the approach hinges on evaluating the
integrals by the method of stationary phase. Physically,
the simple results, and especially the data-to-data relation-
ships, are due to distortion dominance. Thus far the alge-
bra has been worked out only for distortion factors with a
singularity arising from a simple pole in the density
(Woods-Saxon form), with small corrections due to the
spin-orbit force proportional to the derivative of the densi-
ty. This has limited the application of the methods to
Schrodinger treatments of proton scattering above around
200 MeV, where the spin orbit force is weak and can be

treated perturbatively.
Recently„ it has become clear that a treatment of proton

scattering based on the impulse approximation and the
Schrodinger equation is inadequate, ' especially in the
treatment of spin dependence. ' Furthermore, it has
been shown that phenomenological treatments based on
the Dirac equation are very successful at describing the
data. " Finally, an impulse approximation appropriate to
the Dirac equation has been proposed' which describes
all the essentia1 features of the data. ' ' '

Against this backdrop, we have previously shown that
the Dirac equation can be eikonalized in a way which
respects the existence of both upper and lower com-
ponents, and accurately reproduces exact partial wave
solutions. ' The resulting integral over impact parame-
ters contains distortion terms proportional to the density
squared, as well as to the density and its derivative. In
Sec. II we will derive an analytic approximation to this in-
tegral, and in Sec. III show it to be very accurate for the
parameters relevant to nucleon-nucleus scattering. This
result contains the desired strong spin-orbit result for
Schrodinger as well as Dirac particles. In Sec. IV we dis-
cuss the influence of the input parameters to the Dirac
equation and contrast these with the Schrodinger case. A
summary is presented in Sec. V.

II. ANALYTIC EVALUATION

We wish to evaluate the Dirac eikonal amplitude' for
proton nucleus scattering analytically by using the method
of stationary phase as in ADL. The major difference is
that now there are three geometries and the evaluation is
correspondingly more complicated. We begin by writing
the scattering amplitude (still an operator in the 2X2 spin
space) in the eikonal form'

T t d2h iq b( —x
2m

. m +2 +2X=i dz —S+—V+
m 2m

b && k (S'—V')

2 —~ 8+m+5 —V
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where m is the proton mass, E its energy, and k its aver-

age wave number. The z direction is along k and b is the
two-vector orthogonal to k. S and V are the scalar and
fourth component of vector potentials, respectively, as-
sumed to be local and central, and hence to depend only
on r. Primes denote differentiation with respect to r; q is
the momentum transfer and is orthogonal to k. The am-
plitude of Eq. (1) can be written as

T = T11+ CT N'1

where

n =q)&k,

Ti ——k f b db J1(qb)e 'sinhX2,

. 7tl E (S —V)
X, =i dz S+—V+

k Pl 2@i

i ~ (S'—V')
X2 ———— dz

2 —~ E+m+S —V

If we use

J„(x)= —,
' [H„'"(x)+H„'"*(x)],

(3b)

(4a)

(4b)

(5)

with

Tp ik —f—— b db Jo(qb)(e 'coshX2 —1), (3a)

the exponential forms of cosh and sinh, and drop the 1 in
(3a) that contributes only in the forward direction, we can
write

T'0= — [60(q»i,X2 1)+60(q»i»2 I)+60(q,X1 X2 1)+60(q X1 X2 1)] (6a)

Ti ————[G,(q,X„X„1)—6, (q,X„X,, —1)—6; (q,X*, ,X;,1)+G', (q,X', ,X2, —1)], (6b)

g (b) =iqb —Xi +AX2 . (10)

The method of stationary phase consists in deforming the
contour in (9) to find the point b, where g is stationary
(for distortion proportional to first or second powers of
the density there is only one such point along the contour),

g'(b, )=0 .

in terms of the integral

6„(q,X1,X2,A, ) = f b db H„'"(qb)e ' ' (7)

(note that A, takes on the values +1).
The 6 of (7) is a generalization of the 6 of Refs. 3—5.

To evaluate the integral we go to large q where H„"' oscil-
lates rapidly. That makes the integral a candidate for
evaluation by the method of stationary phase. For large q
we can use the asymptotic form of the Hankel function.
Asymptotically,

a~, '~ =-~00~'~, (8)

and, therefore, 61 —— iG0 and—we need only evaluate 60.
Using the asymptotic form for the Hankel function, we
then have

6 (q,X„X,A, )—=v'2/n. qe ' ~ ' f V b dbes' '

with

Expanding g about b„keeping only the quadratic term
and doing the remaining integral as a Gaussian integral
about b„yields

Gp(q, X1,X2, A, ) =2 b,

qg" (b, )—
1/2

e e
—i&~y4) g~&. ~

V= V11f(r), S =Spf (r),
f( )=rll(i+ '"e' ~),

(13)

where c is the half density radius and P the diffusivity.
Inserting (13) in (4) we obtain for g of Eq. (10)

where the condition for convergence of the Gaussian in-
tegral is leg" &0.

The remaining problem is to find b„g (b, ), and g "(b, )

We have already seen that most of the physics of Eq. (1)
comes from assuming the same underlying density for V
and S in a "tp" impulse approximation approach. ' It is,
therefore, that single underlying geometry case that we
study here. In order to make contact with previous work,
we take that density to have a Woods-Saxon or Fermi
shape. It should be stressed, however, that this is a techni-
cally convenient assumption that is not crucial to the pro-
cess. ' We write

. Pl 1 2 2
~

2 Ai (Sp —Vp)
g(b) =iqb i So+ —V—o f f dz — (So—Vo) f f dz+ f dz

So—Vo1+ E+m

(14)

For large q, the first derivative of the first term grows, and hence to find b, such that g (b, ) =0, the derivative with
respect to b of the other terms must grow as well. That is as q grows, b, must approach a singular point of the integrals
in (14). In 60 the appropriate deformation of the integration contour is into the upper half-plane and in ADL it is
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bo

2mP

shown that the nearest singular point comes at b =bo ——c+imp, which is also the singular point (a pole at r =bo) of f.
This is simply the statement that the dominant contribution to the integral comes from the surface since only there do
the rapid oscillations of the integrand not cancel themselves out.

The details of evaluating the integrals in (14) near the singular point bo are presented in Appendix A. The result is

iaibo ia2pb() ia2bo bo 8O
g b =iqb+- + — + — -+Am+

(b2 b2) I/2 +
(b2 b2)3/2 +

(b2 b2) I/2 +
(b2 b2) I/2 (~2 b2)I/2

1/2 I/2 ' 1/2 ' ' I/2
bo &o bof, —a2 f2 Ar/i— — fi, (15)

ai bob, 3i a2bob,
(b2 b2)3/2 (b2 b2)5/2

g'(b, ) =0=iq +i

I ~o —I'o2 2

a2 2ni——P
2ptl

Since b, =bo for large q, we write

b =bo I ——
S

or

(b() b,2)'/ =—bob, '/ if b, «1,
(20)

(So—Vo)
a3 = i ml—n( 1.+5)=- iIr-

E+m

(16) then neglecting terms of order 6 (these are also
neglected in ADL) we obtain

el+ su2—b =
g3/2 g5/2

2

L

For a2 ——0 we recover the results of ADI.,
' 2/3

qbo
(22a)

The terms involving fI and f2 in (15) are the nonsingular
parts of the integrals and the expression in (16) for fI and
f2 are to leading order in plbo It is simp. le to trace the
parts of (15) back to (4) or (lb). The terms in ai come
froIIl thc ccQtral potcQtlal 11Qcar 1Q 5 RQd V thc term 1Q A2
from the quadratic central terms, and the terms in I, from
tIle SP1Q OI'bit PoteQtial.

Fol 111ally cases of llltclcs't 5« 1 and fol q liot too large
we can expand (15) to lowest order in 5 or a3. We then
obtalQ

(22b)

ATTER ING
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PARTIAL

EIKONAL
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For qbo very large, the 5 / term dominates aQd we have
' 2/5

iI), =
ebo

bo bo
g =Ebb +EO', (i (b2 b2)1/2 2 (b2 b2)3/2+EQ2

I /2
o

2mP

AI =EL~+A'2+EX'7T'5 =Ay+{X2—A — —A3 ~

bc bo

a2 ——(a2 —ik m 5) =(a2+ ka3)
bo bo

We now use (17) to try to find the stationary point, b, .
%C have

MOMENTUM TRANSFER (fm }
F1G. 1. Cross sections for 500 MeV n- Ca scattering, calcu-

lated using the exact Dirac equation ( ~ ~ ), the eikonal Dirac
amplitude ( ), and the analytic approximation to the eikon-
al Dirac amplitude ( ———) of this work.
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TABLE I. Parameters for the Dirac equation.

n-~Ca

p 2o8pb

p 208Pb

500 MeV
182 MeV
SOO MeV

~o
(MeV)

( —317.5,76.3)
( —488.7,103.7)
( —272.8,96.5)

~0
(MeV)

(199.8,—88.5)
(375.3,—115.3 )

(154.4,—109.0)

C

(fm)

3.55
6.60
6.60

0.64
0.63
0.63

21cx2
g (b, ) =iqbo ——,

'
iqbob, —

'I/2-
0

2Trp

A,p a3 fi+azf2
bo

and (23)

2l cx2

hb2 q 0+
2,5/2

—b +
0

Before turning to an investigation of the numerical ac-
curacy of our analytic forms it should be stressed that
they represent a closed form, nonperturbative, unitary ap-
proximation to a scattering amplitude for the Dirac equa-
tion, and that approximation is the first term in a sys-
tematic development for which correction terms are easily
obtained by the methods of ADI. .

III. ACCURACY OF THE ANALYTIC METHOD

In this section we present comparison of exact partial
wave, Dirac eikonal, and analytic expressions for the
scattering observables. The first case considered is neu-

The actual case is intermediate and cannot be solved ex-
actly. We have resorted to a numerical solution of the
complex algebraic equation (21) always looking for roots
that satisfy Reg"(b, ) &0. In Appendix B we give a brief
discussion of the general features of the roots of (21).
Here, we simply note that for all phases of a', allowable

by unitarity [Re(a'l ) & 0], and for any phase of a2, the sta-
tionary phase point is between the singularity and the real
axis, and there is only a single such stationary phase point
satisfying Re[g"(b, )] &0.

The remaining ingredients of Eq. (12) are g(b, ) and

g "(b,) In ter.ms of (17) and the solution of (21), these can
be written

tron scattering from Ca at SOO MeV. This case was
chosen since we have a direct numerical solution' of the
Dirac equation for comparison. Cross sections, analyzing
powers, and spin rotation functions are presented in Figs.
1—3, respectively, using the parameters given in Table I.
In the description of the cross section all three are quite
close for momentum transfers 0.5&q &3.15 fm '. The
same is true for the analyzing power, although the analyt-
ic result gives minima which are too deep. For the spin
rotation function the analytic method gives all the qualita-
tive features and is quantitatively within +0.2 in the mag-
nitude of Q. We present all three curves together to show
that the analytic result agrees well with the direct partial
wave solution as well as with the Dirac eikonal results.

To present a more complete picture, we have also
prepared comparisons of eikonal and analytic treatments
of proton scattering from Pb at 182 and 800 MeV.
These values nearly span the medium energy regime, and
were chosen in part because data exist. Coulomb is in-
cluded in the calculations. We see that beyond about 1

fm ' there is good agreement for cross sections, asym-
metries, and spin rotations at both energies (Figs. 4—6,
respectively). The parameters given in Table I are from
the impulse approximation. (These lead to a reasonable
Dirac equation description of the data at 800 MeV but not
at 182 MeV. Since the impulse approximation potentials
are deeper than the phenomenological potentials at low
energies the analytics are shown to be accurate for a wider
range of potential depths than is likely to be needed. ) In
short, the method seems quite accurate for physically
relevant Dirac potential strengths for a wide range of en-
ergies and nuclear masses. The analytic formalism is easi-
ly accurate enough to reveal the large difference in spin
observables between the Dirac and Schrodinger ap-
proaches shown in Ref. 10 and Figs. 2 and 3. We turn
now to some of the insights available through our ap-
proach.

I

r

Ay 0 (i,
'.

" ASYMMETRY
0 DIRAC P. W.—DIRAC EIKONAL

i )——ANALYTIC
l l

t.5 2
-1
0,5

SPIN ROTATlON ~
~ DIRAC P.W.

— 1I
DIRAC K IKONAL-- ANALYTIC

I I

1.5

500 MeV ~

t |
V

2.5

MOMENTUM TRANSFER (fm )

FIG. 2. Same as Fig. 1 for asymmetries.

MOMENTUM TRANSFER (fm )

FIG. 3. Same as Fig. 1 for spin rotation.
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FIG. 4. Cross sections for p- 'Pb scattering at 182 and 800
MeV, calculated using the eikonal Dirac amplitude ( ) and
its analytic approximation ( ———) presented here.

IV. DISCUSSION OF THE SOLUTIONS

Ay 0

ASYMMETRY g-Pb
DIRAC EI KONAL--- ANALYTIC

Ay 0-
182 Mev

I(

i„~

I

2S

MOMENTUM TRANSFER (fm )
FIG. 5. Same as Fig. 4 for asymmetries.

We have shown that the Dirac-eikonal scattering ampli-
tude for nucleon-nucleus scattering can be analytically ap-
proximated very accurately for the range of parameters
relevant to medium energy scattering. Now we would like
to look at the solution in more detail. First, for simplici-
ty, we may neglect spin and consider a potential in X of
Eq. (1) of the form

V(r) = V~f(r)+ V2f (r),
where

f(r)=II(1+e'" ' ~) .

In Eq. (18), a) and a2 would be proportional to V& and
V2, respectively, a& to the sum V&+Vz, and uz to
Plbp V2. We illustrate in Fig. 7 the dependence of the sta-
tionary phase point on V& and Vz by plotting the station-
ary phase point as a function of momentum transfer for
V& —— i 50 M—eV, V2 ——0 (dark circles), and V) ——0,
V2 —— i50 MeV (op—en circles), using c=3.55 fm and

MOMENTUM TRANSFER (fm )

FIG. 6. Same as Fig. 4 for spin rotations.

b = (3,55,7T 0,65)

JD
2—

E
bS for Vp

b for Vp~
S

6.0
= 2.0

)g q = 1.0
~ q = 0.5

q =0.2

(yI I

0 1 2 5 4 5 6
Re (b)

FIG. 7. Positions of the stationary phase point (fm) as a func-
tion of momentum transfer (fm ') for purely linear and purely
quadratic interactions. The dashed line is the trajectory of the
stationary phase point for

g=iqb +io, 1bo/{b —b )'

in Eq. (17), and the solid line for

g igb +ior2bo/(bo b )

in Eq. (17). For higher momentum transfer the stationary phase
point b, for the Vf2 potential [which contains both (bo b)—
and (bo b) ~ singnlari—ties] approaches the (bo b)—
lines.

P=0.65 fm for the density. The dashed and solid lines
are the trajectories of the stationary phase point as a func-
tion of q [Eq. (17)] for the purely (bo b) '—~ and
(bc b) ~ —singularities, respectively. For Vf interac-
tions, the stationary phase point follows the trajectory as-
sociated with the (bz b) ' —singularity alone since
only that singularity is present for linear potentials. For
Vf interactions, both (bo b) '~—and (bo b)—
singularities are present so the stationary phase point
moves from some value intermediate to the purely
(bo b) ' —and (bo b) —trajectories at low q to the
purely (bz b) —value for large q. Thus, we conclude
that at low momentum transfers one probes the sum of
linear and quadratic pieces while at higher momentum
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TABLE II. Dimensionless measures of the interaction strengths for linear central, quadratic central,
spin orbit, and total central interactions as a function of energy for the Schrodinger and Dirac impulse
approximations.

Tlab

200 MeV Schrodinger
Dirac

(1.059,-0.968)
(1.057, —0.975)

(0.000,0.000)
(0.230,1.564)

(0.253,1.189)
(0.331,1.307)

(1.059,—0.968)
(1.287,0.589)

300 MeV Schrodinger
Dirac

{0.975,—0.485)
(0.973,—0.491)

(o.ooo,o.ooo)
(0.179,1.013)

(0.223,0.938)
(0.271,1.006)

(0.975,—O. 485)
(1.153,0.521)

400 MeV Schrodinger
Dirac

(0.953,—0.284)
(0.951,—0.289)

(0.000,0.000)
(0.141,0.739)

(0.206,0.778)
(0.231,0.816)

(0.953,—0.284)
(1.092,0.450)

500 MeV Schrodinger
Dirac

(1.026, —0.187)
(1.023,—0. 193)

(0.000,0.000)
(0.121,0.578)

(0.211,0.664)
(0.218,0.684)

(1.026, —0.187)
(1.144,0.386)

600 MeV Schrodinger
Dirac

(1.151,—0.091)
(1.148,—0.096)

(0.000,0.000)
(0,109,0.464)

(0.225,0.582)
(0.218,0.586)

(1.151,—0.091)
(1.257,0.368 )

700 MeV Schrodinger
Dirac

(1.297,0.027)
(1.294,0.022)

(0.000,0.000)
(0.123,0.395)

(0.249,0.529)
(0.237,0.526)

(1.297,0.027)
(1.416,0.417)

800 MeV Schrodinger
Dirac

{1.358,0. 174)
(1.355,0. 169)

(o.ooo,o.ooo)
(0.130,0.364)

(0.260,0.505)
(0.241,0.501)

(1.358,0.174)
(1.485,0.534)

transfers the quadratic piece alone increasingly asserts it-
self. Incidently, it is this interplay of linear and quadratic
forms that has led to the "wine bottle" shape in
Schrodinger phenomenology.

In another application we may use the analytic results
to compare the features of the conventional Schrodinger
impulse approximation with the Dirac impulse approxi-
mation. Looking at Eqs. (17) and (18) we see that what
we should compare are the dimensionless strengths a ~, a2,
and a3. For the Schrodinger case a2 ——0, so there is one
appreciable difference right away. In Table II we present
ai, a2, a3, and a'i for Schrodinger and Dirac impulse ap-
proximations for nucleon scattering from a T=O nucleus.
We see that ai and a3, which come fairly directly from
the forward nucleon-nucleon amplitude, are fairly similar
throughout the medium energy regime. However, it is a~
and az which determine the central strength, and these are
quite different. In fact, we find that up until 700 MeV the
Schrodinger ai is effectively attractive (negative ima-
ginary part) while for the Dirac it is effectively repulsive
(positive imaginary part). Since it is the size of the ima-
ginary part which determines minimum filling, this means
that errors in descriptions of the minima which are usual-

ly down played may actually be quite significant. The su-

periority of the Dirac equation approach for the spin ob-
servables at high momentum transfer hinges upon the
presence of an additional shape proportional to f~. Here
we see an opportunity to compare the Schrodinger and
Dirac impulse approximations in terms of their predic-
tions for the spin averaged cross sections.

Such a comparison cannot be made without including
Coulomb effects. If we consider 500 MeV Schrodinger
proton scattering we would expect the repulsive Coulomb
interaction to largely cance1 the strong attraction leading
to deep minima. The value of q for which the cancellation

would be maxima would tend to increase with A as the
Coulomb gets relatively stronger. These are exactly the
features exhibited by the Schrodinger calculations in Fig.
1 of Ref. 9.

The minima in the data presented there are, however,
much shallower, indicating either a repulsive or a much
less attractive interaction than predicted by the
Schrodinger impulse approximation. The Pb case best
illustrates this point —the calculations show minima get-
ting deeper with q whereas the experimental minima pro-
gressively fill with q.

This discussion suggests that Coulomb-nuclear interfer-
ence type measurements could be carried out at any
momentum transfer range to determine the effective value
of the real part of the strong interaction. Such a deter-
mination would shed light on the validity of the impulse
approximation and the various approaches based on it.

V. SUMMARY

In this paper we have derived an asymptotic analytic
expression for the scattering of Dirac particles. The ap-
proach is numerically accurate over the entire medium en-
ergy range. Examining the form of the solutions shows
that at low momentum transfer the quadratic forms in the
interaction are at best marginally distinguishable from
linear terms of the same central depth, but actually come
to dominate at high momentum transfer. The solutions
highlight the importance of a particular difference in the
Schrodinger versus Dirac impulse approximations, namely
the size (and often the sign) of the real part of the strong
interaction. We hope that the analytic expressions
presented here will lead to many further insights into the
nature of the scattering of Dirac particles and make possi-
ble better connections between scattering at different ener-
gies and with different projectiles. We are currently work-
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ing on the data to data approach to this problem. and then evaluating the integral at b =bp, since it is no
longer singular, yields for (A4),

We again express thanks to Professor B. C. Clark for
the use of her calculations. We acknowledge financial
support of the National Science Foundation.

APPENDIX A: SINGULAR PARTS
OF PROFILE FUNCTIONS

1+ x
bp

(2Pb )1/2 f x p1+
b

1/2

To go from (14) to (15) we need to evaluate the integrals
in (14) near the singular point bp. We follow a generaliza-
tion of the methods of ADL. First we note that f(r) has
a simple pole at r =bp with residue —P. In the upper half
b plane near b =bp, the singular part of f,fp can be writ-
ten

—2Pbp
2r bp—

X „+1

1 —8

or to leading order in P/b p,

(2mPb )' f

x 1+ x
p

(A5)

(A6)
The first integral we encounter is precisely the one from

ADL. Introducing fp we can write

f f(r)dz= f [f(r) fp)dz+ —f fpdz . (A2)

Using r =b +z, the second term on the right in (A2),
the singular term, is easily evaluated to yield

00 1 2Pbp
2 dz — +1+e' '~ z —b +bz p

Changing variables to x,

Px+b, =(z'+b')'"

(A4)

z =
2 ~mbb —b +0. A3

(b b2)1/2

The first term on the right of (A2), the nonsingular piece,
may be written as

r

with f) as given in (16).
We now generalize this method to the integral quadratic

in f. We write

f'=(f —fp)'+2f p(f fp)+f p . — (A7)

The integral of the first term on the right is completely
nonsingular and may be done as was done above for the
nonsingular piece of the linear integral. Making the same
substitution one obtains an expression just like (A5) but
with the last bracket squared. To leading order in 13/bp
this yields (2n.bpP)'/ f2 as in (16). In the second term on
the right-hand side in (A7) we may take the limit as
r~bp in f fp before per—forming the z integer. As
r +bp, f—fp~——,

' to leading order in P/bp and we obtain
for the second term precisely the same integral as in (A3).
The most singular term, the third on the right, is a trivial
integral. All together we get for b near bp

(bp b) (bp —b) /— (A8)

We turn, finally, to the spin-orbit term, which we write

PHYSICAL
ROOT f'

+

Sp —Vp5=
E+m (A9)

Re (y)

Differentiating f, we have for (A9)

1 5 ~ (r —c)/P 1
z

e 1+ e(r —c)/p
13 I+& (1+e' ' ~) 1+5

1

1+&(r —e)/P
1

)/p 7 (A 10)—e

FECx. 8. Trajectory of the solutions of Eq. (B2) in the complex

y plane.

with c =c+ ln(1 + 5). These two integrals are each of the
form of the integrals in (A2), yieldirig the result given in
(15).
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APPENDIX 8: ROOTS

(Bla)

CX)+ 8 CX2

qbp

Eq. (21) becomes

y'"+y+x =O .

(Blb}

(B2)

The stationary phase condition is given by Eq. (2),
which we must solve for 4, the dimensionless measure of
the distance from the stationary point to the singular
point. With the variable substitution

In this language small q is x~o and large q is large x.
Equation (B2) has five roots. As x~0, they are the three
roots of y3/i= —1 and two roots that vanish as x —+0.
The e /"' root of the first set is the ADL root .As
x~ao, the five roots are the roots of y / = —x,

x2/5ie(2m+i}

Because of (Blb), even if y grows like (qbo) /', 5 de-
creases like (qbo) . For intermediate x the roots con-
nect as shown in Fig. 8. For o.'~ and az predominantly
real, the root that satisfies the condition Im(ho b)—' & 0
and Reg"(b, ) &0 is the one that begins at y =e / ' for
x =0 and goes to y =x / e / ' for large x. In calculation,
the root can be found by using an extrapolation formula,
by using a prepared table, or by direct solution of (B2) or
(21}. In case of direct solution, care is required to ensure
the correct root is chosen.
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