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Nuclear fission viewed as a diffusion process: Case of very large friction
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Using a Fokker-Planck equation, we consider induced nuclear fission for large values of the fric-
tion constant. Then, the equation simplifies to the Smoluchowski equation which we solve using a
method of van Kampen. We find that the fission rate obeys a scaling law. From our numerical re-

sults and those obtained previously, we estimate the transient time ~ for fission. For small nuclear

temperature, ~ is defined as the time delay between the onset of a nuclear reaction and the attain-
ment of the quasistationary probability flow over the fission barrier. For nuclear temperatures large
compared to the fission barrier, the entire fission process is governed by transients, and ~ essentially

yields the fission lifetime. We speculate on the significance of our results for recent experimental
observations.

I. INTRODUCTION

Recent experimental data' indicate that the number of
light particles evaporated in a heavy-ion induced reaction
prior to fission considerably exceeds the expectations
based on the statistical model. One possible explanation
for this observation is based on a diffusion model for the
fission process. ' It has long been known that the
quasistationary diffusive probability flow over the fission
barrier yields a fission rate which is in essential agreement
with the statistical model. However, there exists a time
delay r between the beginning of the diffusion process
(here, the onset of the nuclear reaction), and the attain-
ment of stationarity of the probability flow. For times t
with 0& t &r, very little probability escapes over the fis-
sion barrier, and nucleon evaporation competes favorably
with nuclear fission. If r is of the order of a nucleon
evaporation time or bigger, the number of light particles
evaporated prior to fission may obviously considerably
exceed the prediction of the statistical model.

This approach, which essentially postulates that the
equilibration time for the nucleonic degrees of freedom is
considerably shorter than ~, has been quantitatively imple-
mented in Ref. 3. It was found that at excitation energies
of 80 or 100 MeV, and for values of the friction constant
which appear to be generally acceptable, the time delay ~
is of the order of a neutron evaporation time. This sub-
stantiates the picture described above.

The investigations and results of Ref. 3 are limited by a
technical restriction. Both the analytical and the numeri-
cal techniques apply only when the friction constant P
[which has the dimension (time) ') is not much in excess
of 2coo. Here, coo is the frequency of a harmonic oscillator
potential osculating the fission potential at the nuclear
ground state (the first minimum). [The physical signifi-
cance of the value 2coo is that for P &2coo (or P) 2coo), the
motion in the first minimum is underdamped (or over-
damped, respectively)]. With a typical value of 1 MeV for
ficoo, this restricts the friction constant to P&5X10 '

sec
The data of Ref. 1, particularly the most recent of

We begin with the same Fokker-Planck equation as in
Ref. 3. It reads

P(x,p;r)+p P(x,p;t) K(x) P(x,p;t)—8
Bt ' '

Bx ' '
Bp

=a a'=P [pP(x,p;t)]+a 2 P(x,p;t) .
Bp Qp

(2.1)

Here, x is the fission variable, p its conjugate momentum;
p =ply the velocity with p the reduced mass;
K(x)=+@ '(dV/dx), where V(x) is the fission poten-

these, would seem to require values of ~ that are substan-
tially bigger than those obtained in Ref. 3. In the frame-
work of a diffusion model, such values of r require P to
exceed the limit just mentioned. This fact prompted us to
carry out the present investigations. By applying a
method of van Kampen suitable for the overdamped case,
P) 2cop we open up a domain of P values which partly
overlaps that investigated in Ref. 3 and which consider-
ably extends the range of P values accessible in our work.

Van Kampen's method consists in constructing an ana-
lytic solution to the Smoluchowski equation. In Sec. II,
we recall which approximations are encountered in replac-
ing the original Fokker-Planck equation by the Smolu-
chowski equation. We present van Kampen's solution,
and discuss scaling relations which are implied by this
method. The application of these scaling rules to the re-
sults of Ref. 3 alone is almost sufficient to extend the re-
sults of Ref. 3 to larger values of P. The numerical calcu-
lations of Sec. III substantiate and corroborate the analyti-
cal results. Moreover, and more importantly, they allow
us to examine situations where the first minimum is very
shallow or altogether nonexistent. (This is the case in
heavy-ion reactions with large angular momentum. ) A
summary of our work, and a semiquantitative evaluation
of the dependence of r on P, on the nuclear temperature
T, and on the height of the fission barrier, which also in-
cludes the results of Ref. 3, is given in Sec. IV.

II. THE SMOI.UCHOWSKI EQUATION:
SCALING RULES
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P&»1 and P»(T/p)'~'(Ax) (2.3)

are valid. The first of these implies that momentum
equilibration is attained, while the second states that the
diffusive length scale (T/p)'~ P ' must be small com-
pared to the distance b,x over which either V(x) or
P (x,p; t) changes appreciably. With typical values T=3
MeV and p -=62m& (with m& the proton mass), and using
b,x=1 fm, the last condition (2.3) yields p»2X10 '

sec '. This condition actually follows from the require-
ment that a Gaussian be small compared to unity and is
effectively fulfilled with good accuracy already for
p& 5X 10 ' sec ' or so. This shows that the domain of
validity of Eq. (2.2) smoothly joins the domain
P&5X10 ' sec ' explored in Ref. 3. The first condition
(2.3) obviously gives a lower limit for the time t at which
Eq. (2.1) gives meaningful results. It follows from the re-
quirement that exp —(Pt) be small compared to unity and
is thus effectively fulfilled with sufficient accuracy for
Pt &3.

Van Kampen's method of solving Eq. (2.2) is based on
the assumption that V(x)~+Do for ~x

~

~ao. The po-
tential of a fissioning nucleus actually tends to zero for
xi+Do. Without affecting the dynamics of the fission
process we may, however, add a steep barrier to V(x) for
large x and thus fulfull van Kampen's assumption. Fis-
sion is then modeled as a diffusion process out of the shal-
low valley into the deep valley of an asymmetric bistable
potential V(x).

We use the substitution

P(x, t) =exp[ —V(x)/(2T)]4(x, t) .

Then, the Smoluchowski equation takes the form

82
pP P(x, t)=[—,V—"—,' T '(V') ]P(x,t)+T —P(x,t) .

This suggests using the expansion

P(x, t) = g c„P„(x)exp(—A,„r),

(2.4)

(2.5)

where the P„are the stationary orthonormal eigenfunc-
tions of the problem

d[E„—U(x)]P„(x)+ 2 P„(x)=0, (2.6)

tial; and e=PT/p, .
Chandrasekhar has reviewed the transition from the

Fokker-Planck equation (2.1) to the Smoluchowski equa-
tion which describes dissipation in the x variable only, and
which assumes that P is so large that equilibration in
momentum space is very rapid. The Smoluchowski equa-
tion thus applies to an overdamped situation. It reads

2

P(x, t)=P ' [K(x)P(x,t)]+P e P(x, t) .
dr Bx Bx

(2.2)

The quantity P(x, t) is obtained by integrating P(x,p;t)
over all p space. The Smoluchowski equation follows
from Eq. (2.1) if the conditions

subject to the proper boundary conditions at x =+oo.
Here,

pPA,„=T(E„—X) (2.7)

and

TU(x) = ,' T —'(V') ——,
' V"+TK, (2.8)

z (x)+[4—U(x)]z (x)=0 .
dx

(2.9)

This is formally the same as Eq. (2.6). Moreover, we must
have z(x) &0 for all x by definition. This is only possible
if z(x) =Pp(x) and K =Ep, the lowest eigenvalue. Collect-
ing all these results, we have

P(x, t)=gp(x) g C„P„(x)exp(—A,„t).
n=0

(2.10)

The P„are the orthonormal eigenfunctions of the
boundary-value problem (2.6}. The A,„arerelated to the
associated eigenvalues E„by

A,„=(E„Ep)T/(Piu)—n =0, 1, . . . , .

For arbitrary U(x), the fission potential is given by

V(x) = —2T ingp(x) .

(2.11)

(2.12)

The initial condition P(x, t)=6(x —x&) is realized if we
set

C„=Q„(x))/Pp(x)). (2.13)

Equations (2.6) and (2.10)—(2.13) completely define the
solutions in terms of a given auxiliary potential U(x).
For U(x} fixed, these solutions have the following scaling
properties:

(i) For fixed U(x), the solutions P„(x)are completely
independent of T and P.

(ii) For fixed U(x) [and, therefore, for fixed Pp(x)], the
fission potential V(x) is linear in T [see Eq. (2.12)]. As a
corollary, it follows that for fixed U(x), the quantity
exp( E//T) (where E/ —is the height of the fission bar-
rier) is independent of T. This quantity is of central im-
portance for the fission rate.

(iii) The parameters A.„and,hence, the fission rate, de-
pend on T and P only via the combination T!(Pp). The
fission rate scales with this factor. This last fact is also
seen directly when one rewrites Eq. (2.2) with the help of

where Ã is a constant.
Instead of solving Eq. (2.2), van Kampen proposes solv-

ing Eq. (2.6) for some suitable potential U(x). This is
straightforward because Eq. (2.6) has the form of a
Schrodinger equation. The fission potential V(x) is then
to be found from Eq. (2.8). This procedure has the great
advantage that U(x) can be chosen in such a way that Eq.
(2.6) has simple analytical solutions P„(x),E„.It has the
disadvantage that the fission potential V(x) determined by
solving Eq. (2.8) may not exactly correspond to the actual
physical situation.

To solve Eq. (2.8), we set

z (x)=exp[ —V(x) /(2 T)] .

Then, Eq. (2.8) takes the form

2
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Eq. (2.12) in the form

8 P(x, t) = —[2T/(pp)l [P(x t)do(x)/po(x)]
8

i x

+ [Tl(pIJ, )) P(x, t) . (2.14)

With t'=tT/(pp), Eq. (2.14) depends only on t' and x,
not on t, T, and p, separately.

The scaling properties (i)—(iii) apply to a situation
where the auxiliary potential U(x) or, equivalently, the
function po(x), is held fixed. This is the case for the nu-
merical calculations presented in Sec. III.

Unfortunately, these observations cannot be applied
I

directly to the results of Ref. 3. Indeed, in these calcula-
tions, the physical fission potential V(x) [and not the aux-
iliary quantities po(x) or U(x)] was held fixed, and p and
T were changed. Since the relation (2.12) connecting po(x)
and V(x) involves the temperature T, there is no simple
way of telling how the results of a calculation will change
with T, if V(x) is held fixed.

The Smoluchowski equation (2.2) does, however, have a
simple scaling property as p is changed. This is seen im-
mediately from Eq. (2.2) if one recalls that e=pT/p: The
time scales with P, and the rate, therefore, with P '. To
apply this result, we recall that in Ref. 3, the "time-
dependent fission rate" AI(t) was defined as follows [xo is
the coordinate of the saddle point]:

~f(t)= ——f dx f dp P(x p;t) f dx f dp P(x p;t) (2.15)

It follows that for two solutions of the Smoluchowski
equation (2.2) associated with different values Po and P of
the friction constant, but subject to identical initial condi-
tions (independent of p) at time t =0, we have

III. NUMERICAL RESULTS

For the numerical calculations, the auxiliary potential
was chosen as follows:

~f(t P) —(Po/P)~f (Pt /PQ Po) (2.16a)

We also recall that in Ref. 3, r was defined as the time
span between the onset (t =0) of a nuclear reaction, and
the time at which A/ attains (approximately) its quasista-
tionary value. The scaling law (2.16a) then implies that

+op x &0,
0 0&x&a,

U(x)= Uo&0 a &x &b,

0 b&x&c,
+Oo x)c.

(3.1)

r(p) =(p/po)r(po) . (2.16b)

This formula gives a good fit to the six values of r which
one may deduce from Figs. 4 and 5 of Ref. 3 for P=0.5,
1.0, and 5.0&10 ' sec ', as well as for the totally dif-
ferent case of T =1 MeV of Fig. 6. We surmise that Eq.
(2.17) gives a reasonable approximation to the delay time
in all physical situations where T &E~. It does not work
in cases where Ey & T, where the fission process is alto-
gether characterized by transients. This regime, which is
of interest experimentally in heavy-ion induced reactions
with sufficiently high angular momentum, must be ex-
plored by numerical calculations to which we now turn.

We use Eqs. (2.16) to generalize the results of Ref. 3.
There, we found that for fixed T, and for p&2co&, the
quantity r decreases with increasing P roughly like
P '1n(10E//T), where E/ is the height of the fission bar-
rier. We now know that for p»2coi, r is proportional to
p. Looking at Figs. 4 and 5 of Ref. 3 (corresponding to
temperatures of 1 and 4 MeV), we find that for P=5, the
values of r are approximately given by 8 and 2, respective-
ly, in units 10 ' sec. This suggests that for p»2toi, the
delay time v. is roughly inversely proportional to T. We
emphasize, however, that this statement is not based on a
scaling law and only supported by two data points.
Nevertheless, we have fitted the r values obtained in Ref.
3 with a formula consisting of a term proportional to
p 'ln(10E//T) and a second term proportional to p/T.
The result of the fit is

r(p, T)=1.4p '1n(E/10/T)+1. 4(p/T)10 MeV sec

(2.17)

The solutions of the associated eigenvalue problem (2.6)
are trigonometric functions or exponentials, and the eigen-
values are solutions of a simple transcendental equation.
All this is elementary quantum mechanics; the formulas
are not given here. It is of interest, however, to discuss
the qualitative features of the eigenfunction po belonging
to the lowest eigenvalue since po determines via Eq. (2.12)
the properties of the fission potential V(x). We have

r

usinkzx, 0&x &a,

po(x)= piexp( —k,x)+pzexp(+kix), a &x &b,

y sinko(x —c), b &x &c,

(3.2)

where ko+k &
——Uo. We wish to choose the parameters a,

b, c, and Uo in such a way that V(x) has a deep minimum
somewhere in the interval b &x &c, a shallow minimum
somewhere in 0&x &a, and a maximum somewhere in
b &x &c. In view of Eq. (2.12), this requires Po(x) to have
a very large maximum in b &x &c, a significantly less
pronounced maximum in 0&x &a, and a rninirnurn in
a &x &b. It is easy to see that these requirements can
only be met by choosing Uo quite high. More precisely,
and since Uo has the dimension (length), we must
choose Uo

' small in comparison with the characteristic
lengths a, b —a, c bof the problem. —The latter quanti-
ties are typically several fm in the nuclear context, and we
have therefore chosen Uo

' ——0.45 fm for our numerical
work. The disadvantage of this choice, necessitated by the
requirements mentioned above, is that the curvature of po
in the interval a &x &b is much larger than in the other
two intervals. This means that the curvature of the fission
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Xo (fm )
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0.20

E
0.15I—

CQ
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II
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0, 25

0.4

0.875

0.05

0

1.625
1.75
3.25
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t'(fm2)

FIG. 2. The scaled rate Ay(t') versus t' for various choices of
a or, equivalently, Ey/T, as indicated.

first minimum. This expansion is applicable for suffi-
ciently large values of t' subject to the condition that all
terms with n &90 have been damped out in expansion
(2.10), i.e., subject to the condition that
exp[ (E—„—Eo)t']« I for n&90. In our figures, we
show results only for such t' values.

Figure 1 shows the fission potential V(x) divided by 2T
vs x (in fm) for three of the seven cases listed in Table I,
corresponding to values of E/Ir as given in our figures.
On the right-hand side, we show P(x, t') for various times
t' vs x (in fm). We see that for E//T =0.125 our method
does not allow for the study of transients. All we can say
is that the fission process is essentially finished at t'-=10
or so. The other cases show the passage of probability
from one valley to the other very clearly. To interpret the
figures in physical terms, it may be useful to recall that
for T =4 MeV, p=62m~, and p=10 /sec, a time t of
10 ' sec corresponds to a time t' of 0.6 fm .

Figure 2 shows the function A/(t') defined as in Eq.
(2.15), but in scaled units versus t' for the seven cases list-
ed in Table I. As the ratio E//T decreases, we observe a
characteristic change in the pattern. For T «E~
(E//T=3. 25), A/(t') reaches a stationary value after a
transient time of r'—=2 fm . After that time, a quasista-
tionary current flows over the fission barrier, with a decay
rate of A/ -—0.01 fm . A plot similar to the one given in
Fig. 1 shows that it takes a long time —t'=100 or so-
before most of the probability has escaped over the bar-
rier: The transient is a small correction to an otherwise
quasistationary process. This picture is completely con-
sistent with the results of Ref. 3. As the ratio E//T de-
creases, A/(t') develops the following pattern: Starting at
zero for t'=0, it overshoots its asymptotic value which is
then approached from above. Such features, too, were
seen already in Ref. 3 but are driven here to the extreme,
cf. the topmost curves in Fig. 2. Our method does, in
fact, not allow us to calculate the behavior of these curves
reliably for t'&2 fm or so. Therefore, we show in Fig. 3
the quantity

P, (t')= f dx f dpP(x, p;t'),

1.0

0.5
CL

0
0 5 10 15

t'(fm )

FIG. 3. The probability I', (t') of finding the system to the
left of the saddle point versus t' for various choices of a or,
equivalently, of E~/T, as indicated.

which has a simple behavior and can therefore be
displayed without detailed knowledge of the behavior at
small r . (In addition, it is also numerically more stable
than A/ for small r'. ) We use also the fact that P, (0)= l.
We see that for small values of E//T, the behavior of the
system is altogether of a transient type: Most of the prob-
ability passes the barrier in a single swoop, and only a
small remainder follows the quasistationary pattern and
an exponential decay law. For these processes, the delay
time ~' gives, at the same time, the scale for the lifetime of
the entire process. For the physical interpretation of the
rates given in Fig. 2, we recall that a rate A, =10 ' sec
corresponds to a rate 1,'=1.7 fm if we choose P=10
sec p 62plp and T 4 MeV.

Comparing the quasistationary rates A,o taken from Fig.
2 and listed in the seventh row of Table I with the
Kramers's rates R' listed in the fifth row, we see that
there is close agreement for large values of E//T, and that
this agreement gets worse as E//T decreases. This is not
surprising, since Kramers's formula is based on the ap-
proximation that T «E/. It is astonishing, in fact, that
the two rate values do not differ by more than 20 percent
even for EI/T =0.125. We bear in mind, however, that
for such small values of E//T, the asymptotic (quasista-
tionary) rates are physically void of information since the
process is completely governed by transients.

We define the delay time r' as the minimum of the fol-
lowing two values: (a) the time when A,/ has approached
its asymptotic value with sufficient accuracy (5 percent,
say), and (b) the time when P, (t') is reduced to 1/e of its
original value unity. This definition is intended to include
the cases where the entire fission process is a transient
phenomenon. A glance at Figs. 2 and 3 shows that with
this definition, r'= 3 fm for all v—alues of E//T displayed
there. This is in semiquantitative agreement with the fit
formula (2.17) which, in the limit of very large p and for
p =62m', yields v' =2.16 fm .

This shows that ~' has a very different physical signifi-
cance depending on whether E//T «1 or E//T »1. In
the first case, r' signifies the total duration time of the fis-
sion process which is altogether of a transient nature. In
the second case, r' is the delay time until the onset of fis-
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1.00,
E f/T = 0.4

0.75
1: P (x, 0) = 5(x-0)
2: P (x, O) = 5(x-1/2x~)
3: P (x, O) = 5(x- x~)

P(x, O) = 5(x-3/2 x )

0.25

0
0

l

10 15
t' (fm2)

FIG. 4. The scaled rate A,f(t') versus t' for various initial
conditions as explained in the text.

IV. SUMMARY AND CONCLUSIONS

Using the Smoluchowski equation (2.2) and the method
of van Kampen tailored to its solution, we have shown

sion. Which of the two interpretations applies can be seen
by comparing r' with (A,o) ', or with the more easily ac-
cessible estimate (R') '. Whenever (R') ' is not at least
a factor 3 bigger than r', we do not deal with a transient
phenomenon followed by a long quasistationary process of
physical significance.

Figure 4 illustrates the fact that the transient behavior
is strongly dependent on which starting configuration is
chosen. The calculations were performed for four initial
conditions, all given by a delta function, located either at
x =0 (case 1), at —,'xi (case 2), at xi (case 3), or at —,'xi
(case 4). The curves show A, 'f(t') for the four cases, calcu-
lated for a choice Ef/T=0. 4 (case 3 of Table I). The
physical interpretation of this pattern can be given in
terms of the flow of a drop of honey. If the drop starts
far to the left of the fission barrier as a sphere of very
small radius, viscous dissipation has smeared it out long
before it reaches the saddle point, and the current over the
saddle rises slowly towards its quasistationary value,
which at the same time signifies the existence of a non-
transient (secular) decay process. If, on the other hand,
the drop starts with the same shape but close to the bar-
rier, a good portion of it will flow over the barrier in one
swoop.

that for large values of the friction constant P, the fission
rate is governed by scaling laws. There are two time
scales which determine the nature of the fission process, a
delay time r approximately given by Eq. (2.17), and the
inverse of the quasistationary decay rate. We have seen
that the latter can be reasonably well approximated by
Kramers's formula even when the fission barrier is much
lower than the nuclear temperature T. Both ~ and
Kramers's rate R obey the scaling laws for large P, and
thus allow a discussion of the fission process independent
of the actual values of P, of the mass parameter p, and of
T. We have seen from numerical examples that the sig-
nificance of r changes: As long as r «R ', we deal with
a transient phenomenon which finally (at time -r) ap-
proaches the quasistationary pattern governed by
Kramers's rate. Here, all the considerations of Ref. 3 ap-
ply, and virtually no fission takes place for times t &r,
this leading to an enhancement of light-particle evapora-
tion. With decreasing values of Ef/T, R ' becomes
smaller. Whenever ~&3R ', we enter a new regime.
Here, fission is altogether a transient phenomenon of
duration time r, and R loses all physical significance. We
have seen that for values of P in excess of 5 X 10 ' sec
is numerically well approximated (to within 50 percent or
so) by the expression 2.16 fm 13@/T.

This finding suggests the following speculative com-
ment on the results reported in Ref. 1. In heavy-ion in-
duced reactions, the angular momentum is large, and the
effective fission barrier may be substantially smaller than
in neutron-induced fission. At the same time, we deal
with nuclear temperatures of several MeV. Using the re-
sults of Sec. III, we argue that in this domain where

Ef (T, fission is altogether a transient process with a
characteristic time scale ~ as given above. Using the
values p=62m~, T=4 MeV, and P=10 sec ' to con-
vert ~ to an actual time, we find r=-3.5X10 ' sec, or an
effective fission width I,ff=iri/r=—200 keV. (A further
increase of P would decrease I,rf proportionally. ) On the
other hand, neutron decay widths at excitation energies
around 100 MeV are of the order of an MeV or bigger.
This suggests that for values of P which are not altogether
unreasonable, a fairly substantial nucleon evaporation pri-
or to fission may be expected. The quantitative analysis
of this question, as well as of the consequences to be
drawn from the findings of Ref. 3, is being investigated by
Hassani and Grange.
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