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Multifragmentation and the partition of angular momentum: General statistical theory
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In the wake of the statistical theory for angular momentum in binary (deep inelastic) processes, a
statistical theory for the distribution of angular momentum between the fragments has been

developed for the case of multifragmentation (three or more fragments). From the generalized par-
tition function, the average energy and angular momentum of each fragment are derived as well as
the corresponding variances. The first moments in the two quantities suggest a "rigid rotation" lim-

it analogous to the binary case. The components of the polarization tensor are calculated for each
fragment. The role of thermally generated angular momentum versus that arising from rigid rota-
tion is discussed. Comments are offered on the applicability of the theory to various reactions.

INTRODUCTION

In deep inelastic processes, where only two major frag-
ments are observed in the exit channel, the fate of the en-
trance channel angular momentum has been studied in
great detail both experimentally and theoretically. '

It has been found that, in the great majority of cases,
especially at the largest Q values, the fragment spin is well
described in terms of one vector aligned with the entrance
channel angular momentum, arising from the limit of rig-
id rotation, plus a second vector with randomly distribut-
ed components along the three coordinates. The second
vector has the effect of introducing fluctuations both in
the length and orientation of the resulting total fragment
angular momentum. Experimental information on this
subject has been obtained in various ways. Gamma-ray
multiplicities have provided the sum of the moduli of the
fragment angular momenta, sequential alpha and fission
decay have provided information on the aligned com-
ponent of an individual fragment spin, and finally, the an-
gular distributions of sequentially emitted gamma rays or
fission fragments have allowed for the measurement of the
misaligned component of each fragment's angular
momentum.

On the theoretical front, one is confronted with the
dynamical results obtained from time-dependent Hartree-
Fock (TDHF) theory ' on one hand, or with those ob-
tained from the excitation of high and low frequency col-
lective modes on the other. ' The effect of single particle
transfer has also been studied either by itself or by incor-
porating it into a diffusion equation which allows for sta-
tistical fluctuations. The latter treatment falls into the
category of time-dependent statistical theories which have
been very successful in dealing with many aspects of deep
inelastic reactions. ' In contrast with the time-
dependent statistical treatment which has the ambition ei-
ther of knowing or of wanting to find the transfer mecha-
nism, the equilibrium statistical model, brought forth by
Moretto and Schmitt, " is completely independent of the
reaction mechanism and thus can be calculated with a
good degree of confidence. In this model, the normal

modes of the dinuclear system that can bear angular
momentum are identified (bending, twisting, wriggling,
and tilting modes) and the partition function is calculated
from the corresponding Hamiltonian.

The success of the statistical model in describing the
misaligned component of the fragment angular momen-
tum can be attributed to two possible causes. The first
and more restrictive possibility implies that the angular-
momentum-bearing modes are completely relaxed and
thermalized. The second and milder possibility relies on
the remarkable fact that the variances closely approach
their full magnitude in a time comparable to or shorter
than one relaxation time. ' Consequently, if the first mo-
ment is zero by symmetry considerations (bending, twist-
ing, tilting) or it is taken from experiment (wriggling), the
equilibrium statistical approach may well suffice for a
complete explanation of the experiment. The latter possi-
bility is strongly favored by the success of the statistical
model in the quasielastic region. Whatever the judgment
may be on the predictive abilities of the statistical model,
it is fair to say that, even in the most unflattering judg-
ment, its role still must be considered significant in defin-
ing the background against which dynamical or otherwise
nonequilibrium effects ought to be observed.

Prompted by the above considerations, we have felt that
the time is right to describe the fate of the angular
momentum in collisions resulting in a larger number of
major fragments within the equilibrium statistical frame-
work.

The production of three or more major fragments is ex-
pected to be a dominant mechanism in the region of 10 to
50 MeV/nucleon and higher. The evidence for multifrag-
mentation in reactions induced by Ar or lighter fragments
is still somewhat ambiguous due to the difficulty of decid-
ing whether, for instance, an alpha particle is a primary or
a secondary particle. On the other hand, this problem
should be greatly alleviated by the use of very large targets
and projectiles. Already evidence of tripartition is accu-
mulating for Kr-induced reactions. ' ' There is little
doubt that the strong kinematic fix given by the detection
of the three or more major fragments will provide the ex-
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perimenter with a powerful tool to unscramble these com-
plicated processes in the same way as deep inelastic pro-
cesses have dramatically benefited from their binary na-
ture.

In a reaction regime where several large fragments are
found, it should be possible, if not easy, to determine ei-
ther their average or their individual intrinsic angular
momentum by means of more or less standard sequential
decay measurements. A more ambitious scientist may
even find that the measurement of the spin alignment of
the fragments is not altogether impossible. It is to those
people willing to stake their lives and reputations in the
research of the unknown that this paper is dedicated, with
the hope that it will provide them with insight and gui-
dance.

Z=g f exp
I2

2WT ~T (p„'+p,')

&(exp—
I2

—pI, exp—
l2

—pl,
2mr T

&(dI„dI dI, dl, dp, dp, ,

Z= g(v'~T) (V2 T) v'2 WT

&&e" +2+mr Te" (4)

where the terms in I„l, have been grouped together. In-
tegration yields

THEORY

Let us consider a collision giving rise to n fragments.
In the "expansion" phase, we assume statistical equilibri-
um, until beyond a critical shape, or mass distribution, the
fragments decouple from each other and the equilibrium
remains frozen in.

For simplicity, let us suppose that the critical shape is
approximately spherical. Then, it is completely general to
choose the z axis to coincide with the direction of the an-
gular momentum. Also, for simplicity, let us assume that
each fragment is spherical. The Hamiltonian of the sys-
tem can be written as follows:
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By differentiating once more with respect to p, one ob-
tains

where the sum g is to be carried over the fragments (the
corresponding index is omitted for simplicity); I„,I~, and
I, are the intrinsic components of the angular momentum
for a given fragment of moment of inertia W; I, is the z
component of the orbital angular momentum of a frag-
ment of mass m and distance r from the z axis; and p„and
p, are the other two generalized momenta for the transla-
tional motion of a fragment in cylindrical coordinates.
The choice of cylindrical coordinates for the relative
motion has the advantage of nicely isolating the z com-
ponent of the orbital angular momentum.

The generalized grand partition function can now be
calculated:

This represents the "spurious" fluctuations in Ir intro-
duced by the grand-canonical approach and can be used to
estimate the reliability of the theory in any given situa-
tion. Differentiation of the logarithm of the partition
function with respect to P= 1/T yields the total energy,
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where the constraint of the total angular momentum
Ir g(I, +l, ) (remember the——choice of the z axis) has
been introduced by means of the Lagrange multiplier p.
This guarantees that the total angular momentum will be
conserved, at least on the average. More explicitly,

where n is the number of fragments, the first term refers
to the intrinsic rotational energy, the second to the
translational energy, and the third to the rigid rotation of
the system at the critical shape. Again, the first two
terms arise from the classical energy equipartition
theorem, while the third should be interpreted as the ener-
gy of a rigidly rotating body whose moment of inertia is
defined by the mass distribution associated with the criti-
cal shape. The latter is a distinctly interesting but not al-
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together unexpected result. It may be worth noticing for
the last time how convenient the expression of the transla-
tional motion in cylindrical coordinates has turned out to
be. The intrinsic spin of each fragment can also be ob-
tained by differentiation:
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This equation says that the fragment angular momentum
arises from two contributions: the first is purely statisti-
cal and would exist also for zero total angular momentum;
the second is the share of the total angular momentum go-
ing to the fragment under study, dictated by the rigid ro-
tation condition. The two contributions are added in
quadrature. From the structure of Eq. (12), one would
also infer that o.„=o~=o,=MT, .the average for I„and
I~ being zero and for I, being
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as expected. Consequently, o.x =o.
~
=o, =MT.

The results obtained so far allow us to describe the frag-
ment spin alignment through the relevant components of
the polarization tensor:
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The latter inference can be verified directly. By isolation
of the factor containing I, in the partition function, one
has

DISCUSSION

The great simplicity and transparency of the above
treatment is marred by the difficulty that one encounters
when trying to produce some predictions. The first diffi-
culty is associated with the evaluation of the total moment
of inertia g(&+mr ). This is defined for the critical
shape and mass distribution when the decoupling occurs.
In the case of the deep inelastic process, it was not too dif-
ficult to guess such shape as that of two touching frag-
ments as either spherical or somewhat deformed. In the
case of three or more fragments, the problem is much less
defined; in fact, the critical shape, even for the same num-
ber of fragments, may vary dramatically in going from
moderately low-energy collisions to nearly relativistic col-
lisions. Perhaps, with some optimism, one could turn the
problem around and, after having looked for good signs of
thermalization [see Eq. (10) for inspiration], one might try
to infer the critical shape from the observed angular mo-
menta and polarization.

Another difficulty, which is now associated with the en-
trance channel, is the definition of the angular momentum
window to be considered in analyzing data within the
framework of this theory. Some idea may be obtained
from the elaborate analyses done for other variables in re-
lativistic collisions, but at lower energies, it is still an un-
known.

A comforting last observation arises from Eq. (12). Siz-
able angular momenta can still be expected even for a
"central collision" for which Ir 0. In fac——t, one might
venture to guess that in many instances this will be the
case, especially at the lower energy end. The angular
momentum may then be directly related to the tempera-
ture which can perhaps be inferred from other observables
such as the internal and translational energy of the frag-
ments. If this were fortunately to be the case, the picture
should be reasonably easy to unscramble.

But, in the final analysis, what should really justify a
statistical treatment in regimes where prompt processes
ought to dominate? Two answers can be given. The skep-
tical answer is that this is the only regime for which it is
easy to develop a theory. The following optimistic answer
can be given: Try and chase away phase space with a
pitchfork, it will still keep coming back. '
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CONCLUSIONS

A statistical theory predicting the fate of angular
momentum in multifragmentation has been developed.
This theory allows one to evaluate the mean energies and
angular momenta of each fragment as well as their vari-
ances. A generalized limit of rigid rotation at a critical
shape describes the equilibrium distribution. The frag-
ment spin polarization has been derived from the first and
second moments of the fragment angular momenta. Gen-
eral considerations have been given for the applicability of
the theory to various energy and impact parameter ranges.
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