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Semiclassical methods are used to analyze the second-order processes—the direct-one step process
and the two-step process—in heavy ion collisions. Qur main results are the following: (i) In the
strong absorption limit, the direct one-step and two-step form factors are equally important and in-
terfere destructively near the grazing angular momentum. The Austern-Blair theory gives satisfac-
tory results for well-matched reactions. The angular distributions of mutual and double excitations

are out of phase compared with that of the single excitation.

(ii) For the weak to moderate absorp-

tion case, the internal part of the two-step process is enhanced. The angular distribution shows the
refractive effect of overlapping resonances. Applications have been made to inelastic *C-!C reac-

tions.

I. INTRODUCTION

The second order processes in heavy-ion collisions pro-
vide an attractive and useful tool for the study of reaction
mechanisms.!=> The Austern-Blair (AB) theory®’ has
often been used to analyze this type of experimental data,
but detailed understanding of such reaction processes is,
however, still missing. It is known that the AB theory
works very well in the strong absorption limit for the
second-order processes,®’ but it is not yet known how to
extend the AB theory to situations with weak to moderate
absorption. In particular, how does the angular distribu-
tion change with decreasing absorption? The characteris-
tics of the second-order processes, studied previously in
the strong absorption limit, have been found to possess the
following features:® (1) The angular distributions of dou-
ble excitations oscillate out of phase with those of single
excitations; (2) the envelope of the double excitation cross
section decreases slowly with angle; and (3) there is strong
destructive interference between the one-step and the two-
step double excitation processes. Since semiclassical
methods are useful in obtaining the detailed features®—!!
of the heavy-ion scattering, we shall apply them to the
second-order process to find out some of the essential
features mentioned above, and hopefully also understand
|
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and the two-step (TS) process,

B, 1 (kg ko ki) =
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where f; and h{*’ are the regular and outgoing boundary
condition distorted-wave functlons, respectlvely The ra-
dial transition potentials V' )and V) are given in the col-
lective model by
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the essential reaction mechanism in the weak to moderate
absorption case. It should be pointed out, however, that
our calculation is performed quantum mechanically, while
the semiclassical method’~!! is only used as a guide to our
analysis.

The organization of our paper is as follows. In Sec. II,
we shall study the form factor of the second-order pro-
cesses in the strong absorption limit and then compare it
to the AB theory. In Sec. III, we study the situation of
weak absorption and examine the main effect of the over-
lapping molecular resonances in the radial integrals and in
the angular distribution. The conclusions are given in Sec.
IV.

We have used the optical potential from Ref. 9 for con-
tinuity. Although this potential does not fit the experi-
mental data, general properties of these inelastic form fac-
tors derived in the present study represent those of all deep
optical potentials.

II. SECOND-ORDER FORM FACTORS
IN THE STRONG ABSORPTION LIMIT

In Appendix A, we review briefly the second-order in-
elastic form factor, which consists of a direct one-step
(DOS) process,

@.1)
2.2)

[
Y = aRI; , 2.4

R, being the nuclear radius. The exact second-order tran-
sition amplitude is given by Eq. (A12), and one observes
that the second order inelastic form factor is given by
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(2.5)

The relative phase of DOS and TS processes is important
in the second-order form factor. To obtain some insight
into inelastic form factors, we shall use the semiclassical
decomposition of the distorted-wave (DW) functions into
barrier and internal wave components (see the Appendix
of Ref. 9).

Numerical application is carried out for the '*C+!*C
system at c.m. energy 30 MeV for the entrance channel
using the optical potential shown in Table I. The second-
order inelastic channels are the mutual excitation
12C*(4.44) 4 12C*(4.44), and the double excitation to a two
phonon state 2C*(8.88 MeV)+'2C(0*) with the process
12C*(4.44)+'2C(0*) used as the intermediate channel.
[Note that the '>C*(8.88 MeV,4*) two phonon state does
not exist in the realistic nuclear spectrum.]

A. The DOS radial integral: Bll;gs(k ki)

In the strong absorption limit, the DW f1 can be ap-
proximated by the barrier wave function f{, which is a
purely incoming wave inside the potential barrier, and so
only the wave function in the barrier regxon will contri-
bute to the barrier DOS radial integral, B, PPSE Near the
barrier, V¥ =( l/a)VT , where a is the dlffuseness of nu-
clear potential, and so therefore,
|

TABLE 1. The heavy ion nuclear optical potential is chosen
to be

V(r)=—(Vo+iW,)f (r —R,ap,a,a,) ,
with

s/al s/aO

fUS,a0,a,a))=1+ae  '+e

rc is the Coulomb radius for the uniformly charged Coulomb
potential.

VQ W() ro ao a a; rc
(MeV) (fm) (fm) (fm) (fm)
240 Wy 1.22 0.48 1.0 3.7 1.2

BPS ey ke =1/ Bl P, (p k) (2.6)

where A4 ,l;,i is the barrier part of the radial integral defined

in Ref. 9. This property of the DOSB term in Eq. (2.6)
has been discussed extensively by Austern et al.®

B. TS radial integral B,js,,_ (kg k;)

1. Properties of the function H

The TS radial integral of Eq. (2.2) can be cast into the
following form:

BYS, 1 ko i) = 7{% [ arf Vi, oy 41 B VR @)
where
Hyykyko,r = [ 7 U, W) £y (e e (2.8)
Using the wave propagation matrix method of Ref. 11, A * . '(ky,7) can be expressed as
H’(h,r)xi\/ﬁ])(fll/“e—i[sz'(11)+al(1‘)]( _e—i[sz(r)—w/4]+N(ll Jo 1SN =(a/4)], , 2.9)

where /X is the local wave number; S5;, 8, and S,(r) are semiclassical action integrals; and N (/) is the barrier penetra-

tion factor (see Appendix B and Ref. 11). Thus, we have
Hy (ke r) i/ Tpfge ~/150 000

with
(L= [ X v indr

{N(II)N_I(Iz)e

Since N (I)=1, and S,;(!) and 8,(]) are slowly dependent on /,'° we then have

i[85, (1) +8,(1,)]
o BRI N (1) - NI o, or) (2.10
(2.11)
2e2“”2)_2"8”2))10(k1,kz,r) . (2.12)

Hy 1, (ky,ka,r)=iV'k kze

Equation (2.12) shows that weak absorption in the nuclear
optical potential does not change the shape of the function
Hj ;,, whose magnitude in this case is only slightly modi-
fied for I, larger than the grazing angular momentum,
where one has Re[e(/,)]>0 (see Ref. 10). This shape of
H,l,z(kl,kz,r) is determined solely by Io(kq,k,,7). Since

—lelly)—eD1+il8,() =8,y

(X, (ky, X (K, r)] 174

depends slowly on » and

po_ AV =Ro) _

a
P=—g =5 VR,



29 SECOND-ORDER PROCESSES IN HEAVY-ION COLLISIONS . .. 813

3t — 20
2k _ — e — -
3 b — — e~ —14
QI ————— T 18
~ O 1 21.

60|

50 s

40 (r)l

%44
(240, 80)
126,12 (30 MeV)
1204 '%*(25.56 Mev)
ior ll - lm =2

(MeV)

30

20

1 I

2 3 4 5 6 71 8 8 10
FIG. 1. The phases and amplitudes of Hy . (r) [Eq. (2.8)] are

shown for /; —1I,,=2. The depth of the optical potential is taken
to be (¥, Wy)=1(240,80) MeV.

the integral (2.13) is proportional to + ¥V (r —R). Howev-
er, for small I, arg(X;7'*)=0 and for I>L,,
arg(X; %)= —m/2, and so arg( —H),;,) decreases as the
angular momentum increases. Figure 1 shows the ampli-
tude and phase of H; 1 (km,k;,r) for strong absorption
and one notes that the function H,m,l(km,ki,r) depends
very little on the angular momentum /,,,.

2. Effective potential for the two-step process

Through the definition of the function H, one can cast
the radial integral of the TS process into the form of the
direct one-step (DOS) process by defining the effective po-
tential

VTS _2&1/(1)('.) Hlm’li(km,ki,r)

M=k, T Fiylkir)
H,m,lf(km,kf,r) k )
-_ ( , .
M S, (kpor) SipFemsr
(2.13)

Thus the TS radial integral becomes

Blf,sl,,.,l,;—kf? [ 11,0, IVEDf e . (2.1

Using Eq. (2.12), the effective potential in Eq. (2.13) can
be written
Veit(r)= —2uiX X To (K, ki,1)

+X1 To(kp, kp,PIVE(P) . (2.15)

We note some interesting properties of the V13(r):
(1) Since

I()(kl,kz,r)~ VN(r)—>O

(at large r), we expect that VI5(r)—0 (at large r) faster

gTs )
o9 { By 1, (240, 80)
li =20
4 =16
~F
w/2F
(o] 1 1 1 1 1
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lm
FIG. 2. arg(BI;?Im,Ii ) as a function of /,,, with [;=20, [;=16.
It shows rapid change only at /,,~A,,.

than V(). Thus, VI3(r) <<V (r) at the barrier region.
This property will imply that B,;’S,m,,i /B,fD’?iS—>0 at large
angular momentum, / >> A.

(2) For fixed /; and I, VI3(r) depends on I,, through
X;/4(r). Thus the phase of V53(r) will drop from 7 to 0
at the grazing anéular momentum (gam) A,,. Figure 2
shows that arg(B,;, 1,1, ) (With [;=20, I =16) varies rapid-
ly as a function of /,, at [,, =A,,.

(3) The amplitude | V§(r)| peaks at I,=A,,, thus
|BI;S,W1‘_ | peaks at [,, =A.

Figure 3 shows IBI;,SI,,,,I,. | as a function ,, for given
values of /; and I;. The dependence of B,;,S,m,,’_ on [, is

smoother than its dependence on /; and /;. At first sight,
this seems to indicate that an approximate method involv-
ing averaging over /,, would give good results. However,
when the direct one-step BP9S and two-step BTS terms are
combined together to form the total second order form
factor B, they interfere destructively near the grazing an-
gular momentum, as shown in the lower part of Fig. 3.
This is due to the nonsmoothness of argB,j?,m,I‘, (see Fig.
2). Thus B, ol varies rapidly with L,, near grazing an-
gular momentum, and a detailed examination of this in-
terference will now be given.

C. Interference between DOS and TS processes

The phases ¢P°5 and ¢TS5 of B,],),?S and B,;,S,m,li are
shown in the lower part of Fig. 4. The behavior of these

phases can be obtained in the following discussions:
(1) At large angular momentum, the phase of H; () is

approximately zero (see Sec. IIA), and so V13(r) has the
same phase as Vy*)(r) in the barrier region, where the local
wave number is purely imaginary. Thus BP°S and BTS
given in Egs. (2.1) and (2.14) have the same phase.

(2) For small angular momentum, the distorted wave
functions are almost purely incoming waves throughout
the entire region of integration. If we define Fllf),olis(r) and

TR
Flf_,m_li(r) as

(2.16)

‘/"— r
= L5 [ gtk i
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FIG. 3. Amplitudes of B,j?,m,,i and By i [Eqs. 2.2) and
(2.5)] as a function of I,,. The numbers in the bracket beside
each curve are the corresponding (If,/;). The dots on each curve
indicate the allowed angular momentum of the intermediate
channel for the reaction. Note that the destructive interference
between DOS and TS processes gives rise to a rapidly varying
function of I, in the lower part of this figure.

Fz}?z,,,,;,.(r)=—-—k” ‘:’ I 1 e VB, @.17)
ki

we have then BPOS=FPOS(; = ) and BTS=F™(r = ).
The amplitudes and phases of Egs. (2.16) and (2.17) are
shown in Fig. 5, which indicates that the phase averag-
ing®!? is very important. At small 7, their arguments are
proportional to arg( f,f) + arg(f;,) with a constant phase

difference
arg(FTS)—arg(FPOS)~m/2 .

However, the integration of FTS is cut off earlier than
FPOS [VI8(7) decreases faster in the tail region; see Sec.

*n 1 -—-dm* Lt
o —lm'.l'*z
(=) TR
-1
-2
-3
(240,80)
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126,126 . 25.56 MoV
126% 12c%E 2 21,12 MeV

.‘m'.‘f"4

Im=det2
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s m*4¢
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FIG. 4. The phases and amplitudes of B}f’}?s and B,?;m,,i are

shown in the lower and middle parts of the figure. The phase
and amplitude of the total second order radial integral BIf’Im’Ii

are shown in the upper and middle parts of the figure.

II1B 2], so that the phase difference is increased by a value
of order ~ka as r— . (Here k is the wave number, and
a is the diffuseness of the nuclear potential, ka =m/2 in
the present calculation). Thus, ¢™—¢P% > 7 for small
angular momentum.

(3) For [ near the grazing angular momentum, the phase
difference ¢T5—¢P% changes from > to zero. When
the phase difference passes 7, the DOS and TS terms in-
terfere destructively. Figure 6 shows the interference ef-
fect of the DOS and TS processes near the grazing angu-
lar momentum.

D. Comparison with the Austern-Blair theory

Since the distorted wave function f; satisfied the
Schrodinger equation, the variation of f; with respect to a
change in the radius parameter R of the optical potential
can be expressed as
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.
(240,30) 9/ = 1 14 fi
(m) dR, E—T—V dR,
1+~
= —li [ ar'fir On{ e ) f,(r ).
ok (2.18)
s Hence, the variation of the first-order form factor A, L
-1 a9y, 1,.. n (see Ref. 9) with respect to R, gives us
0dy, ) /A= pDOS
2L —aR—= 477'[Blf,1‘. (kf,k,')
arg FDos (r) 0
Lo +Bzf11 (kg kiski )+Blf,1,, (kg kg,ki)] -
(MeV fm) r Dos (" )I
0.8F (2.19)
0.6r The second order inelastic form factor in the AB theory
r is given by®
0.4F
02~ Bl‘;’]z_E—;'[Blf’lf,li(kf,kf,ki)
L +Blf,l.l.(kf’ki:ki)]

0
r(fm) =(1/vV4 (AIfI ). (2.20)
FIG. 5. The phase and amplitude of F};fi)s(r) and F}ﬁm I [Egs.

(2.16) and (2.17)] are shown to display the phase averaging effect Figure 6 compares the averaged second order radial in-
of the radial integrals. tegral with the derivative of the first order radial integral

(240,80)
120, 120 1208, 120%
E; = 30 MeV
Ep = 25.56 MeV
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FIG. 6. (a) shows B,f,m I for l;—Il;=4 with I, =1, + 4, I + 2, and [, indicated as curves ®, @, and ®), respectively. The lower
dashed curve is the radial integral of the Austern-Blair theory, i.e.,

B — 3
i x/ R
where A4, o, is the first order radial integral. Note here that the lower dashed curve (AB theory) matches exactly with the exact radial
integral of curve @. (b) shows B,f I for I; —Il;=2. The lower solid curve is the AB radial integral. (c) shows B, ol for I;—l;=

The lower solid curve is B,‘;}:, which is less accurate in comparison with curve 2. The lower dashed curve is %(@-i—@—}-@).
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in Eq. (2.20). The reaction is
12C+12c__>12c_*_lZc*(2+)_>12c*(2+)+12c*(2+) ,

i.e., the mutual excitation of two heavy ions, with E; =30
MeV (c.m.). In this example, A; —A,, =2, A, —Ap~2,
where A;, A,,, and Ay are the gam of initial, middle, and
final channels, respectively. Using the distorted wave
property discussed in Ref. 8, i.e.,

fli(ki’r)’ifli—-g‘(km’r) ’
with £=A; —A,,, Eq. (2.20) becomes
B =3By 00 kpokm ki) +Br 1Ky e )]

(2.21
For the reaction of the present calculation, we can have
|li—1r| <4. Let us now consider the following three
cases.

(a) [; —ly=4: The allowed value of /,, is I; + 2. Equa-
tion (2.21) is exact. Figure 6(a) shows that the dashed-
dotted curve 2 with [, =Ir 4 2 is identical to the lower
curve with derivative approximation;

(b) l;=If +2 and [,,=I; + 2 or I;: The derivative ap-
proximation equals the averaged value of the exact second
order radial integrals. Figure 6(b) shows that the lower
curve is identical to the average of curves 1 and 2;

() li=lg, I,=1s +2, I, or I[—2: The corresponding
radial integrals B Lol ATE shown in Fig. 6(c) (curves 1, 2,
and 3, respectively). In this case, the derivative procedure
becomes less accurate, yet it retains the essential interfer-
ence pattern near the grazing angular momentum. For
I;=I;—2 and [;=I;—4, the Austern-Blair form factors
become less accurate, but these form factors are relatively
unimportant in the scattering process, and so we can con-
clude that the AB theory gives a fairly good approxima-
tion to the present calculation (see Refs. 6 and 7).

E. Angular distribution

The transition amplitude of inelastic excitations are list-
ed in Appendix A for completeness (see Ref. 6). The
second-order inelastic .S matrix SII;’: is plotted as a func-

tion of Iy for [; —1,=4,2,0, etc., in Fig. 7, where the defor-
mation length is taken to be 1 fm. Sll}li closely resembles

the radial integrals for L=0, 2, and 4 discussed in Secs.
IIB—D, while only the TS process contributes to the

L=1,3 terms. Because of the kinematic matching condi-
. 4 . . . .

tion, .S; 144 18 larger than the other inelastic S-matrix ele-

ments. The angular distribution curves are shown in Fig.
8 for L=0, 1, 2, 3, and 4, respectively, where the L =4
component dominates because of the kinematic matching
condition and, more importantly, its larger statistical
weight. Other L components have the important effect of
reducing the peak-to-valley ratio of the diffraction pattern
|

L++

m(2 sinf)1/?

Fi'=[L:M] (L +1)
2

X i (=) [Fi(0)—ie ~™MTF X /(0) e ~™MTE "N —0)—iFH(m—0)] ,

m = —oo

(240,80)
L
s.l,J-, i 120 4 1200 120% 4y 12.% 4
Al E; = 30 Mev
10 Epp= 25.56 Mev
E¢ = 2112 Mev

L=4

T T\ T

AN
~,

TT T

FIG. 7. Inelastic S matrix S/;,i [Eq. (A13)] are shown for
li—1Ir=4, 2, and 0, respectively.

in the angular distribution. Note also that the angular dis-
tributions of even L are out of phase with that of odd L
(see the discussion of Sec. I F).

On the upper part of Fig. 8, we plot the angular distri-
bution of the inelastic excitation to a single excitation of
12C(4*) at 8.88 MeV. The corresponding 2C(4+) double
exciton cross section is given by the curve marked by
L =4 and the mutual excitation cross section is marked by
the mutual. We observe that the diffraction pattern looks
the same as that of the one-step inelastic excitation, but
note that the slope of angular distribution in the case of
mutual excitation is much smaller than that for single ex-
citation. This is due to the fact that interference of TS
and DOS processes are important in the mutual excita-
tions (see Fig. 7 and Ref. 8).

Figure 9 decomposes the angular distribution into DOS
and TS components, where we see that the DOS and TS
components interfere destructively at grazing (forward)
angles and the angular distribution is dominated by the TS
processes at larger angles. This is a general property of
the angular distribution of the second-order processes.
Most of these properties have previously been demonstrat-
ed in the strong absorption limit.®?

F. Poisson sum formula and analytic expression
of the scattering amplitude

Using the Poisson sum formula (see Ref. 13), one ob-
tains the single excitation scattering amplitude F/

V(L —M)(L +M +1)! o 1/2)i[M —(1/2)]m

(2.22)
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for identical ions with

i(205_ (1 /2)+2mATFAD) . \/;Ei"l_ﬂ

(Flg)—
FPO= [~ dhe PERNEYY

7A | 2mm+ O F0 |

\/EE VTE il20,+AQm7FO)+rA2mT+OcF0)

in

where the Ericson parametrization for 75 has been used in
arriving at Eq. (2.23). 6 is the Coulomb deflection angle
evaluated at the grazing angular momentum A. [L:M] is
given by Ref. 6, i.e.,

x

iL V(L —M)L +M)!
= (L —M)WL +M)
0 L+M=o0dd,

L +M =even
(2.24)

and we further make the following approximation:

dosdn |
/) (240, ao)
(fm®/sr) |\ c+'C c+'zc*(4)
E; = 30 Mev
E¢=21.12 MeV
102k

" (240,80)

- 1204120 12c% 2%+ '2c%(2*)

E{ =30 MeV
Em=25.56 MeV
E¢=21.12 MeV

A\

single

mutual

8c.m. (deg )

FIG. 8. Angular distribution of one-step DWBA '2C(47,8.88
MeV) excitation (upper curve) is compared with those of mutual,
2c(2+)+12C(2+), and double, 2C[(2F x2+)4+,8.88 MeV] exci-
tations, which is the L=4 component of the mutual cross sec-
tion. Numbers beside these lower curves are the corresponding
angular momentum transfer of the mutual excitation.

4k2 sinh(7A | 2m7+@cF6|)

(2.23)

[
S (0L O | Ip+%,0) (I —M,LM | I;+%,0) 41,1, x
X

ong
JA

(2.25)

Equation (2.24) gives a selection rule to the allowed M
value for a given L. For a given L value, | F{|? will be
in phase for each allowed M values, prov1d1ng that Eq.
(2.5) is valid. With the approx1mat10n of Eq. (2.25), the
diffraction pattern of 3, | F{’|? for even and odd L
values are out of phase with each other.

The important Poisson terms for 0<6<<w/2 are
Fy(0) and F§(0), while F5 (m—8) and F¢ (7m—6) dom-
inate in the region 7/2 <<60 <. These four terms inter-
fere at O=7/2. We consider only the case 0 <6 <<7/2.
The scattering amplitude becomes

FM«[F5(0)—ie™™F{(0)], (2.26)

and the second order scattering amplitude in the AB
theory is then given by

dFM . dFM

kL « —ikO[Fy (8)+ie™"F§ (0)] .
0

(2.27)

The maximum of | F}! |2 occurs at 6=6;, where

(240, 80)
- 12 12 12 12
2 [ Lres c¥(2*)+c*(2")
(fm 7 sr) '\\ = 30 MeV
-1 ‘\\ /"‘\\ = 25.56 Mev
10 F\ = 2.12 MeV

20 40 60 80

8¢ m. (deg)

FIG. 9. Decomposition of the mutual cross section into two-
step (TS) and direct one-step (OSD in this figure) components.
The destructive interference of TS and DOS components at the
grazing angle is the important feature of the angular distribu-
tion.
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2A0,=(2n —M — )7, (2.28a)

while the maximum of |dF{/dR |? occurs at 8,, where
2A0,=(2n —M + )7 . (2.28b)

Thus the angular distribution of the mutual (or double)
excitation will be out of phase compared with that of the
single excitation (Ref. 6). These properties are shown ex-
plicitly in Figs. 7 and 8. Since the dominant contribution
of the mutual excitation comes from the L=4 com-
ponents, the angular distributions of mutual and double
excitation are thus expected to be in phase with each other
(see Fig. 7).

From Fig. 9, we also observe that the DOS angular dis-
tribution is out of phase with that of the second-order an-
gular distribution (solid line), i.e., the DOS angular distri-
bution is in phase with the angular distribution of the sin-
gle excitation. This is expected, because B,lf)I? S~(1/a )A,f,‘,

[see Eq. (2.6) and Ref. 8].

III. EFFECT OF THE UNDAMPED
OVERLAPPING RESONANCES

When the imaginary potential becomes smaller, poten-
tial resonances will become important in the scattering
process. At first, these resonances will work collectively
to give rise to a semiclassical deflection function (see Ap-
pendix C). As the imaginary potential decreases further,
each single resonance will become important in the
scattering process, but in the heavy-ion collision, the latter
situation may not be realized because of the large number
of open channels.

A. DOS process

As shown in Ref. 9, we may write the distorted wave
function as

filk,r)=fPk, )+ fl(K,r) .

One can decompose the radial integral into the barrier
component of Sec. IT A and the internal component B,lf)I?SI

where
V4
BRI~ [ ey WA b

+ 1B kg, WV iy (Kiy)]

2
kek;

(nf+n1) [ dr VP

~

~0, (3.1
with V§? given by Eq. (2.3). Here 77{ and 7} are the inter-
nal S matrices of the final and initial channels, respective-
ly, and one obtains

BR Y (kp,ki)=BPG (kyp Ky (3.2)

The dashed lines of Fig. 10 show the DOS component of
the radial integral at weak absorption. (The DOS radial

(240,30) B
e a12c L 12c% 12 % .lT'sIm.l,
(MeV fm) E; =30 Mev BJ'J,“J,
Em= 25.56 MeV oos
- E¢ = 21.12 MeV —
F! ; Bay;

-t
vl
/

- PALVAY;

2= dg+2
Im=Lg+2

i

A 1

o L

N AV /(‘r/

+ A
Val

/
g 1
. i

. 1 L s L4 L L n L Ly
o 5 10 15 20 25

FIG. 10. Effect of undamped overlapping resonances are
shown to be important for the TS radial integral but not impor-
tant for the DOS radial integrals.

integral at W,=30 MeV is indistinguishable from that of
W,=80 MeV.)

B. The internal wave component of the TS process

The effect of the internal wave component will modify
not only the initial and final DW functions, but also the
effective transition potential of Eq. (2.13). We shall exam-
ine the H function of Eq. (2.8) and the internal part of the
radial integral.

1. The H function

Since fl(k,r)=f,B(k,r)+f,I(k,r) the HI112(r) defined in
Eq. (2.8) can be expressed as

2iS3,(1
e 22

Hyp(n=(1-2 HE, (7, (3.3)

where H,’f,z(r) is the H function of strong absorption in

Eq. (2.12) and we have used the stationary phase approxi-
mation to obtain Eq. (3.3). At resonance angular momen-
tum /,, i.e.,

RC{S32(12)]=[H +(1/2)]7T N

Hy 1, (r) will be enhanced. Figure 11 shows | H; ;(r=0) |

as a function /,, =1I; —2 with different imaginary potential
strengths W,. However, these pronounced oscillations ap-



29 SECOND-ORDER PROCESSES IN HEAVY-ION COLLISIONS . .. 819

pear for angular momenta far above the grazing angular
momentum and their effect will not be very important in
the scattering process (even at Wy=10 MeV). Similar
conclusions can also be drawn for the effective potential.

Blf,l =B T kfk

B TSI

2. The internal TS radial integral ol

Decomposing the wave functions into barrier and inter-
nal parts, one gets

4
B _L[fd (fIf Vi'H, | fi +f1f VICH) L f2 )+ (liesly) (3.4)

where the properties of B, 1,,1,» the barrier term, have been discussed in Secs. IIB and II C and where the second-order
contributions to the 1nterna1 part of the elastic S matrix 7, have been neglected. Using the stationary phase approxima-

tion in the radial integral, we obtain

BI,, g ——Blf, L 1ot +eamf sy

=Bs?

Yoty +BIL

with

(3.5)

—i[S§,,(1 le)— 1)—8,(I;
CIZ—IZ/L/V kfk,-e i 21(f)+81(f) Suth) 1(x)]Xv(lfylm:Ii) ’

63201(1,«—)1/‘) ’

i[S,, (1 I =28y, (L )—
czz—-z‘z,u/x/We'[sz‘(f)+81”f)+sz‘('HB‘“’) 25,,(1,,) 28‘“"‘)][X(l,,l,,,,l,-)+X(l,-,l,,,,lf)] ,

where
X g bsl)= [ X3 X0 VA U, i)

and Iy(ly,l,,r) is given by Eq. (2.11). Although 77 may be
small, the coefficients c;, ¢,, and c; are given by radial in-
tegrals of [ V5" (r)]%, which is very large, and so the radial
integrals for the second order processes are much more
sensitive to the absorption than those for the first-order
process. At W,=40 MeV, the radial integral 4, I for the
first-order process has already reached the strong absorp-
tion limit, while the radial integrals B/ ol for the
second-order process require a much larger imaginary po-
tential (W,=80 MeV) to reach the same limit. Figure 10
shows the magnitude of BI A (dashed-dotted line) and

[Hypg; (r=0)]

gol (Mev) |

70

60

50

40

30

[0} 5 10 15 20 25 30 4
m

FIG. 11. Effect of the overlapping resonances is shown in

this figure for the H functions. We note that the H functions
are not very sensitive to the strength, W, of the imaginary po-
tential. These overlapping resonances affect mainly the distort-
ed wave functions in the two-step radial integrals [see Eq. (3.4)].

|
By 1,1, Bzfz +2Blf,

(solid) at W,=30 MeV. One observes that the potential
resonances are much more important in second-order than
first-order processes (see Ref. 9 for comparison). A few
observations can be noted at this point:

(1) At low angular momentum,

2B | > | B

and so
TS
| Bit,,.0 | =21 B 1| -

The oscillatory structure in these radial mtegrals comes
from the interference between the Bl, B 1, and B! il ie.,

the two-step process.

(2) At larger angular momentum, |BP%S| >52|BTS|
for moderate absorption.

(3) Around the grazing angular momentum, the in-
terference between TS and DOS processes is important.
At the grazing angular momentum this destructive in-
terference (see Sec. IIC) will give rise to a smaller slope in
the angular distribution in comparison to that of the dou-
ble excitation or single excitation. Figure 12 clearly shows
this effect (see Figs. 8 and 9 for comparison).

C. Weak absorption situations

When the absorptive potential becomes weaker, the
internal wave S matrix will become larger. At W;=10
MeV, Fig. 13 shows semiclassical action integrals and
elastic S matrices of entrance middle and final channels.
We observe that | 7; | =0.2, which is a little bit too large
when compared with the S matrix which fits the 2C+ 12C
elastic data ( | 7, | ~0.15 at 30 MeV, Ref. 14). It is worth
pointing out that there is no multiple reflection in the po-
tential pocket even at W,=10 MeV (all resonances over-



820 Y. H.CHU, T. T. S. KUO, AND S. Y. LEE 29
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: E; =30 MeV
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o Ef=2l.l2 MeV
10

mutual
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FIG. 12. Angular distribution for W, =30 MeV. See the cap-
tion of Fig. 8 for comparison.

lap to a high degree).

With W,=10 MeV, the TS radial integral is the dom-
inant component of the second order form factor. Figure
14 shows that

o pTS
Bi1,.,=2B11 1,

The interference between the B[;?’f ;, and Blﬁi I is also
small and localized only near grazing angular momentum,
and the B,Df),is plays a little role in the scattering process.
Figure 15 shows the amplitudes of the inelastic .S matrices
[Eq. (A13)]; one would then expect that the refractive ef-
fect is the major scattering process.

To study the characteristics of the angular distribution
in the weak absorption limit, we first note that
|

uk
Slf,l _l

Figure 15 indeed shows that the magnitude of even L co
[Equation (3.6) neglects all the odd L components.] Since B

> i*{l;,0LO| Iy+x,0){l;—M,L,M | I+x,0)en (Ip)~[L :M]ce
x

ky _
L8,8,,17,0,L,0 | 1,,0{1,0,1,0 | L0)i" ’fB TSI

0.8

0.6

0.4

0.2

o 1 1 1 1 1

o 5 0 15 20 25 /4

FIG. 13. Classical action integrals between the potential
pockets of initial, middle, and final channels are shown in the

upper part of the figure. The corresponding semiclassical elastic
S matrices are shown in the lower part for W,=10 MeV.

TS _ pTSI
Bii 1, =B,

=cyml(l)+eamP ) +eni(l)
[Eq. (3.5)]. If only even I,, contribute (1dent1ca1 ions) we

can replace B,;s, .1, by its average value, BT I ,, because

() =1, +2) for I, <A,,, the grazing angular
momentum of the middle channel. Equation (A13) gives
us then the inelastic S matrix

(3.6)

Tg)onents are much larger than that of odd L components.
e, ~cm,(lf)+czn1(l )=~cm;(ls), one can then obtain

iy [n(1;=0)] , (3.7)

where [L :M] is defined in Eq. (2.24). Thus the scattering amplitude F}/ is given by the following Poisson sum formula

” e—i/AM -2
FM@)=[L - M]E&——
L [L:M] 277(2 5in)!72

m=—o0

with

(=)L) +ie™7I{H(0) +e ~ ™M 7 —0)—il (7 —0)] , (3.8)
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FIG. 14. The second order form factor B; ol is about B’?’m”; in the weak absorptive case (W, =10 MeV). The dashed line on

this figure shows the contribution due to the DOS process.

o  [A=—M—DIA+M+ TN iy, b amarsh0+20000]
() A—(1/2) . (3.9
I O=c|n0)] [ di TR Ae
I
The main contribution to the above integral is expected to _d _
come from the point of" stationary phase. Defining the de- el)= H[Zcp(k)—}da r—1/2)
flection angle (A= +7), =0y(A)+Oc(R) , (3.10)
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(240, 10)
e+ 1% P82 %20
E; =30 MeV

Epe® 25.56 MeV

Ef = 21.12 MeV

FIG. 15. The amplitudes of the inelastic .S matrices SI_I/:'I:‘ are

shown in this figure. Since the amplitudes are smooth functions
of Is, we expect that the refractive effect may be important (see
Fig. 16).

the stationary-phase point A is given by
O(A)=—(2m7TF0) .

Figure 16 shows the deflection function ®y(A) of S,(; iy
and ®(A), which includes also the Coulomb deflection
function. There is no approximation of Egs. (3.6) and
(3.7) made in this figure, which indicates that only the
I57)(0) and I (r—0) terms will contribute, i.e.,

(3.11)

FH0) < [I§(0)+e™M™IiH (r—0)] . (3.12)
(240,10)
|2c+ |2C_. |2c’+ |2C*
E; = 30Mev
En=25.56 MeV
Ef = 2112 MeV
[0}
Z

-m/2

FIG. 16. The deflection function of S,‘} Ay is shown in this fig-

ure for a demonstration of the refractive effect in the scattering
mechanism (see Ref. 9).

(240,10)

12 %
|zc+|zc_.|zc‘, c (40)

E;=30MeV
Eg=21.12 MeV

single

do/dQ

(fm%/sr)

10"

(240,10)

'2c+'zc- '2c‘(2") +|zc*(2¢)

L E;j= 30 MeV
z Em=25.56 MeV
- Eg=21.12 MeV
mutual

8¢.m.(deg)

FIG. 17. Angular distributions of single, mutual, and double
excitations are shown for comparison at weak absorption
(Wy=10 MeV, V=240 MeV) (see the caption of Fig. 8 for de-
tail).

Note that I{(0) and I (7—8) are smooth functions of
angle [Eq. (3.9)], with a refractive feature. However, the
interference of I (6) and I{ (7 —6) (identical ions) gives
rise to oscillatory structure in the angular distribution.
Figure 17 shows angular distribution of different L com-

'2c+'2c~'2c(2%)+ % (24)

dﬂ‘% [ Ei=30Mev
' Em=25.56MeV —— (240,25)
C ¢ 21.12MeV —-— (240,80)

O experiment

10 v N

1
40 50 60 70 80 90 100
8¢.m.(deg)

FIG. 18. Comparison of the cross section of the experimental
mutual excitation data with that of our calculations with dif-
ferent imaginary strengths. In this qualitative study, we make
no attempt to fit the data. Comparison of the slope of the calcu-
lated cross section to that of the experimental data indicates that
the reaction mechanism in the mutual excitation of the '>C+12C
system is a refractive process. The relative strength of the ima-
ginary potential reasonably agrees with that obtained in Ref. 14.
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ponents, and one notes the following features:

(1) The L=0, 2, and 4 components contribute almost
equally in magnitude. The L=0 component of the angu-
lar distribution has very deep minima seen in Eq. (3.12),
but the minima of the L=2 and 4 angular distributions
are filled in by the incoherent sum over M values.

(2) The L=1 and 3 components are not important (see
Fig. 12 for comparison).

(3) The total angular distribution of the mutual excita-
tion is now featureless and possesses very little oscillatory
structure in comparison with those of the single and the
two-phonon excitations (upper part of Fig. 16).

Finally, we compare the angular distribution given by
our present calculation with the experimental mutual exci-
tation data in Fig. 18. One notes that the refractive effect
is very important as indicated by the data.® This refrac-
tion is due to a smaller imaginary potential being needed
to fit the slope of the angular distribution. In this com-
parison, one also notes that our angular distribution does
not follow the oscillatory structure of the data, since our
optical potential is chosen only to study the general prop-
erties of second-order processes. Thus the comparison is a
qualitative one, and to fit the data one should adjust the
optical potential.'* (See Ref. 9 for the choice of the opti-
cal potential parameters used in the present study.)

IV. CONCLUSION

We have studied the properties of the radial integral for
second-order inelastic heavy-ion scattering, with the
scattering mechanism divided into direct one-step (DOS)
and two-step (TS) processes. Our conclusions are that:

(1) In the strong absorption limit, DOS and TS process-
es interfere destructively for angular momenta near to the
grazing angular momentum. Using semiclassical theory
we analyze carefully the origin of this interference, which
causes the angular distribution for the second-order pro-
cess to be flatter than that of the diffractive single excita-
tions (see Fig. 9). The Austern-Blair theory provides us
with a useful parametrization to understand the reaction
process.

(2) For weak to moderate absorption, one observes that
B,DI?S is not sensitive to the strength of the absorption po-

At W,/Vy=0.15~0.3, the angular distribution remains
diffractive in nature. The mutual excitation angular dis-
tribution shows, however, a destructive interference be-
tween BP9S and BT processes at the grazing angle, and
thus has a smaller slope.

(3) As the imaginary strength decreases further,
W,/V,<0.1, we observe that the internal component,
BT, of B™ dominates the scattering process, and refrac-
tion becomes the major scattering mechanism. The angu-
lar distribution is then flat and featureless. From the
qualitative comparison of our study with the experimental
angular distribution of

12C+12C—>12C*(2+)

at 30 MeV we find that W,/V(~0.1 is appropriate for
the slope of the angular distribution. To obtain a quanti-
tative fit, one should fit the elastic scattering to obtain a
mean-field potential and then calculate the mutual excita-
tion cross section via a coupled-channel or DWBA calcu-
lation. At energy E. , =30 MeV of the 2C+ '?C system,
intermediate structure is still believed to be important,'*
and so the detailed angular distribution may not be easily
fitted by the mean field alone.
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APPENDIX A: DERIVATION OF THE
SECOND-ORDER SCATTERING AMPLITUDES

The Taylor-series expansion of the heavy-ion mean-field
optical potential due to a small amplitude oscillation of
the nuclear surface is given by

V(r,Rm +R02+AR1 +AR2)=V(V,ROX +R02)+AV N

tential (Sec. III A). The radial integral B,;?,i increases (A1)
dramatically with decreasing imaginary potential strength. where
|
v v , 02V *V , 2V
AV=AR AR,——+ 5 [(AR,) 2AR AR, ———+(AR,) + -
"3Ry; A% AR, +3 " 3R, + "2 3R010R >" 3R%,
0 n n

=3 3 Ry ARy O (A2)

o min—m)!

and AR,AR, are the changes in the nuclear radii of the

heavy ions,
AR =Rq 3, BuY3.(7),
AR;=Rp, 3 BRAY(P) .

Upon quantization of the normal modes of the nuclear

(A3)

Roi"0RG

|
surface oscillation (or rotation),

! +
=——a (=ay _ul,
Y v A

where a;&t and a,, are the phonon creation and annihila-
tion operators, respectively. Thus, AV in Eq. (A2) will
give rise to collective excitation of these surface modes.
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The inelastic transition amplitude is given by

Tp=( Q¥ | AV +AVGAV |2 ¥( 1)), (A4)

where ®; and @ are the intrinsic nuclear wave functions
for the initial and final channels, and ¢}~ and y{*’ are
the regular distorted wave functions with the unperturbed
mean field Vo=V (r,R,) satisfying the outgoing and in-
coming boundary condition, respectively. G is the full
Green function; i.e.,

G=(E*—H;—K —V,—AV)~!,

with E*=E +ie and H; and K being the intrinsic Hamil-
tonian of the nuclei and the relative kinetic energy opera-
tor; e.g., H;®;=¢;®P;, etc. Expanding G in the powers
series of AV, we then obtain

G =Gy+GoAVGy+ -+, (AS)
with
Go=(E*—H,—K—V,)~'. (A6)
Let us define the transition operator 7 as
T=AV +AVGAV
=AV +AGoAV +AVGoAVG AV + - - -
(A7)

=22 Tni >
n i

where 7, will give rise to transition of the order
(AR{)"AR,), i.e., T, is an operator for an nth order
process:

14
ro=bRi (ASa)
aV
T20=AR2 aRoz ’ (Agb)
v oV v
1 2
=-=(AR AR GoAR s (A8c)
=73 1) oRZ, + 1 3Ry, FOARI R
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%y 14 av
= R
1 AR]ARZ aROIaROZ +AR1 aROl G()A 2 8R02
14 14
AR, ——GyAR , A8d
TA%2 3R, 7021 3R, (A8d)
2
1 y OV 14 aV
==(AR,) +AR Go(AR,) , (A8e)
T22=73 2 BR(Z)z 28R02 0 2 3Ry,

The intrinsic excitation of the nucleus is due to the S8
operators in the AR of Eq. (A3). The matrix element for
the intrinsic excitation is given by

(L, M; | (AR;)'|00) =cj(L))Y] pr (P), (A9)
where the jth nucleus is excited from the ground state
|00) to the ith order phonon state with angular momen-
tum L;M;. YZij(? ) is the angular momentum transfer
spherical harmonic to acting on the relative DW function
of two nuclei. A few examples are given as follows:

¢f(0)=V4r, (A10a)
¢j(L)= \/lf (LI]BLHO)RO]-:T/-IZ—:S?) . (A10Db)
2 1 (Nal)
f(L)=——=——=58{6{(1,00,0 | LO)
! Viarl 7
+()\,1<—>}\,2; if )\«175}\.2) ’ (A10c)

where £ =2L +1, the deformation length is defined in
Eq. (A10b), and two-phonon states are used in Eq. (A10c).
The double- and mutual-excitation transition amplitude is
then given as the following.

A. Double excitation

If the particle 1 is excited from the ground state to the
two-phonon state

1
|LM) == laf, Xai ]| 0)
the transition operator 75, in Eq. (A8¢c) is composed of

two terms, direct one-step (DOS) and two-step (TS) pro-
cesses, and the transition amplitude becomes

=1, Moy o) =
Toom =880 i" e VIl —MLM [ 10)Y, _44(6,0(1,0,4,0 | L0)

Ll

i

1l

==l b L
X 3 (I;0L'0|1,0) | +8,, BPS + SIV'LE"
L' )

I, I, L'
A Al

B |+ ey if A4y)

A Ay L

= A—1, o +op) =
=VEsVsV S " le Y '\/lf(lf—M,L,M|l,-0)Y1f_M(0,O)

11,

x;\ﬁ“(zfox,o;lo)(zoxzo 11,0) (

Ip I L
!

(TBLLS+Bi5 1 )+ (Apohy; if A£d,) . (A1)
}"2 7\'1 4

11;
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The first identity of Eq. (A11) has the advantage that its appearance is similar to that of the single excitation. The
second identity of Eq. (A10) shows, however, the explicit interference between the DOS and TS radial integrals, which

are given by

Bllf?ols_ k fdrflf(kf’r) <2)f1 (kj,r)dr , (Al2a)
-2
B,j?,,,i=mf fdr,drzf,f(kf,rl)V(Tl)(rl)—lcfif,(k,r<)h,‘*’(k,r>)V(T”f,i(k,-,r). (A12b)

B. Mutual excitation
Mutual excitation in heavy ion collision corresponds to particle 1 and particle 2 being excited to states |A;u,) and
| Agie,), respectively. The transition operator is 7,5, which consists of DOS and TS processes. The transition operator is
given by

1 -1 1(01 +(TI S
TOO—»M#;M,MZ 8“’8‘2’ Z e ' \/
X 3, {lp—M,L,M | ,0) Ay, Aopty | LM Y{I0L'0 | ;0){A,01,0 | L'0)Y; _4/(6,0)
LL’

Iy I L'

7\12 )\,1 l B”;,SI,I“ +(A'll‘l’l(")7\42‘llz)

X %SLL'BIIJ)"%S—F 2 f‘/ff'

1

I I L
A Ay I

(o) +0
Del(2 L—1 i [ 1
—-—-6&)8&)21' e \/—f

1,

X S VL (1, —M,LM | [0) AyiAgusy | LM ) Y1, -u(6,0)
L

x 3 VT(1,0,0]10)¢10,1,0| 1,0)
1

I I L

XA, Ay 1

where the radial integrals B2 and BTS are the same as that of Eq. (A11) due to the fact that ¥, is a symmetry with the
exchange of Ry and R,,. The difference between Egs. (A11) and (A13) is that Eq. (A13) has a coherent sum of transfer

angular momentum.
Defining the inelastic S matrix SE 1, 33

s,;,i.—.zn/EkfaMsM%m 3 (LO,L" [1,0) (M0, 0| L'0Yi"™

($BPPS + B0+ (Mpprrhapna) (A13)

X |38 BRY + 3 VEEL
1

I, ,, L[, I, L'
BTS
)\,2 )\1 l )\,2 }\,1 l If'I’Ii
(A<>A,) mutual
T l(Ay>A, if A;5£1,) double , (A14)

the scattering amplitude becomes

FfM(9)=LToDo_.LM

ilo
KN ’f<1f —M,LM | ,0)SE, Y, _3(6,0), (A15)

V 4rive
‘/ﬂ;% /
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where Eq. (A15) resembles closely with the elastic scatter-
ing amplitude. The corresponding mutual excitation
scattering amplitude is F35_,, " g, (6,0). The differential
cross sections for double and mutual excitation are given,
respectively, by

do? ky

=3 | Flu(0]?, Al6a)
a0 "k = | Frn(@| (Al6a
do™M kf M )

=% F, Al6b
dQ k; “12”2 | 002,442,189 I ( )

APPENDIX B: ELASTIC BARRIER WAVE S MATRIX
AND ITS DERIVATIVE FOR
SMALL ANGULAR MOMENTUM

The elastic barrier wave S matrix, 7, is defined as

281D
= (B1)
with N(l)=N(S21(l)/1T),
8= [, VXdr — [,” v/ Xr , (B2)

where

X(r)=2u(E —V,—V;—V)
and

Xe=2ulE—-V,—V;).

For small angular momentum and light ions (4,4, <30
u), ¥; and V, are almost constant compared to V at r near
the outer turning point. With a small change
Rog—Ry+AR,, the turning point r; will also change
slightly to r;—r;+AR;. The change in the action in-
tegral (B2) becomes

fi
A81= fr1+AR1 V)_(drz—- VvV X1(7’1)AR1

~—VX(r)AR, . (B3)
Thus,
dmp .35, . .
mz i 3R, ng=—2VX(r\ng=—2ik.ng, (B4
O _(_aik, Yy, (B5)

OR{

where k, is the local wave number at the barrier.

APPENDIX C: COLLECTIVE EFFECT
OF OVERLAPPING RESONANCES

In this Appendix, we show that overlapping resonances
work coherently to give rise to a refractive effect in the
scattering process. Let us consider a picket fence model,
where the Regge poles and zeros are equally spaced locat-
ing at mD +iy,/2 and mD —iy,/2, respectively, with
m=—M, —-M-+1,..., M—1, M. The S matrix for an-
gular momentum —MD <! <MD can be expressed as

l~mD+i%
NEd | Y 4
l—mD—i-%
2
m —N,
L 2id TTM D
=e —
| | Py N, |’ (C1)
D

where ¢ represents the background phase and
N,=I1+iy,/2, N,=1—v,/2. Using the property of the
gamma function, Eq. (1) can be expressed as

N, N, N,
r M+1-F’ r M+1+7’ sin~z
SI=92i¢
rlr1—2e r g1 e sin TP
+l-— +1+—
. al . TYz
sin D—H 2D
~S, (C2)
sin ol TV
D 2D

For M >>1, the gamma functions are slowly varying the
function of /, and can be lumped into a background S ma-
trix Sy. Defining

T
t,= tanh% ,
y (C3)
P
L, =tanhﬁ ,
we obtain
Y2 wl
h—— tan— i
< _s cos D |t—t, L+, anD +it,
=0 TVp 21, 2t, 7l
cosh ET) tan—D— —it,
— S sinh ( Yp— Vz) —sinh 7 Yp+7z) e2i8,
D ’
sinh—£
(C4)
with
tan%l
51 = -—taﬂ'1 (C5)
P

One observes that: (1) when v, =y, > D, i.e., with no ab-
sorption and with overlapping resonances, S; is unitary
with phase shift §;; (2) when y,>y,>0 and y,>D
(moderate absorption), the second term in the bracket of
Eq. (C4) is much more important; S; still carries an im-
portant signature of these resonances, i.e., §; = —xl /D; (3)
when y,>D,y, <0, ie., the absorption is so important
that the Regge zero crosses the real angular momentum
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axis, the first term in Eq. (C5) becomes more important
than the second term. Then all the information of these
resonances will recede to the background strong absorp-
tion limit and the magnitude of the S matrix becomes

|8 ~|So|e TP 2P

|S;| can be very small, but it is impossible to have
| S; | =0 in the present model. One notes, however, that
the manifestation of strong absorption comes also from the
slow dependence of the phase shift on the angular momen-
tum.

From the above discussion, we therefore conclude that
the effect of overlapping undamped resonances is to give
rise to a phase shift §;=#!/D or equivalently to a deflec-
tion function

21

@15';—11—(281)=——D—

(refractive effect).
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