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Second-order processes in heavy-ion collisions with application to ' C-' C reactions
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Semiclassical methods are used to analyze the second-order processes —the direct-one step process
and the two-step process —in heavy ion collisions. Our main results are the following: (i) In the
strong absorption limit, the direct one-step and two-step form factors are equally important and in-

terfere destructively near the grazing angular momentum. The Austern-Blair theory gives satisfac-
tory results for well-matched reactions. The angular distributions of mutual and double excitations
are out of phase compared with that of the single excitation. (ii) For the weak to moderate absorp-
tion case, the internal part of the two-step process is enhanced. The angular distribution shows the
refractive effect of overlapping resonances. Applications have been made to inelastic ' C-' C reac-
tions.

I. INTRODUCTION

The second order processes in heavy-ion collisions pro-
vide an attractive and useful tool for the study of reaction
mechanisms. ' The Austern-Blair (AB) theory ' has
often been used to analyze this type of experimental data,
but detailed understanding of such reaction processes is,
however, still missing. It is known that the AB theory
works very well in the strong absorption limit for the
second-order processes, ' but it is not yet known how to
extend the AB theory to situations with weak to moderate
absorption. In particular, how does the angular distribu-
tion change with decreasing absorption? The characteris-
tics of the second-order processes, studied previously in
the strong absorption limit, have been found to possess the
following features: (1) The angular distributions of dou-
ble excitations oscillate out of phase with those of single
excitations; (2) the envelope of the double excitation cross
section decreases slowly with angle; and (3) there is strong
destructive interference between the one-step and the two-
step double excitation processes. Since semiclassical
methods are useful in obtaining the detailed features
of the heavy-ion scattering, we shall apply them to the
second-order process to find out some of the essential
features mentioned above, and hopefully also understand

I

the essential reaction mechanism in the weak to moderate
absorption case. It should be pointed out, however, that
our calculation is performed quantum mechanically, while
the semiclassical method "is only used as a guide to our
analysis.

The organization of our paper is as follows. In Sec. II,
we shall study the form factor of the second-order pro-
cesses in the strong absorption limit and then compare it
to the AB theory. In Sec. III, we study the situation of
weak absorption and examine the main effect of the over-

lapping molecular resonances in the radial integrals and in
the angular distribution. The conclusions are given in Sec.
IV.

We have used the optical potential from Ref. 9 for con-
tinuity. Although this potential does not fit the experi-
mental data, general properties of these inelastic form fac-
tors derived in the present study represent those of all deep
optical potentials.

II. SECOND-ORDER FORM FACTORS
IN THE STRONG ABSORPTION LIMIT

In Appendix A, we review briefly the second-order in-
elastic form factor, which consists of a direct one-step
(DOS) process,

Bt 1 (kf, k;)= f fl (kf, r)VT'(r)fl(k;, r)dr,
l

and the two-step (TS) process,

(2.1)

Blf l, l;(kf km k')
k k k f f d"ld"2flf(kf r1)VT (rl )fl (km r( +I (km r) )VT ("2)ft;«. r2»
f m

(2.2)

where fl and hi+' are the regular and outgoing boundary
condition distorted-wave functions, respectively. The ra-
dial transition potentia1s VT

' and VT' are given in the col-
lective model by

VT (r)= BV
BRO

(2.4)

VT (r)= 2,8 V

t)R 11

(2 3)
Ro being the nuclear radius. The exact second-order tran-
sition amplitude is given by Eq. (A12), and one observes
that the second order inelastic form factor is given by
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Blf,l, l, (kfkm~ki) Blg, l, (kf~ki)+2BI/I I;(kf~km~ki)

(2.5)

TABLE I. The heavy ion nuclear optical potential is chosen
to be

V(r) = —( Vp+)'Wp )f(r —R, ap, a, a ) ),
The relative phase of DOS and TS processes is important
in the second-order form factor. To obtain some insight
into inelastic form factors, we shall use the semiclassical
decomposition of the distorted-wave (DW) functions into
barrier and internal wave components (see the Appendix
of Ref. 9).

Numerical application is carried out for the ' C+' C
system at c.m. energy 30 MeV for the entrance channel
using the optical potential shown in Table I. The second-
order inelastic channels are the Inutual excitation
' C"(4.44)+' C"(4.44), and the double excitation to a two
phonon state ' C*(8.88 MeV)+' C(0+) with the process
' C"(4.44)+' C(0+) used as the intermediate channel.
[Note that the ' C*(8.88 MeV, 4+) two phonon state does
not exist in the realistic nuclear spectrum. ]

A. The DOS radial integral: BI I (kf, k; )f i

In the strong absorption limit, the DW fl can be ap-
proximated by the barrier wave function fl, which is a
purely incoming wave inside the potential barrier, and so
only the wave function in the barrier region will contri-
bute to the barrier DOS radial integral, BI ~ . Near thef I

barrier, VT '=-(1/a) VT", where a is the diffuseness of nu-
clear potential, and so therefore,

with

Vp

(MeV)
8'p apro

(fm) (fm)
rc

(fm) (fm)

240 'o 1.22 0.48 1.0 3.7 1.2

0

Bl I (kf k; ) = ( 1/~4')ra)AI I (kf ki ) (2.6)

where /II I is the barrier part of the radial integral definedfi
in Ref. 9. This property of the DOSB term in Eq. (2.6)
has been discussed extensively by Austern et al.

B. TS radial integral BI q (kf, k; )f i

Properties of the function H

The TS radial integral of Eq. (2.2) can be cast into the
following form:

f '(S,ap, a, a) )=1+ac '+e

rc is the Coulomb radius for the uniformly charged Coulomb
potential.

Blf,l, l, (kf k k ) = —
k k k «(flf VT Hl, l,fl +fl Hl. , lf VT fl,

(&) (&) (2.7)

where

Hl, l, (k),k2, r) = f hl,+'(k), r') VT"(r')fl, (k2, r')dr' .

Using the wave propagation matrix method of Ref. 11,hl'+'(k „r) can be expressed as
1

(+), , ~ )/4 —i[S2)(l) )+5((l()], —i[S2(r) —m/4] i[S2(r)—(m/4)])
( —e +N l) e

(2.8)

(2.9)

(2.10)

where ~XI is the local wave number; S2, , 5), and S2(r) are semiclassical action integrals; and N(l) is the barrier penetra-
tion factor (see Appendix B and Ref. 11). Thus, we have

1 2

+e " ' ' ' [—N(l2) —N(l) )]211(l2))Io(l),l2, r),

with

I()(l), l2, r)= J Xl,
'

Xl,
' VT"(r)« .

Since N(l) —= 1, and S2)(l) and 5)(l) are slowly dependent on l, ' we then have

(k k )
.~k k

—n[e(12) e(l] )]+i [5)(12)—5—)(ly )](1 2
2m'(I2) 2i5(I2))I (—k k )

1 2

(2.1 1)

(2.12)

Equation (2.12) shows that weak absorption in the nuclear
optical potential does not change the shape of the function
HI I, whose magnitude in this case is only slightly modi-

1 2

fied for Iz larger than the grazing angular momentum,
where one has Re[@(l2)]&0 (see Ref. 10). This shape of
Hl I (k), k2, r) is determined solely by Io(k), k2, r). Since

[Xl,(k), r)XI, (k2, r)]

depends slowly on r and

() )
BV(r —R() )y(]. )

BRO

a [V(r —Ro)]
{3r
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FIG. 1. The phases and amplitudes of H~ I (r) [Eq. (2.8)] are

shown for l; —l =2. The depth of the optical potential is taken
to be ( Vo, 8'o) =(240,80) MeV.

the integral (2.13) is proportional to + V(r —R). Howev-
er, for small /, arg(Xi '

) —=0 and for l & Ls„
arg(Xt

' )=—m/2, and so arg( Ht t ) de—creases as the

angular momentum increases. Figure 1 shows the ampli-
tude and phase of Ht i(k, k;, r) for strong absorption

m i
and one notes that the function Hi i(k, k;, r). , depends

very little on the angular momentum I

2. Effective potential for the two-step process

Through the definition of the function H, one can cast
the radial integral of the TS process into the form of the
direct one-step (DOS) process by defining the effective po-
tential

Ts 2P
k

Hi t (k,k;, r)

ft (k, , r)

Ht t (k,kt, r)

fk (ky, r)

V,tt(r) = —2piXi '
[XI Io(k, k;, r)

+X' I (k,kg, r)] VT '(r) .If 0 m~

TSWe note some interesting properties of the V,ff(r):
(1) Since

(2.15)

(2.13)

Thus the TS radial integral becomes

B = ft (k&, r) Vert(r)ft (k ,r)dr . (2.14).
j

Using Eq. (2.12), the effective potential in Eq. (2.13) can
be written

m'/2—

I

25
0
0 l0 20

than V"'(r). Thus, VP~(r) && VT"(r) at the barrier region.T ~ eff
TS DOSThis property will imply that Bi i t, /Bi t ~0 at large

angular momentum, l »A.
(2) For fixed l; and lt, V,tt(r) depends on l through

(r). Thus the phase of V,tt(r) will drop from rr to 0
at the grazing an~ular momentum (gam) A~. Figure 2
shows that arg(Bt t t ) (with I; =20, l~ = 16) varies rapid-f' m'i
ly as a function of l~ at I~ —=A~.

(3) The amplitude
~

VPt(r)
~

peaks at l~ =A, thus
B/ t, l I

peaks at / =A.f' m'i
TSFigure 3 shows

~
Bt t i,

~

as a function I for gtvenf' m'i
TSvalues of 1; and ly. The dependence of Bi t t, on I is

smoother than its dependence on l; and lt. At first sight,
this seems to indicate that an approximate method involv-
ing averaging over / would give good results. However,
when the direct one-step B and two-step B terms are
combined together to form the total second order form
factor B, they interfere destructively near the grazing an-
gular momentum, as shown in the lower part of Fig. 3.

TSThis is due to the nonsmoothness of argBt t t (see Fig.
2). Thus Bt t i varies rapidly with L~ near grazing an-

gular momentum, and a detailed examination of this in-
terference will now be given.

C. Interference between DOS and TS processes

The phases P and P of Bi t and Bt t t are

shown in the lower part of Fig. 4. The behavior of these
phases can be obtained in the following discussions:

(1) At large angular momentum, the phase of HI, t (r) is

approximately zero (see Sec. IIA), and so V tt(r) has the
same phase as V' '(r) in the barrier region, where the local
wave number is purely imaginary. Thus B an
given in Eqs. (2.1) and (2.14) have the same phase.

(2) For small angular momentum, the distorted wave
functions are almost purely incoming waves throughout
the entire region of integration. If we define I't t (r) and

5 l5
&m

FIG. 2. arg(BI i I ) as a function of l, with l; =20, lf ——16.f' m'i
It shows rapid change only at l~=A~.

I (k)o, k r)-2V~(r)~0
(at large r), we expect that V,tt(r)~0 (at large r) faster

Dos( ) I f~ (k 1)Vr2~f~ (k p)i& (2.16)
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FIG. 3. Amplitudes of BI ~ I and 8~ ~ ~ [Eqs. (2.2) andf' m'i f re

(2.5)] as a function of l . The numbers in the bracket beside

each curve are the corresponding (lf, l;). The dots on each curve

indicate the allowed angular momentum of the intermediate

channel for the reaction. Note that the destructive interference

between DOS and TS processes gives rise to a rapidly varying
function of l in the lower part of this figure.

F( l l (r)= J fg (k/, r)V rr(r)fI(k;, r)dr, (2.17),

we have then aDos=FDos(r = ~) and aTs=Frs(r = m).
The amplitudes and phases of Eqs. (2.16) and (2.17) are
shown in Fig. 5, which indicates that the phase averag-

ing ' is very important. At small r, their arguments are
proportional to arg(f~ ) + arg(fI ) with a constant phasef i

d1ffelence

arg(F ) —arg(F os)=sr/2 .

However, the integration of F is cut off earlier than

F [V,rr(r) decreases faster in the tail region; see Sec.

0 5 10 l5 20 25

FIG. 4. The phases and amplitudes of 81 i and Bi I i are

shown in the lower and middle parts of the figure. The phase
and amplitude of the total second order radial integral BI If' rn' i

are shown in the upper and middle parts of the figure.

II B2], so that the phase difference is increased by a value
of order -ka as r~ oo. (Here k is the wave number, and
a is the diffuseness of the nuclear potential, ka =m/2 in
the present calculation). Thus, P —P &~ for small
angular momentum.

(3) For I near the grazing angular momentum, the phase
difference P —P changes fmm )m to zero. When
the phase difference passes m, the DOS and TS terms in-
terfere destructively. Figure 6 shows the interference ef-
fect of the DOS and TS processes near the grazing angu-
lar momentum.

D. Comparison with the Austen-Blair theory

Since the distorted wave function fI satisfied the
Schrodinger equation, the variation of fi with respect to a
change in the radius parameter E,o of the optical potential
can be expressed as
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0)
r)fi 1 t) V

t)Rp E —T —V t)Rp

I dr'fi(r )hi+ (r) ) fi(r') .
Mo

(2.18)

TS
org F (r)

f m i

Hence, the variation of the first-order form factor Al if i
(see Ref. 9) with respect to Rp gives us

1.0—
(Mev f m)

0.8

0.6-

0.4

0.2,-

FDOS ( )
c g
I

t)Rp
=v 4m[Bi i (kf, k;)

+ ifl I;(kfkiiki)+ if, lf, l, (kf~kf~ki)] ~

(2.19)

The second order inelastic form factor in the AB theory
is given by

Bi i = , [Bi i i—(kf,kf, k;)

+Bi ii(kf, k;, k,;,)]
10

r(&m)

FIG. 5. The phase and amplitude of Fi i (r) and Fi i i [Eqs.fi f mi
(2.16) and (2.17)] are shown to display the phase averaging effect
of the radial integrals.

=(1/V 4m ) (Ai i. ) .
BRo

(2.20)

Figure 6 compares the averaged second order radial in-

tegral with the derivative of the first order radial integral

(2+0,80)
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FIG. 6. (a) shows BI I i. for l; —lf ——4 with l =lf + 4, lf + 2, and lf indicated as curvesO&, , and, respectively. The lowerfmi
dashed curve is the radial integral of the Austern-Blair theory, i.e.,

where AI I is the first order radial integral. Note here that the lower dashed curve (AB theory) matches exactly with the exact radialfi
integral of curveO~. {b) shows BI i I for l; —lf ——2. The lower solid curve is the AB radial integral. (c) shows Bi i i for l; —lf ——0.fmi fmi
The lower solid curve is Bi q. , which is less accurate in comparison with curve 2. The lower dashed curve is 3 (Qi+Q2+Q3).f i'



Y. H. CHU, T. T. S. KUO, AND S. Y. LEE

in Eq. (2.20). The reaction is

lzc+ 12C 12C+ 12~(2+ ) 12~(2+ ) + 12ce(2+ )

i.e., the mutual excitation of two heavy ions, with E~ ——30
MeV (c.m.). In this example, A; —A~=2, A~ —Ai —2,
where A;, A~, and Ai are the gam of initial, middle, and
final channels, respectively. Using the distorted wave
property discussed in Ref. 8, i.e.,

f( (k;,r)=f( g(k, r),
with /= A; —A, Eq. (2.20) becomes

B( (, = 2[B( I +2((ky, k,k;)+B( ( 2((ki,k,k;)] .

II
/

/II
lt

( 240, 80)
IRC + I4»c IRC4 ( 2+) + t Rc+( 2+)

E. = RMeV
I

E~ = 25.56 MSV

E&
= 2l. l2MeV

L=2

L=4

& L=5

(2.21)
For the reaction of the present calculation, we can have

~
I;—/i

~

(4. Let us now consider the following three
cases.

(a) I; —li ——4: The allowed value of / is II + 2. Equa-
tion (2.21) is exact. Figure 6(a) shows that the dashed-
dotted curve 2 with I =I~+ 2 is identical to the lower
curve with dcr1vatlvc Rpprox1IDRtlon;

(b) I;=/I+2 and I =Ii +2 or /y. The derivative ap-
proximation equals the averaged value of the exact second
order radial integrals. Figure 6(b) shows that the lower
curve is identical to the average of curves 1 and 2;

(c) I;=Ii /~ —If + 2, /i, or Ii —2: The corresponding
radial integrals BI ~ ~ are shown in Fig. 6(c) (curves 1, 2,fi pg» f
and 3, respectively). In this case, the derivative procedure
becomes less accurate, yet it retains the essential interfer-
cncc pattern ncRI' thc grazing RIlgular IDoIDcntuIIl. Fol
I;=/I —2 and I;=/I —4, the Austern-Blair form factors
become less accurate, but these form factors are relatively
un1I11poltRnt 1n thc scattcr1ng pIoccss, RIld so wc can con-
clude that the AB theory gives a fairly good approxima-
tion to the present calculation (see Refs. 6 and 7).

E. Angular distribution

Thc t1ansltlon RIDplltudc of 1nclRstlc cxc1'tatloIls Rlc 11st-
ed in Appendix A for completeness (see Ref. 6). The
second-order inelastic S matrix SI I is plotted as a func-
tion of l~ for I; —/i ——4,2,0, etc., in Fig. 7, where the defor-
mation length is taken to be 1 fm. S~ I closely resemblesf i
the radial integrals for L=O, 2, and 4 discussed in Secs.
IIB—D, while only the TS process contributes to the
L= 1,3 terms. Because of the kinematic matching condi-
tion, S» ~ +4 is larger than the other inelastic 5-matrix cle-f'f+
ments. The angular distribution curves are sho~n in Fig.
8 for L, =O, 1, 2, 3, and 4, respectively, where the L=4
component dominates because of the kinematic matching
condition and, morc importantly, its larger statistical
weight. Other L components have the important effect of
reducing the peak-to-valley ratio of the diffraction pattern

IO

L~O

L~4
I

0 t5 2Q 25

FIG 7 Illelastlc S matrix Sl ( [Eq, (A13)j are shown forfi
If =4» 2» aIld 0» respectlvelp.

in the angular distribution. Note also that the angular dis-
tributions of even L are out of phase with that of odd L
(see the discussion of Sec. II F).

On the upper part of Fig. 8, we plot the angular distri-
bution of the inelastic excitation to a single excitation of
' C(4+) at 8.88 MeV. The corresponding ' C(4+) double
exciton cross section is given by the curve marked by
I,=4 and the mutual excitation cross section is marked by
the mutual. We observe that the diffraction pattern looks
the same as that of the one-step inelastic excitation, but
note that the slope of angular distribution in the case of
mutual excitation is much smaller than that for single ex-
citation. This is due to the fact that interference of TS
and DOS processes are important in the mutual excita-
tions (see Fig. 7 and Ref. 8).

Figure 9 decomposes the angular distribution into DOS
and TS components, where we see that the DOS and TS
components interfere destructively at grazing (forward)
angles and the angular distribution is dominated by the TS
processes at larger angles. This is a general property of
the angular distribution of the second-order processes.
Most of these properties have previously been demonstrat-
ed 1Il tllc stlong Rbsorption 11n11t,.

F. Poisson sum formula and analytic expression
of the scattering ampHtude

Using the Poisson sum formula (see Ref. 13), one ob-
tains the single excitation scattering amplitude II

1

M r i 2 +(L ~) (I +~+ 1) (1/2)i(M —~1/2~1~e
~(2 sin8)'" I (I.+ —,

'
)

x g ( —) —,[F' '(8)—ie ' F'+'(8)+e ' F' '(vr 8) iF'+'(m8)], — — .— (2.22)
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for identical ions with

F (8)= dk e
i (2a&

~ t &2 t +2m A &&'+xe) . 'trE '9p

. V 'ITE i [2n&+A(2m» Te)]+yh(2m»'+ec+e)= —E
2

e
4

na
l
2m~+ec+8

l

sinh(nb,
l

2m'. +ac+8
l

)
(2.23)

where the Ericson parametrization for gp has been used in
arriving at Eq. (2.23). 8c is the Coulomb deflection angle
evaluated at the grazing angular momentum A. [L:M] is
given by Ref. 6, i.e.,

l

g l (IfOL0
I If +x 0~ (If M&LM

l If +»0)~t

iv mE drip

BA
(2.25)

.r V'(L —M)!(L +M)!
(L M)tt(L +M)'lt

0 1.+M =odd, (2.24)

and we further make the following approximation:

[L:M]= gi "(,lfOL 0
l lf +x,O) (lf MLM—

l lf +x,O)
Equation (2.24) gives a selection rule to the allowed M
value for a given L. For a given L value, lFL l

will be
in phase for each allowed M values, providing that Eq.
(2.5) is valid. With the approximation of Eq. (2.25), the
diffraction pattern of gM lFI l

for even and odd L
values are out of phase with each other.

The important Poisson terms for 0 & 8«m/2 are
Fo (8) and Fo (8), while Fo (m 8) and —Fo (n 8) dom--

inate in the region vr/2«8&m. These four terms inter-
fere at 8=a/2. We consider only the case 0&8«n/2.
The scattering amplitude becomes

der/d 0
(fm /sr)

Fi ~[Fo (8) ie' Fo+(—8)], (2.26)

-2
Io

and the second order scattering amplitude in the AB
theory is then given by

dFI. dFI=k ~ ik8[Fo (8)+ie—™Fo(8)] . (2.27)
dRo dA

The maximum of
l
FL

l

occurs at 8=8t, where

10

( frn / sr)
/

IO - &r
i /

(2OO, 80)
12 12 12 ~ + 12
C+ C —C (2+)+ C (2 )

E;= 50 MeV
E~= 25. S6 MeV

E&= 2I. I2 MeV

10
IO

10
20 40 60

e& (deg )

I I
I
I

80 IO
20

I

QO

I

60
I

80

OSD

FIG. 8. Angular distribution of one-step DWBA ' C(4+,8.88

MeV) excitation (upper curve) is compared with those of mutual,
' C(2+)+ ' C(2+), and double, ' C[(2+ X 2+)4+,8.88 MeV] exci-

tations, which is the L=4 component of the mutual cross sec-

tion. Numbers beside these lower curves are the corresponding
angular momentum transfer of the mutual excitation.

ec (deg }

FIG. 9. Decomposition of the mutual cross section into two-

step (TS) and direct one-step (OSD in this figure) components.
The destructive interference of TS and DOS components at the
grazing angle is the important feature of the angular distribu-
tion.
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2AO, =(2n —M ——,
' )m, (2.28a)

while the maximum of
~ de /dRo

~

occurs at 82, where

2A82 ——(2n —M+ —, )vr . (2.28b)

III. EFFECT OF THE UNDAMPED
OVERLAPPING RESONANCES

Thus the angular distribution of the mutual (or double)
excitation will be out of phase compared with that of the
single excitation (Ref. 6). These properties are shown ex-
plicitly in Figs. 7 and 8. Since the dominant contribution
of the mutual excitation comes from the 1.=4 com-
ponents, the angular distributions of mutual and double
excitation are thus expected to be in phase with each other
(see Fig. 7).

From Fig. 9, we also observe that the DOS angular dis-
tribution is out of phase with that of the second-order an-

gular distribution (solid line), i.e., the DOS angular distri-
bution is in phase with the angular distribution of the sin-
gle excitation. This is expected, because Bi i -(I/a)Ai i,f i fi
[see Eq. (2.6) and Ref. 8].

(240, 50)
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When the imaginary potential becomes smaller, poten-
tial resonances will become important in the scattering
process. At first, these resonances will work collectively
to give rise to a semiclassical deflection function (see Ap-
pendix C). As the imaginary potential decreases further,
each single resonance will become important in the
scattering process, but in the heavy-ion collision, the latter
situation may not be realized because of the large number
of open channels.

I

I j a I I I L
0 5 10 15 20 25 0 5 10 15 20 25

FIG. 10. Effect of undamped overlapping resonances are
shown to be important for the TS radia1 integra1 but not impor-
tant for the DOS radial integrals.

integral at 8'o ——30 MeV is indistinguishable from that of
8'o ——80 MeV. )

A. DOS process

As shown in Ref. 9, we may write the distorted wave
function as

fi(k, r)=fi'(k, r)+fi'«, r) .

One can decompose the radial integral into the barrier
component of Sec. II A and the internal component BPi
where

gDosI f d [fl (k )y(2)fB(k )

B. The internal wave component of the TS process

The effect of the internal wave component will modify
not only the initial and final DW functions, but also the
effective transition potential of Eq. (2.13). We shall exam-
ine the H function of Eq. (2.8) and the internal part of the
radial integral.

1. The H function

Since fi(k, r) =fi (k, r)+fi (k, r) the Hi, i,(r) defined in

Eq. (2.8) can be expressed as

+fi'«/, r) I'T"fi', (ki r)] Hi, i,(r)=(1—2e " ' )H,', , (r), (3.3)

=k k
(ril+rij) f «I'V'

f i

=0, (3.1)

where Hi, i (r) is the H function of strong absorption in

Eq. (2.12) and we have used the stationary phase approxi-
mation to obtain Eq. (3.3). At resonance angular momen-
tum I2, i.e.,

with VT
' given by Eq. (2.3). Here ril and gl are the inter-

nal S matrices of the final and initial channels, respective-
ly, and one obtains

+I,! (kf k') —+l, l (kf k') . (3.2)

The dashed lines of Fig. 10 show the DOS component of
the radial integral at weak absorption. (The DOS radial

Re[S32(12)]= [n + (1/2)]vr,

Hi, i,(r) will be enhanced. Figure ll shows ~Hi i(r =0)
~

as a function i =I;—2 with different imaginary potential
strengths 8'o. However, these pronounced oscillations ap-
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pear for angular momenta far above the grazing angular
momentum and their effect will not be very important in
the scattering process (even at Wo ——10 MeV). Similar
conclusions can also be drawn for the effective potential.

2. The internal TS radial integral BlTSI

Decomposing the wave functions into barrier and inter-
nal parts, one gets

I «(fifI'r Hi ifi +flfI T"Hi i fi )+(/;~/f) (3.4)
m f i

where the properties of Bl l l, the barrier term, have been discussed in Secs. II B and II C and where the second-orderfmi
contributions to the internal part of the elastic S matrix 2/I have been neglected. Using the stationary phase approxima-
tion in the radial integral, we obtain

m TS TSB f m i
lf, l, l- = lf, l, l; + 1 II+2 II +~3 II

with

g TSB +gTSI
lf y l p l lf ) l y

l'

2 /Qk k
—i[S21 (ly )+51 (lip ) 521(li) 51(l,.—)]X(/ / / )

(3.5)

C 3 -C
1 ( /; ~/f )

21 f +51 f+ 21 1+ 1 i 21 m 1 m )[g(/ / /)+~(/ / / )]

IH~ i (r=o)I

80 — (Mev)

70—

60—

I
l

W. =IO MeV

P

W. =50 Mev

50—

40-
+ = 80 Me((

where

&(/f, /. , /;)= f &if +I I'T (r)ro(/ / r)dr'
and Io(/1, /2, r) is given by Eq. (2.11). Although r/I may be
small, the coefficients ci, c2, and c3 are given by radial in-
tegrals of [VT"(r)], which is very large, and so the radial
integrals for the second order processes are much more
sensitive to the absorption than those for the first-order
process. At Wo ——40 MeV, the radial integral Af l for the
first-order process has already reached the strong absorp-
tion limit, while the radial integrals Bl l l for the

second-order process require a much larger imaginary po-
tential ( Wo ——80 MeU) to reach the same limit. Figure 10
shows the magnitude of Bl l l (dashed-dotted line) and

lf y l~ p lg lf 1/ lf y l~ y lj
DOS TS

(solid) at Wo ——30 MeV. One observes that the potential
resonances are much more important in second-order than
first-order processes (see Ref. 9 for comparison). A few
observations can be noted at this point:

(1) At low angular momentum,

and so

The oscillatory structure in these radial integrals comes
from the interference between the Bl l land Bi i l, i.e., ,

the two-step process.
(2) At larger angular momentum,

I
8

I
~~2

I

8
for moderate absorption.

(3) Around the grazing angular momentum, the in-
terference between TS and DOS processes is important.
At the grazing angular momentum this destructive in-
terference (see Sec. II C) will give rise to a smaller slope in
the angular distribution in comparison to that of the dou-
ble excitation or single excitation. Figure 12 clearly shows
this effect (see Figs. 8 and 9 for comparison).

C. Weak absorption situations

0
l

lo
I

l5
I

20
I

25

FIG. 11. Effect of the overlapping resonances is shown in
this figure for the H functions. We note that the H functions
are not very sensitive to the strength, 8'0, of the imaginary po-
tential. These overlapping resonances affect mainly the distort-
ed wave functions in the two-step radial integrals [see Eq. (3.4)j.

When the absorptive potential becomes weaker, the
internal wave S matrix will become larger. At 8'0 ——10
MeV, Fig. 13 shows semiclassical action integrals and
elastic S matrices of entrance middle and final channels.
We observe that

I 2/I
I

=0.2, which is a little bit too large
when compared with the S matrix which fits the ' C+' C
elastic data (

I 2/I I
=0.15 at 30 MeV, Ref. 14). It is worth

pointing out that there is no multiple reflection in the po-
tential pocket even at Wo ——10 MeV (all resonances over-
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FIG. 12. Angular distribution for 8'o ——30MeV. See thecap-
tion of Fig. 8 for comparison.

lap to a high degree).
With 8'o ——10 MeV, the TS radial integral is the dom-

inant component of the second order form factor. Figure
14 shows that

TS
~lf, l, l,- =2~if, l

The interference between the Bl l l and Bl l l is alsoTS8 TSI
fmi f m i

small and localized only near grazing angular momentum,
and the Sl l plays a little role in the scattering process.

Figure 15 shows the amplitudes of the inelastic S matrices
[Eq. (A13)]; one would then expect that the refractive ef-
fect is the major scattering process.

To study the characteristics of the angular distribution
in the weak absorption limit, we first note that

0 I l I

Io 15 20 25

[Eq. (3.5)]. If only even /~ contribute (identical ions) we
can replace Bl l l by its average value, 8 l l, because

TSI ~ TSI

qz (& )=-riz (& +2) for & &A, the grazing angular
momentum of the middle channel. Equation (A13) gives
us then the inelastic 5 matrj[x

FIG. 13. Classical action integrals between the potential
pockets of initial, middle, and final channels are shown in the
upper part of the figure. The corresponding semiclassical elastic
S matrices are shown in the lower part for 8 p = 10 MeV.

$1 I =i 5I 5I (, lz, O, L,OI l;,0)ilgO, I20ILO)i ' z8( I, .

Figure 15 indeed shows that the magnitude of even L components are much larger than that of odd L components.
[Equation (3.6) neglects all the odd L components. ] Since 8 ~ I -c,qz(lZ )+c2qz(l; ) =cadiz(lj ), one can then obtain

pi" &iz oLo
I iz+x o)(iz ML M

I
iz+~ o&z—cnz(iz)=[L:M]« I' 1»(iy=o)

I
(3.7)

(3.8)

where [L:M] is defined in Eq. (2.24). Thus the scattering amplitude I'z is given by the following Poisson sum formula

e
—i/Zf M —( 1/2) jg oo

I'z. (0)=[L:M] g ( —) [I' '(0)+ie' I'+'(0)+e ™I''(m 0) iI'+'(m 0)], — — —
2rz(2 sin0) 'z
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this figure shows the contribution due to the DOS process.

[(A,—M ——,
' )!(&+~+—,)!]';(2„„„+z xpze+2~&x)]

~+I
(3.9)

The main contribution to the above integral is expected to
come from the point of stationary phase. Defining the de-

fle:tion angle (A, =l +—,),

S(~)=—
d~ f&v (~)+&~A,—(1/2))

=S~(k)+Sc(A,), (3.10)
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FIG. 1S. The amplitudes of the inelastic S matrices Sl i aref'i
shown in this figure. Since the amplitudes are smooth functions
of If, we expect that the refI'active effect may be important (see
Fig. 16).

the stationary-phase point A,, is given by
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FIG. 17. Angular distributions of single, mutual, and double
cxcltatlons arc shown foI' comparison Rt weak absorption

( 8 o
——10 MCV, Vo ——240 MCV) (see the caption of Fig. 8 for de-

tail).
8(A,, )= —(2m'. +8) . (3.11)

Figure 16 shows the deflection function 8&(A, ) of S~ (f" f
and 8(A, ), which includes also the Coulomb deflection
function. There is no approximation of Eqs. (3.6) and
(3.7) made in this figure, which indicates that only the
Io+'(8) and Io+'(m 8) terms will —contribute, i.e.,

~M(8) P(+ ((8)+eiMmI(+ )
( 8)t

E; = 30MeV

E~= 25.56 MeV

Ef = 2I.I2 MeV

c+ c- c(a')+ c(z')
E = 50MeV
Em= 25.58 MeV

Ef = 2I.I2 MeV
(240, 25)--- (240,80)
experiment

Note that Io (8) and Io+ (m —8) are smooth functions of
angle [Eq. (3.9)j, with a refractive feature. However, the
interference of Io (8) and Io+ (m —8) (identical ions) gives
rise to oscillatory structure in the angular distribution.
Figure 17 shows angular distribution of different I. com-

l5

80

FIG. 16. The dcflcctlon functloIl of SI I ls shown ill this fig»»f'f
ure foI' a demonstration of thc refractive effect in the scattering
IIlcchanlsIIl (scc Rcf. 9).

FIG. 18. Comparison of the cross section of the experimental
mutual excitation data with that of our calculations with dif-
ferent imaginary strengths. In this qualitative study, we make
no attempt to fit the data. CoInparison of the slope of the calcu-
lated cross section to that of the experiInental data indicates that
the reaction mechanism. in the mutual excitation of the ' C+ ' C
systcII1 ls a refractive ploccss. Thc I'clRtlvc stIcngth of thc 1IDR»»

ginary potential reasonably agrees with that obtained in Ref. 14.
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ponents, and one notes the following features:
(1) The L=O, 2, and 4 components contribute almost

equally in magnitude. The L=O component of the angu-
lar distribution has very deep minima seen in Eq. (3.12),
but the minima of the 1.=2 and 4 angular distributions
are filled in by the incoherent sum over M values.

(2) The L=1 and 3 components are not important (see
Fig. 12 for comparison).

(3) The total angular distribution of the mutual excita-
tion is now featureless and possesses very little oscillatory
structure in comparison with those of the single and the
two-phonon excitations (upper part of Fig. 16).

Finally, we compare the angular distribution given by
our present calculation with the experimental mutual exci-
tation data in Fig. 18. One notes that the refractive effect
is very important as indicated by the data. This refrac-
tion is due to a smaller imaginary potential being needed
to fit the slope of the angular distribution. In this com-
parison, one also notes that our angular distribution does
not follow the oscillatory structure of the data, since our
optical potential is chosen only to study the general prop-
erties of second-order processes. Thus the comparison is a
quahtative one, and to fit the data one should adjust the
optical potential. ' (See Ref. 9 for the choice of the opti-
cal potential parameters used in the present study. )

At Wp/Vp=0. 15-0.3, the angular distribution remains
diffractive in nature. The mutual excitation angular dis-
tribution shows, however, a destructive interference be-
t~~~~ &Dos and BTS pro~esses at the grazing angle, and
thus has a smaller slope.

(3) As the imaginary strength decreases further,
Wp/Vo&0. 1, we observe that the internal component,B,of B dominates the scattering process, and refrac-
tion becomes the major scattering mechanism. The angu-
lar distribution is then flat and featureless. From the
qualitative comparison of our study with the experimental
angular distribution of

~ C+ ~~( ~ C (2+)

at 30 MeV we find that 8'o/Vp=0. 1 is appropriate for
the slope of the angular distribution. To obtain a quanti-
tative fit, one should fit the elastic scattering to obtain a
mean-field potential and then calculate the mutual excita-
tion cross section via a coupled-channel or DWBA calcu-
lation. At energy E, =30 MeV of the ' C+' C system,
intermediate structure is still believed to be important, '

and so the detailed angular distribution may not be easily
fitted by the mean field alone.
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APPENDIX A: DERIVATION OF THE
SECOND'-ORDER SCATTERING AMPLITUDES

The Taylor-series expansion of the heavy-ion mean-field
optical potential due to a small amplitude oscillation of
the nuclear surface is given by

V(r, Roi +Roe+SR ~ +ERz) = V(r Rp&+R 02)+~V

(A1)

where

av BV, O2V Q2 p' 2BVAV=bR, +DR~ + —,
' (bR~) ~ +26R)bRp +(ARp) ~ +

BR0) ~R02
'

i3R ', R01 R02 QR 02

oo n 1 8"V(bR))" (bRz)
m!(n —m)! gR n —mgR m (A2)

bR) ——Ro) QPgqYgp(r),

&Rp =Rod QPPp&gq(r) .
(A3)

Upon quantization of the normal modes of the nuclear

and b.R ~, b,Rz are the changes in the nuclear radii of the
heavy ions,

surface oscillation (or rotation),

1
l&~„+( )"&~, „1, —

where a~& and a~„are the phonon creation and annihila-
tion operators, respectively. Thus, b. V in Eq. (A2) will
give rise to collective excitation of these surface modes.
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The inelastic transition amplitude is given by

Tf; ——(4fVf '
I

b, v+6, vGb. v
I

4&;4';+'), (A4)

where @; and 4f are the intrinsic nuclear wave functions
for the initial and final channels, and gf and 1J'j; are( —) (+)

the regular distorted wave functions with the unperturbed
mean field Vp ——V(r, Rp) satisfying the outgoing and in-
coming boundary condition, respectively. 6 is the full
Green function; i.e.,

a'v av av
21 ——AR15R2 +AR1 G0~R2

BR01BR02 01 02

Bv av+AR2 G05R1
M02 01

2BV Bv av
&22= z (+R2) 2 +ER2 Gp(bR2), (A8e)

BR 02 BRp2 02

G =(E+—Kl —K —Vp —b. V)

G =Gp+GohVGo+ (A5)

with

with E+ =E +i@ and Hl and K being the intrinsic Hamil-
tonian of the nuclei and the relative kinetic energy opera-
tor; e.g., Hl@;=e;4;, etc. Expanding G in the powers
series of 6V, we then obtain

(LJ,MJ I (bRJ)' I
00) =cz(L~)YI* M (r), (A9)

where the jth nucleus is excited from the ground state
I
00) to the ith order phonon state with angular momen-

YL, .M. (r) is the angular momentum transferJ J
spherical harmonic to acting on the relative DW function
of two nuclei. A few examples are given as follows:

The intrinsic excitation of the nucleus is due to the 13
operators in the b.R of Eq. (A3). The matrix element for
the intrinsic excitation is given by

G.=(E+—K, —X V, )-1 .

Let us define the transition operator r as

(A6)

e~ (0)=v 4m,

j(L)= (LIIP, llo)R» — '
5

V'L V'L

5,','5,','(~,m.,o I )
+4vrL

(A 1oa)

(A lob)

=b V+EGpb V+EVGpb VGpb V+ ' ' '
+(A, ,~A2; if A, ,~A2), (Aloe)

&ni (A7)

where ~„; will give rise to transition of the order
(bR1)" '(ER2)', i.e., 2« is an operator for an nth order
process:

where L =2L+1, the deformation length is defined in
Eq. (Alob), and two-phonon states are used in Eq. (Aloe).
The double- and mutual-excitation transition amplitude is
then given as the following.

A.. Double excitation
av

~1p
——b,R1

Pl

av
~2p

——ER2
MP2

, o'v av Bv2.
2p

———,
' (ER1) 2 +ER1 Gpb.R1

BR 01 BR01 01

(ASa)

(A8b)

(A8c)

If the particle 1 is excited from the ground state to the
two-phonon state

I
LM) = [a2+ xa2+]

I
0),

the transition operator 72p in Eq. (ASc) is composed of
two terms, direct one-step (DOS) and two-step (TS) pro-
cesses, and the transition amplitude becomes

Tpp IM ——5I.,
'52" gi ' e ' Qlf(lf M, LM

I
I;0) Y1 M(8, 0)($,0,$20 ILO)

lfl;

I I; L 'I I; L'
X g (lfoI. o

I
l, o) ,

' 5II Bl~~l + g I~—LL ' '1
A, , I A, A, , I Blf'I&'I +~1~~2 ~1%~'2

=+L 5g", 52"gi ' fe ' Qlf(lf M, L,M
I
I;0)YI ~—(8,0)

If1,

Dos rsX g +I (Ifo/L, O
I
lo) (IOA20

I
I;0) ~

' (7 lf1; +Blf, l, l;)+(111~~2I 1f ~1%~2) .
I 2 1
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The first identity of Eq. (All) has the advantage that its appearance is similar to that of the single excitation. The
second identity of Eq. (Alo) shows, however, the explicit interference between the DOS and TS radial integrals, which
are given by

Bi (, —— f drf( {kf,r)VT'f((k;, r)dr,

d 2f {kf,ri) VT"(ri) f~(k, r )Iii+'(k, r )VT if( (A12b)

B. Mutual excitation

Mutual excitation in heavy ion collision corresponds to particle 1 and particle 2 being excited to states
~
gi&i) and

1~2}u2) respect'vely The «an»tion operator is ~xi, which consists of DOS and TS processes. The transition operator is
given by

M
Too~i, ,pii, ~~ =5i,, 5i.2 g i ~ V If

lfE;

X g (If MLM—
i
l20)(Aipi, l~p ELM)(lfOL'0

i
I 0)(AiOA20

i
L'0)Yi M(80)

LL'

I I; L I I; L'
DOS

z5rL, Bi i. ++I "» LL''g
)„ I *g g I Bi ii +(~W. i~~zVz)

x g +L (lf MLM
~

—I;0)(AipiA~2
~

LM) Y) ~(8,0)
L

~ ++I (Iform, o
~
Io)(IO,x,o

~
I,o)

I I; L
+Bl~f, ~, i. ) + (~i' 1 (A13)

where the radial integrals B and B are the same as that of Eq. (Al 1) due to the fact that V0 is a symmetry with the
exchange of R i0 and Rza. The difference between Eqs. (Al 1) and (A13) is that Eq. (A13) has a coherent sum of transfer
angular momentum.

Defining the inelastic S matrix Si i. as

s;, , =2~k, kf5, ,5,, "„,g(lfo, L'~l, o)(A, ,O, A,,O~L'0} ' f

X —'5L,L, Bp i + g I +L L ' '

~
l

(A, i~%,2) mutual
+ (A, i~kq if A, i&Ad) double,

(A14)

the scattering amplitude becomes

+r,w(8) =
2

Tao L,m

1 l (,cTg +0'h )

g +4mIfe ' f (lf M,LM
~
I;0)Si ( Yi —M(8,0),

2E kikf
(A15)
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where Eq. (A15) resembles closely with the elastic scatter-
ing amplitude. The corresponding mutual exritation
scattering amplitude is Foo I,& 1& (8,0). The differential

cross sections for double and mutual excitation are given,
respectively, by

f g I+oo I,,„,z,,„, l

' &Pz

APPENDIX 8: ELASTIC BARRIER %AVE S MATRIX
AND ITS DERIVATIVE FOR

SMAI.L ANGULAR MOMENTUM

where P represents the background phase and
N, =I+iy, /2, N~ =l —yp/2. Using the property of the
gamma function, Eq. (1) can be expressed as

t t

Tllc clastic barrlcl' wave S matrix, 7/p, ls defined as

(81)

with N (l)=N (S21(l)/Ir),

&I(&)= J &X(r)dr —J ~X,(r)dr, (82) (C2)

X(r) =2p(E —V, —VI —V) F« ~&&1, the gamma functions are slowly varying the
function «&, and c» be lumped into a background S ma-
tl"lx So. Dcfllllng

For small angular momentum and light ions (AI,A2 &30
u), Vl and V, are almost constant compared to V at r near
thc outcl tuning point. VAth R smRH change
Ro—+80+ER0, the turning point r l will also change
slightly to rl —+t'i+DE. l. The change ln the action in-
tegral (82) becomes

651——J v Xdr= —+XI(rl )bR Ir)+~1

wc obtain

QX(r I )b,Ro .— (83)

~'9 . n=(—2ik, ) alp,
Mo

rip —2ik, Ilp, (8——4)

(85)

il'y
s1nh

D

«)'p )'.) . —~() p+). ) 2s,sinh —sinh 8
D

where k~ 1s thc local wave QUIDbcr Rt thc barncr. with I-
tan

D

In this Appendix, wc sllow tllat ovcl'lapplllg rcsonallccs
work coherently to give rise to a refractive effect in the
scattering process. Let us consider a picket fence model,
where thc Rcggc poles Rnd zcI'os Rrc equally spaced locat-
ing at mD+iyp/2 and mD iy, /2, res—pectively, with
m = —M, —M+1, . . . , M —1, M. The S matrix for an-
guIar momentum —MD & h &MD can be expressed as

One observes that: (1) when yp =y, ~D, i.e., with no ab-
sorpt1on Rnd with ovcI'lapping resonances» SE 1S Unitary
with phase shift 5I, (2) when yp&y, ~0 and yp~D
(moderate absorption), the second term in the bracket of
Eq. (C4) is much more important; SI still carries an im-
portant signature of these resonances, i.e., 51 = ~l/D; (3)
when p& QB,p~ +0, l.c., tile absorption ls so important
that thc Rcggc zcl o crosses tbc real angular moDlcntuID
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axis, the first term in Eq. (C5) becomes more important
than the second term. Then all the information of these
resonances will recede to the background strong absorp-
tion limit and the magnitude of the S matrix becomes

(St( —(S, ie '" ""
iSt i

can be very small, but it is impossible to have

i St i
~0 in the present model. One notes, however, that

the manifestation of strong absorption comes also from the
sloto dependence of the phase shift on the angular momen
turn.

From the above discussion, we therefore conclude that
the effect of overlapping undamped resonances is to give
rise to a phase shift 5t -=m.l/D or equivalently to a defiec-
tion function

(refractive effect).
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