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Dynamical correlations in inelastic electron scattering sum rules
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A sum rule approach is presented to study in detail the role of dynamical. correlations in electron
scattering reactions. Both the induced nucleon-nucleon repulsive short range and tensor correlations
are taken into account in the explicit calculations of energy-weighted and non-energy-weighted sum
rules in ' 0 and ' C. The former are largely affected by tensor correlations in a wide region of
momentum transfer, while the latter are mostly model independent. The theoretical results for the
longitudinal and transverse integrated response functions of ' C are compared with available experi-
mental data.

NUCLEAR REACTIONS Longitudinal and transverse quasielastic electron
scattering sum rules; tensor correlations in finite nuclei; comparison with experi-

mental data in ' C.

I. INTRODUCTION

In the last few years one of the most interesting experi-
mental results in inelastic electron scattering reactions has
been the separation of the longitudinal and transverse
response functions in the region of relatively large
momentum transfer. ' Consequently, a new theoretical
interest has been stimulated in attempting to explain the
recent data, since one expects on one hand that funda-
mental aspects of nuclear structure and dynamics, like for
example, meson exchange currents, show up differently in
the two channels at such values of momentum
transferred, and on the other hand that correlation effects
beyond the mean field approximation modify the response
functions considerably. In particular, tensor correlations
are known to be an important ingredient in many reaction
mechanisms. For example, their presence becomes crucial
in describing processes like photonuclear reactions or oth-
er transitions where spin and spin-isospin operators are in-
volved, sometimes cooperating in producing effects com-
monly ascribed to isobar configurations. ' "

A useful tool for the investigation of such effects is
represented by sum rule techniques which allow one to
focus on basic features of nuclear dynamics, being that the
complexity of the nuclear spectrum is eliminated by the
closure property. (For reviews see Refs. 12—1S.)

Many years ago Drell and Schwartz' and McVoy and
Van Hove' indicated the possibility of extending sum rule
techniques to electron scattering processes. The depen-
dence of such sum rules on the momentum transfer allows
one to investigate both long and short range correlations,
and in this vein many authors have studied the connec-
tions between the integrated electronuclear response func-
tions and non-energy-weighted sums. '

As to energy-weighted sums, their utility has been es-
tablished in the photon absorption reactions, ' and many
attempts have been made in order to extend them for elec-

tron scattering processes' ' since they are a much
more sensitive test for exchange forces and two-body
correlation functions.

In this work we study the correlation effects in the deep
inelastic electron scattering structure functions by means
of non-energy-weighted and energy-weighted sum rules,
focusing especially on the dynamical correlations induced
by the tensor component of the nucleon-nucleon interac-
tion. The inclusion of dynamical effects in their ground
state is obtained by making use of a phenomenological
method which allows, even in rather heavy nuclei, one to
control the different roles of short range and tensor com-
ponents in affecting the quantities under study.

A comparison between the longitudinal sum rule and
the corresponding experimental one in ' C (Ref. 2) is
shown, and for the first time an attempt is made to com-
pare theoretical results with the measured transverse in-
tegrated response function in that nucleus.

Stimulated by the recent new data on the photoneu-
tron cross section for ' 0, a new calculation for the
Thomas-Reiche-Kuhn (TRK) sum rule is also performed
in order to study its sensitivity to tensor correlation ef-
fects.

In Sec. IIA we define the objects of our study and give
their explicit expressions. Section IIB is devoted to a
brief review of the method used to insert dynamical corre-
lations in the nuclear ground state. In Sec. III we present
and comment on the numerical results for longitudinal
and transverse non-energy-weighted and energy-weighted
response functions in ' C and ' O. Some conclusive re-
marks are then summarized in Sec. IV.

II. GENERAL FORMALISM AND MODEL

A. Structure functions and sum rules

Following the notations of Ref. 31 and referring to it
for further general considerations, we construct energy-
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S ' (q)=+co„ i(niI' ' (q)i0)i (2.1)

where co„o is the intrinsic nuclear excitation energy

weighted sum rules at constant momentum transfer, by
weighting the nuclear response functions with an ap-
propriate power of the energy transfer and summing over
all excited states:

convection current to the total transverse structure func-
tion since the spin-magnetization current is dominant in
the transverse electron-nucleus sum rules in the region of
momentum transfer q & 1 fm

The sum (2.1) can be expressed in terms of simple
ground state expectation values by applying closure. For
iV=0, 1 one has the following:

So(q)=-,' (0 IO', OI
~

0), (2.4)

gN =N„o+ S,(q)=-,' (oi [O', [a,O]]
~
0), (2.5)

F ( q ) =p( q )= g ek(q)e
IG =1

2m

(2.2)

where 0 represents the intrinsic charge or current operator
of Eqs. (2.2) or (2.3) and H is the Hamiltonian of the in-
trinsic nuclear motion.

In the following, we discuss the role of dynamical
correlations on Soc(q), So(q), S&(q), and S&(q). The
So (q) sum is related to the Fourier transform of the two-
body proton-proton density

are the (longitudinal) charge and (transverse) magnetiza-
tion current operators.

In Eqs. (2.2) and (2.3) we have introduced the charge
and magnetic nucleonic form factors ek(q) and pk(q),
respectively, and have neglected the contribution of the

I

So (q) =Ze (q) + Z(Z —1)

f ( ~r ~ri)ei q ( r —r ')d ~d~i (2.6)

A

p~~( r, r ')= (0
~ g e;(q)ek(q)6( r —r;)5( r ' —rk) i0)z(z —1) (2.7)

gives the probability of finding one proton at r and a second proton at r '.
The expression of So (q) is

So(q)=f i (q)+fAq»
where

2f i (q)=, q'(ZS ', +&V.'»
2

fz(q)= (Oi g (p++p rjr, )( q)&ok)( q&&o., )e "' ~0) .
16m

(2.8)

(2.9a)

(2.9b)

S&(q)= — e (q)q [1+6,„„(q)+b,,„,(q)],2m' (2.10)

The last term is related to the two body spin-spin density
and is expected to be influenced by tensor and short range
correlations, as is the case for the proton-proton density in
(2.6) (V+=V, +S. V =S, 1.)-—

As far as the non-energy-weighted sums (2.4) are con-
sidered, the nuclear dynamics is restricted to ihe nuclear
model for the ground state. The further advantage in con-
sidering the energy-weighted sums stems from the fact
that the nuclear Hamiltonian comes into play, giving in-
formation on the role and the nature of the exchange
forces.

In particular, the energy-weighted Coulomb sum rule
takes the expression

2 Nze (q) q

(2.11)

&„„(q)= [Z —Sp (q)/e (q)] .
NZ

(2.12)

h„(q) embodies the center of mass corrections to S& (q),
while b.,„,(q) gives the contribution to the total sum com-
ing from the nucleon-nucleon potential. 5,„,=0 only if
meson exchange terms in the nuclear force are neglected.
As has been already stressed in Ref. 31, we expect a large
contribution to h,„,(q) when the presence of tensor corre-
lations is taken into account explicitly in the nuclear
ground state.

An energy-weighted sum rule can be analogously de-
fined for the transverse structure function
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S i (q) =S, (q)k;„+Si (q)~«
4

(Zp~+Xp„)
4m

2

Sp(q) . (2.13)

clear structure properties, especially for the investigation
of tensor and short range repulsive correlations. We refer
to that paper for details of the model and here summarize
only a few salient aspects and present a simple recipe to
evaluate the mean value of a two body operator.

If the nuclear ground state is described by a shell model
single Slater determinant, the mean value of any two-body
operator can be written

The second term gives the enhancement to the sum rule
owing to the nuclear potential and is directly connected
with the strength of the nuclear forces in the spin-spin
and spin-isospin channels. Furthermore, for the spin-
isospin character of the transverse magnetization current
operator I' ( q ), we expect a contribution also from the
tensor part of the nucleon-nucleon interaction. The last
term in (2.13) is the nuclear recoil correction. 2

B. Model for the correlated wave function

In a recent work we developed a phenomenological
method to study dynamical correlation effects on the nu-

I

&o I g 0;k I
o &

= g &a(1)b(2)
I
o,p I

a(1)b(2) &

a, b

—g &a(1)b(2)
I Oi2 I

a(2)b(1) &,
a, b

(2.14)

where
I

ab & is a product of single particle wave functions
of occupied shell model states. By choosing a harmonic
oscillator basis the product

I
ab & can be expanded on the

basis of the wave functions for the relative motion of the
pair via a Moshinsky transformation3~:

I«»b(»&= X Xcub(~v)
I
nim& l&IM& ISSz& I

TTz&
maS~ nl

mSmb
SSz

A,p
mM TTZ

(2.15)

I
nlm &~ —

I
nlm &,

g(r) (2.16)

where the correlation function

g(r) ~o

g(r) ~ 1,

and the normalization factor X„I is defined by

num
I

g'(r)
I

nim & .

In addition, tensor effects can be included by adding a
small percentage of D states to all the deuteronlike pairs
in the nucleus

where C,b contains a product of Moshinsky brackets and
geometrical coefficients [cf. formula (2.4) or Ref. 33],
while X,I.,M and n, l, m represent the harmonic oscillator
radial and angular quantum numbers of the center of
mass and relative motions of the pair. S,T are the spin
and isospin of the pair (with third components Sz and

Tz ).
The inclusion of short range correlations is obtained by

modifying the short range behavior of the wave function
for the relative motion

I

where spectroscopic notations +'Lz have been used and
Jz is the third component of the total angular momentum
of the pair. The parameter ri embodies the strength of
tensor correlations and gives the D-state probability in
analogy with the deuteron case.

The method briefly sketched here improves the indepen-
dent particle description of the ground state and has the
merit of being simple, even for rather heavy nuclei, and of
allowing insight into the role of both tensor and short
range correlations affecting the mean value of the opera-
tors we are going to study.

In the following, we will choose the correlation function
g(r) [cf. (2.16)] to have the form

g(r)=1 e r~""4, —-
where p =mcop is the harmonic oscillator constant and y
the correlation parameter. We select p and y fixing the
(correlated) root mean square radius of the nucleus at the
experimental value and choosing a "healing distance" of
1.2 fm. The parameter g is fixed to give a D-state prob-
ability g =6%.

III. RESULTS AND DISCUSSION

A. Non-energy-weighted sums for the longitudinal
and transverse channels.

I
n, S& Jz, T=O&~+I —g I n, S& Jz T=O&

+g I
n Di Jz T=o& (2.17)

In Fig. 1 we show results for Sp(q) ie (q) in ' 0 and,
once more' we note that short range correlation ef-
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So(q)

10--
16o

1.5 2.5
q(f -')

FIG. l. So(q)/e (q) in the uncorrelated harmonic oscillator

model, dashed line, and in the correlated model (y=20. 75;

P =0.307 fm 2), continuous line. A nonrelativistic Fermi gas
prediction is also shown for comparison (E~——1.36 fm '), dot-
ted line.

where a =18.43 frn and a is the fine structure con-
stant.

In Fig. 2 an explicit comparison between calculated and
measured longitudinal integrated response functions in ' C
shows a quenching of the data which goes beyond that in-
duced by dynamical correlations (short range and tensor).
According to other authors, ' ' the discrepancy could be

fects are just a ripple over the main contribution to the
sum, i.e., the single nucleonic excitation (incoherent
scattering by Z protons). The introduction of induced
tensor correlations would further lower the sum a small
amount (10—15 % of the short range effects).

In the following, the calculations will contain the pro-
ton form factor in the usual dipole form:

4

e (q) =a 1+
Q

attributed to meson exchange contributions or higher or-
der relativistic effects which have not been taken into ac-
count in our calculations.

Considering on one hand the actual ability of experi-
ments to measure the Coulomb sum, and on the other
hand, the several effects concurring to its theoretical
determination, it seems premature to draw conclusive
statements about dynamical contribution effects to S0 (q)
with respect to an independent particle description, at
least in the region of relatively high momentum transfer.

Specific studies of the transverse non-energy-weighted
sum rule for nuclei like ' 0 and ' C exist only in relation
to short range correlations. ' ' Tensor effects have
been neglected, and we have found that their contribution
has the opposite sign to the short range one.

In Fig. 3 we present the results for the model dependent
term fq(q) of So(q) [see formula (2.9b)] in ' O. We no-
tice that the effects of short range and tensor correlations
show up in the region between 1 and 3 fm '. The former
tend to enhance the sum rule, the latter to quench it, and
their net result is a small reduction between 1 and 2 fm
and an increase between 2 and 3 fm

As was the case for the same order Coulomb sum rule,
its model-dependent part is overcome by the model in-
dependent term which is fixed unambiguously for every
nucleus by the gyromagnetic factors of the nucleons. The
transverse sum rule and the relative magnitude of the two
terms f & (q) and fz (q) is shown in Fig. 4 for ' C. In the
same figure, an attempt is made to compare the total sum
with the experimental values extracted from the data of
Ref. 2, integrating the transverse response function which
has been cut off smoothly in the region where pion pro-
duction and barionic effects begin to become important.
The error bars embody both the experimental errors and
the uncertainty in the high energy falloff.

The analysis of non-energy-weighted sums and the com-
parison with their experimental determinations show
striking features. In the Coulomb case it seems impossible

S (q)
12

&~ (q)

0.08-- e 10
16O

2 —.

0

-0.08—

- 0.24--

-0.40--

I

'l.5 2.5
I

3
q (frn-')

FIG. 2. So (q) for the uncorrelated harmonic oscillator

model, dashed line, and with the short range and tensor correla-
tions (7 =17.90; p2=0. 358 fm; rl =0.06), continuous line.

The experimental data are from Ref. 2.

0.5 2 25
q (&rn-')

I

3

FIG. 3. The term f2 (q) of S0 (q): the uncorrelated harmonic
osrillator model, dashed line; with the inclusion of short range
correlations only, dotted-dashed line; with the tensor correla-
tions only, continuous line. Parameters as in Fig. I; g =0.06.
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So (q&
T

20-. e 10

16-

12 -.

8--

4

12G

for q= 1—3 fm '
by a simple independent particle model

description with the inclusion of Pauli correlations. The
well-known quenching of M 1 and M2 transitions at very
low momentum transfer is already washed out at q= 1

—1m
From the previous discussion we are led to conclude

that the non-energy-weighted sums are not a useful tool to
investigate the complexity of nuclear dynamics like tensor
effects and short range correlations.

0

-4
0.5

I

1.5 2.5
q (fm-')

FIG. 4. So(q), continuous line; its model independent term

f~(q), dashed line; and the model dependent term f2(q),
dotted-dashed line. f 2 (q) is evaluated taking into account both
the short range and tensor correlations. Parameters as in Fig. 2.

B. Energy weighted sum rules

The longitudinal energy-weighted sum rule S~ (q) of
formula 2.10 contains the term b,,„,(q), which is the essen-
tial new ingredient with respect to the analogous non-
energy-weighted sum So (q).

The calculations are performed in a one-boson-exchange
model for the nucleon-nucleon potential

'2 —1

to reproduce the experimental values without including
relativistic corrections explicitly, while the short range ef-
fects do not improve the calculations crucially. On the
contrary, the transverse sum is satisfactorily reproduced

V(r) = g [V"(r,m, ) —V"(r,mA)] 1—

retaining only the rr and p component (v—:rr, p)

(3.1)

1 f.'
V (r, m~)= — m~~& r2, o

& cr2+S, z 1+ +
3 4m mr (mr)

1 fr', 3 3
Vr(r, mz) =— mar, r2. 20.&.cr2 —S&2 1+ +

3 4~ mar (mar)

—m r
rr

)
m~r

—m r
P

m&r

(3.2a)

(3.2b)

SF(q)~~=-,' «I [+"(q»[V +'( q )]]10& (3.3)

besides the kinetic (model independent) contribution. (In

where m =770 MeV, m =139 MeV, f /4m=0. 08,
f2/4m=4 86, a. nd . the regularization mass mA ——1051
MeV. In this framework b„„,(q) can be considered the

sum of a b„„,(q) and b, ~„,(q).
The ~ component b, ,„,(q) is practically unaffected by

short range correlations; on the contrary, as is shown in

Fig. 5, it is strongly enhanced by tensor correlations in a

large q range. This result in ' 0 is consistent with previ-

ous calculations ' performed in He by using the Reid
soft-core potential and a perturbative method to modify
the oscillator wave function.

Of course, owing to the heavy mass of the p meson,

b,,„,(q) is strongly quenched (-40%%uo) by the short range
behavior of the wave function, while tensor correlations
further lower it by 10%. The total sum b,,„,(q) is dom-

inated by its rr component for low q and, consequently,

strongly enhanced (100%) by tensor correlations. In the

higher q region the p component is dominant and the ten-

sor correlation effects amount to 25%%uo.

The expression of the energy-weighted transverse sum

rule S~ (q) [cf. (2.13)] contains the enhancement term

coming from the nuclear potential

(q)
Aexc

09— 6O

0.8-

0.7—

Q.6-

Q5-

0.4-

0.3-

0.2-

0.1 —.
~ ~ ~ ~ ~ ~

I I

2 3
q (fm-')

FIG. 5. Potential term, A,„,(q), in S~ (q). 5,„, and 5,"„+P are
evaluated retaining only short range correlations in the nuclear
wave function. (6,„,), and (6,„+P), also include tensor correla-
tions. Parameters as in Fig. 1.
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the following we will neglect the center of mass correc-
tions, which are of order I/A. )

In Fig. 6 a plot of S~ (q)„„in ' 0 is presented and the m.

component of the sum is shown explicitly. Since the p-
meson exchange potential originates from a vector cou-

p»ng ( o X k ), contrary to the m exchange which comes
from a scalar coupling ( o"k ), the large contribution of
the p meson is to be expected because of the transverse na-
ture of the current operator.

The low-q behavior of S& (q)~„ is modified by tensor
correlations which introduce a q dependence in contrast
to the q form of the uncorrelated result. In the higher-q
region the correlations are responsible for a relevant
enhancement. In contrast to the same order longitudinal
sum rule, the net effect of dynamical correlations to the
total transverse sum is small owing to the dominance of
the aforementioned model independent term (see Fig. 7).

So«)

1200—

1000-

800-

600—

400-

200-

kin

C. Photonuclear enhancement factor

The limiting case of S& (q) for low momentum transfer
is particularly interesting' '

lim S, (q)= e [1+6,„,(q=0)] .1 c EZ z

q~o q 2m'
(3.4)

Expression (3.4) is equivalent to the famous TRK. sum
rule for electric dipole transitions, being that A,„,(q =0) is
just the enhancement factor E defined as

2 3

where

eZk

I I I I

1 4 5
q fm-

FIG. 7. The transverse sum rule S& (q) together with its po-
tential, S~ (q)p t and kinetic, Sq (q)k;„, terms, in ' O.

, (0 tD, [I;D]]I»,
XZe

S~ (q)pot

Me& fm

150-

100-

50-

(3.5)
is the electric dipole operator.

The central role of tensor correlations in the evaluation
of E has been established and has stimulated many studies
and experimental observations (cf. Ref. 14 and references
therein). With the calculations in our simple model we

just find a confirmation of the strong tensor influence on
this quantity. In fact, the value of E, which one can read
on the q =0 axis of Fig. 5 and which is summarized in
Table I, passes from 0.44 to 0.83 when the induced tensor
correlations are explicitly taken into account.

Recently, Berman et al. reconstructed the total pho-
tonuclear cross section from the experimental information
on the partial contributions. The integration up to 140
MeV has given the value K=0.40+0. 15; in contrast, the
experimental data obtained by subtracting the calculated
atomic absorption cross section from the measured total
photon absorption cross section, give K=1.12. From the
comparison between the present estimate of E and the re-
cent analysis by Berman et al., one could guess that tensor
contributions are effective even above the pion threshold.

q (~m-&)

FIG. 6. Potential term of S) (q) in ' O. The dotted-dashed

and two-dotted-dashed lines represent only the ~ contribution

without and with inclusion of the tensor correlations, respective-

ly. Dashed and continuous lines represent the sum of m and p
contributions again without and with the tensor correlations,
respectively. Parameters as in Fig. 1.

0.19
0.60

0.44
0.83

without tensor correlations
with tensor correlations

TABLE I. The values of the enhancement factor E for the

electric dipole sum rule in ' O. See further comments in the

text.
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Anyhow, for ' 0, there are still too many open ques-
tions regarding the measurements themselves, the relation
between the experimental values, and the theoretical TRK
evaluation, ' and too few explicit estimates of the pho-
tonuclear cross section above the giant resonance region to
draw definite conclusions.

D. Scaling law in quasifree scattering region

For high momentum transfer (quasifree scattering) the
structure functions may be considered as functions of only
one kinematic variable. This phenomenon, known as
"scaling, " generally reveals the existence of pointlike con-
stituents in the target, ' while deviations from scaling give
information on the structure of the constituents and the
basic properties of their interaction. The electronuclear
sum rules previously discussed are a useful tool for study-
ing the scaling hypothesis in nuclear physics.

Defining a scaling variable as

(3.6)

for a system of pointlike noninteracting particles, the
structure functions are symmetrical with respect to y=0.
On the contrary, the deviation of the mean value y from
zero reveals scaling violation and contains information on
exchange effects, nuclear correlations, and high momen-
tum components of the wave functions. The mean value y
for the longitudinal and transverse channel is related to
the electronuclear sum rules (2.6), (2.8), (2.10), and (2.13),

Y(q) „10-&

7- 160

perimental data in ' C is unable to discriminate between
the correlated and the independent particle description of
the nuclear wave function, at least in the region of rela-
tively high momentum transfer.

(ii} The transverse sum rule So (q) is also scarcely influ-
enced by tensor correlations because of the dominance of
its model independent term. The tentative comparison
with the existing experimental data turns out to be rather
satisfactory, even when including Pauli correlations only.

(iii) The energy-weighted Coulomb sum rule S~ (q) is
enhanced by the meson exchange potential and is largely
affected by tensor correlations in a wide region of momen-
tum transfer.

(iv) Exchange effects due to the p meson dominate the
potential term of the transverse energy-weighted sum.
The introduction of tensor correlations changes its low-q
behavior significantly.

(v) A revisitation of the TRK sum rule has been possi-
ble by study of the q ~0 limit of S

& (q). The tensor corre-
lations are responsible for an enhancement of K from
0.44 to 0.83 in ' O.

(vi) The strong effects of tensor correlations in S&(q)
and S~ (q) are reflected in the approach to the scaling re-
gime of the corresponding structure functions.

~e~ Sc,T( )

g 1
1 ——

2m
(3.7)

Therefore, an explicit evaluation of the sums Sz' (q) per-
mits a detailed study of the approach to the scaling limit
as the momentum transfer increases.

In Figs. 8(a) and (b) the results of the present calcula-
tion for y (q) and y (q} are shown. The oscillations of
y (q) are owing to the presence of proton-proton correla-
tions, and its high q behavior is directly related to b,„,(q).

As to y (q), its behavior is dominated by the exchange
potential contribution through S~ (q)~„(cf. Fig. 6) for
q) 2 fm ', and at lower momentum transfer it is much
more regular because it is driven by the spin-spin density
embodied in So (q) (cf. Fig. 4).

Therefore, the inclusion of tensor correlations in the
simple independent particle ground state gives rise to a
considerable enhancement in y ' (q) and a much slower
asymptotic approach to zero.

/i /

/

/

/

Y(a)

0.'l5-

0.10-

1.5 2.5
I

3
q fm

{b) '~o

IV. CONCLUSIVE REMARKS
0.05 -i. Ym. p

From the analysis of the non-energy-weighted and
linear-energy-weighted electronuclear sum rules some con-
clusive remarks about the dynamical correlation effects
are in order here:

(i) Induced tensor correlations do not affect the
Coulomb sum So(q) appreciably. A comparison with ex-

T
- Yn

—T(Y.),

1.5 2.5 3
q fm-'

FIG. 8. Mean values of scaling variables for the longitudinal
response, (a), and for the transverse one, (b). Notation as in Fig.
5. Same parameters as in Fig. 1.
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