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Gamow states in momentum representation are defined as solutions of a homogeneous

Lippmann-Schwinger equation for purely outgoing particles. We study their properties when the

potential, local or nonlocal, is such that the trace of the kernel of the Lippmann-Schwinger equation

exists. It is found that, contrary to what happens in position representation, Gamow states in

momentum representation are square integrable functions. A norm is defined and expressions for
matrix elements of operators between arbitrary states and properly normalized resonant states are

given, free of divergence difficulties. It is also shown that bound and resonant states form a

biorthonormal set of functions with their adjoints and that a square integrable function may be ex-

panded in terms of a set containing bound states, resonant states, and a continuum of scattering
functions. Resonant states may be transformed from momentum to position representation modify-

ing, in a suitable way, the usual rule.

I. INTRODUCTION

It has been appreciated for many years that there are
distinct advantages to performing nuclear scattering cal-
culations in momentum space, since many physical effects
are then readily expressed and evaluated. In this paper,
we intend to show that it is possible to work with Gamow
states in momentum representation.

In 1928, Gamow' described the a decay of radioactive
nuclei with the help of solutions of the Schrodinger equa-
tion, which behave at large separation distances as pure
outgoing waves and belong to complex eigenvalues. Since
then, the possibility of using these resonant eigenstates to
describe long lived unbound states and resonances, in nu-
clear physics and other fields, has been the subject of
many investigations. '

Gamow functions have been widely used in the formal
theory of nuclear reactions4 7 and in the extension to the
continuum of the nuclear shell model. More recently, its
applications have been extended to the nuclear cluster
model of collisions and reactions of light nuclei. " A
numerical procedure for solving, in momentum space, the
Coulomb plus nuclear problem for coupled bound and
continuum eigenstates was proposed by Landau. 13 A ma-

jor difficulty in using these functions in practical applica-
tions is caused by the fact that a decaying state in position
representation is not confined to a finite volume of space.
Therefore, its function, the Gamow function, is a wave of
exponentially increasing amplitude, which is not square
integrable. A number of methods have been proposed for
normalizing Gamow functions by integrating over a finite
volume and adding a surface term, ' ' or by regulariza-
tion techniques' or analytic continuation. ' *' %lave
functions decreasing asymptotically faster than any ex-
ponential can be expanded in a series of resonance eigen-
functions plus an integral over the complex continuous
spectrum. '

Since Gamow functions in r representation are not
square integrable, the integral that would give its Fourier

transform does not exist. However, this does not mean
that resonant states do not have a momentum representa-
tion, but only that the usual rule for transforming states
from position to momentum representation does not apply
in this case.

The purpose of this paper is to show that resonance
states in momentum representation may be defined as
solutions of a homogeneous Lippmann-Schwinger equa-
tion appropriate for purely outgoing particle solutions,
and to study their properties. The condition of purely
outgoing particle solutions makes the problem non-self-
adjoint. Therefore, the usual quantum mechanical rules
for normalization, orthogonality, and completeness do not
apply. It is found that resonant states in momentum rep-
resentation are square integrable functions. Since resonant
states correspond to poles of the transition matrix (t ma-
trix) in unphysical sheets of the complex energy plane, '
Gamow states are related to processes of physical interest
through the study of matrix elements of the resolvent
operator between arbitrary states. In this way, we define a
norm for Gamow states and give expressions for matrix
elements of quantum mechanical operators between arbi-
trary states and properly normalized Gamow states in
momentum representation, free of divergence difficulties.
The validity of eigenfunction expansions in terms of
bound states, resonant states, and a continuum of scatter-
ing states is extended to include all square integrable func-
tions. In this paper no claim to mathematical rigor is
made.

The plan of the paper is as follows: In Sec. II we state
the problem for a potential UI(p,p') satisfying some suit-
able conditions. In Sec. III, U~(p, p') is approximated by a
separable potential of rank X~, with XI arbitrarily large,
and the problem is solved explicitly. The normalization of
Gamow states and expressions for matrix elements of
quantum mechanical ' operators between normalized
resonant states and arbitrary states in momentum repre-
sentation are discussed in Sec. IV. In Sec. V, we show
that a square integrable function in momentum represen-
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tation may be expanded in terms of a set of functions con-
taining bound, resonant states and a continuum of scatter-
ing functions of complex wave number. These results are
illustrated in Sec. VI with a simple example. In Sec. VII
we give a summary of our results.

II. RESONANT STATES
OF NONLOCAL POTENTIALS

IN POSITION AND IN
MOMENTUM REPRESENTATION

eik/ r —r'[
(r+r 'k)=— (2.3)

Let us consider the Schrodinger equation of the relative
motion of two nuclear clusters,

2

V Q+Vd(r)g+ f V, (r, r')P(r')d r'=Eit/(r) .2'
(2.1)

Effective equations of this type occur in the description of
the scattering of light nuclei in the resonating group
method in the one channel approximation' and in the mi-
croscopic optical potential model description of nucleon-
nucleus interactions. ' In (2.1), r is the position coordinate
of the relative motion, P(r) is the wave function of the rel-
ative motion, and V~(r) and V, (r, r') are the direct and ex-

change potentials. Although there is no difficulty of prin-
ciple in dealing with the Coulomb interaction, to avoid
unnecessary complications, it will not be considered here.

Resonant states in position representation, also called
Gamow functions, are solutions of the time independent
Schrodinger equation (2.1), which are continuous every-
where and behave as pure outgoing waves for r very large.
Solutions of (2.1) which satisfy these conditions exist only
for some complex values of the energy with a negative im-

aginary pari.
It may be shown by an elementary argument involving

nothing more than the use of the Green's theorem that the
Gamow functions PF(r) are also solutions of a hornogene-

ous Lippmann-Schwinger integral equation

Pz(r)= f 9'0+'(r, r';k)V(r', r ")PE(r ")d r'd r" . (22)

In this expression 9'0+'(r, r ';k) is the Green's function of
a free particle with outgoing wave boundary conditions

and V(r, r ') is the sum of the direct and exchange poten-
tials

V(r, r ')= Vd(r)5(r —r ')+ V, (r, r ') . (2.4)

Since the imaginary part of the energy E„ is negative,
the wave number k„also has a negative imaginary part.
It follows from (2.2) and (2.3) that Gamow functions are
waves of exponentially increasing amplitude for r very
large. Hence, they are not square integrable, and the in-
tegral that would give their Fourier transform does not ex-
ist. This means that the usual rule for transforming quan-
tum mechanical states from position to momentum repre-
sentation does not apply in this case. On the other hand,
when the potential V(r, r ') has a Fourier transform, there
is no difficulty in writing the Lippmann-Schwinger equa-
tion in momentum representation. Therefore, resonant
states in momentum representation may be obtained as
solutions of the homogeneous Lippmann-Schwinger equa-
tion for outgoing particles in that representation, corre-
sponding to complex energy eigenvalues.

Before writing the Lippmann-Schwinger equation in
momentum representation, it is convenient to note that in
the integral equation (2.2), the outgoing wave condition
for r very large is imposed on QE(r) through the definition
of the free particle's Green's function. This Green's func-
tion is the position representation of the resolvent operator
of the Hamiltonian of a free particle, and is related to its
momentum representation through the spectral represen-
tation

9'+'(r, r', k)= lim f e'" ' "'
a~0 2M E+Ee—2'

Xe 'P '' "'d p, (2.5}
with E real and e positive. A similar relation holds true
for the Green's function for incoming waves, but with a
negative imaginary term in the denominator. The integral
(2.5), as a function of the energy E, is discontinuous on
the real axis. Therefore, when using the spectral represen-
tation (2.5) in the integral equation (2.2), the prescription
to obtain outgoing wave solutions is to define the integral
in the upper half of the energy plane and then to continue
it analytically to the lower half plane.

Taking into account the above considerations, the
homogeneous Lippm ann-Sch winger equation defining
resonant states in momentum representation is written as

QE (p) = p p p 3p 3p

E(+)
2m

(2.6)

V( p, p ') is the Fourier transform of the potential

V(p p')= f f e 'P'' "'V(r, r')
(2M)

hei( P
' r '/R)d3r d3r (2.7)

The notation E'+' and the square brackets in (2.6) mean

I

that the kernel of the integral equation is defined with E
in the upper half of the energy plane, then the integration
over the momentum variables is performed and the result-
ing function of the energy E is continued analytically to
E„ in the lower half of the energy plane. The order in
which these operations are performed is important be-
cause just writing E„ in the integrand, with ImE„&0,
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would result in a Lippmann-Schwinger equation for pure-

ly outgoing particles with a kernel appropriate for purely
incoming solutions, which is obviously inconsistent. In-

tegration over p
' in (2.6) gives the Schrodinger equation

for Gamow states in momentum representation,

2

WE„(p)+ f V(p p "4'z(p") 'p" E=E„

exist, and the latter, regarded as a function of q, remains
below a fixed bound.

Fredholm's first minor Ml(q, q') of the kernel
(1—K l+') satisfies the integral relation, sometimes called
Fredholm's second fundamental relation,

Ml(q, q', E)=rl(E)b l+'(E) 5(q —q')
—q'

=E.fz„(p) . (2.8)

Even when the integral equation defining Gamow states in
momentum representation is written as in (2.8), the condi-
tion of purely outgoing particle solutions is imposed
through the definition of the integral as a function of the
energy, as will become apparent from the results of Sec.
III.

To simplify the problem it is convenient to make a par-
tial wave expansion. Since the potential is rotationally in-
variant it may be expanded in spherical harmonics as

&&Mi(q"', q;E)dq "dq"' .

(2.17)

when E is equal to the complex eigenvalue E„, b,t+'(E„)
vanishes, i)(E„)=1, ' ' and (2.17) reduces to (2.11),
showing that Ml(q, qo', E„)is a solution of (2.11).

Under the assumptions (2.14)—(2.16) the trace of the
kernel Kl+'(k) exists, ~

Vi(p p')
V(P p')= g

1=0 m= —I

(2.9) ol(k)=tr[Kl+'(k)]= f dq .
k +io.—q

(2.18)

and a similar expansion for the wave function,

u„l(p)
fz (p)= g g I'tm«l )

I =0 I = —E

(2.10)

In practical applications, the Fredholm determinant and
the Fredholm first minor may be evaluated, expanding
them as

Insertion of (2.9) and (2.10) in (2.6) gives the
Lippmann-Schwinger equation for the partial wave u„l(p),

a'+'(k)= "'"' g 8 (k)
m=0

(2.19)

u„t(q;k„)= f Kl+ (q, q';k)u„l(q';k)dq

In this expression

(2.11)

Ml(q, qo, k)=e ' g pl~(q, qo,'k) . (2.20)

Kl+'(q, q';k) =f', Ul(q", q')dq",(+)
k +is—q

with k real, e positive,

(2.12)
The coefficients 5l~(k) and pl~(q, qo,'k) are then obtained
from a suitable set of recursion relations. '

III. GAMOW STATES
IN A SEPARABLE POTENTIAL

Ul(q, q') = Vl(q, q'),2m

iriq =p, and k = 2mE

For spinless particles, the interaction potential Ul(q, q ) is
real and symmetric.

The conditions for the existence of solutions of the
Lippmann-Schwinger equation (2.11) are well known. '

Solutions of (2.11) exist, even when the kernel is infinite at
one point, provided that the Fredholm's determinant of
1 —E(+ ' vanishes,

Ul(q, q')=Ul '
(q, q')

NI NI

= g gf,'"(q) „f,""(q')
s =1 s'=1

(3.1)

To establish the existence and properties of Gamow
states in the momentum representation for a potential
satisfying (2.14)—(2.16), it is sufficient to study the solu-
tions of the homogeneous Lippmann-Schwinger equation
(2.11) when the potential function is approximated by
separable potentials ' (continuous degenerate kernels).

5I+'(k)=detI1 —K l+'(k) I =0, (2.13) in such a way that the following conditions are satisfied.
The integral

and the integrals

f f ~
Ul(q, q')

~

dqdq', (2.14) U~ q, q —UI q, q
0 8' —q'

(3.2)

with

Ul q, q' q

Ut(q q ) Ul(q", q»

(2.15)

(2.16)
(3.3)

becomes arbitrarily small in q as X—+ m and the integral

Ul
' (s+e, t) —Ul

' (s, t)
dt

0 8' —s
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becomes arbitrarily small in s and in Ni if e is taken suffi-
ciently small.

The set of linearly independent orthonormal functions

If,' '(q) I is characterized by requiring that f,' '(q) belongs
to it, if and only if f,'"(q) is a function which can be
analytically continued from the real positive axis to the
whole of the complex plane, and the resulting continua-
tion is entire. We further require that this set be complete
in the Hilbert space of l. functions on [0, ao ). An exam-
ple of such a set is the set of radial eigenfunctions of a
three-dimensional harmonic oscillator.

The potential Ui(q, q') is expanded in terms of the set

If,'"(q) I,

Ui(q, q')= g g f,'"(q) „pf,""(q'»
s =1 s'=1

(3.4)

y U„n„„(k), ,
n

(3.7)

where

n„i, (k) = f f,'"'(q)u„i, (q;k)dq . (3.8)

The integrals in equations (3.7) and (3.8) are defined with
Imk&0 and the resulting functions of k are analytically
continued to k„.

The solution of the integral equations (3.7) and (3.8)
may be reduced to the solution of a homogeneous system
of Ni coupled linear equations. In order to show this, we
expand u„i(q;k) in terms of the set If,'"(q) I,

u„,(q;k)= g n„„(k)f,'"(q), (3.9)

with n„i, (k) given by (3.8), and we insert in (3.7) a
5(q —q') written as

&(q —q')= g f,'"(q)f,'"*(q') .
s=1

In this way we obtain

(3.10)

and the matrix element U» of the potential is given by

u = f f f,""(q)Ui(q, q')f,"'(q')dq dq' . (3.5)

Next, we approximate Ui(q, q') by the nonlocal separ-
able potential of rank Ni, U' '(q, q'), which is obtained
from Ui(q, q') truncating the expansion (3.4):

(N, )
Ui

'
(q, q')= g g f,'"(q)U„f,"'*(q') . (3.6)

s =1 s'=1

In this approximation, the Lippmann-Schwinger equa-
tion for the (tth component, u„i(q), of the resonant state
becomes

N( itii

u„,(q;k„)= g g f q q„ f,'"(q')
s =1 s'=1

The matrix G p+i'(k) is defined in terms of the Cauchy
integral

G,'+„,'(k)= f f,'"*(q), ,f,' '(q)dq (3.12)

f(l)n(kn )f(i) (k)—le
k

(3.13)

for Imk &0.
Since the f,' '(q)s are linearly independent, all the coeffi-

cients of the f,' '(q) that appear in Eq. (3.11) must vanish.
Therefore, the expansion coefficients n„i,(k„) satisfy the
system of homogeneous linear equations

NI

nnig(kn ) g g Gpigg'(k, )(),',-n„i -(k„) (3.14)
s'=1 s"=1

for 1 & s & Ni, and the relation

NI NI

n». «n)= X X Gpigg'(kn». '"nnig «n)
s'=1 s"=1

(3.15)

for s &Ni.
Since relation (3.15) gives the expansion coefficients

n„i,(k„) of u„i(q;k„) with indices s larger than Ni in terms
of those with indices s smaller than or equal to Ni, the
solutions of the Lippmann-Schwinger equation (3.7) are
completely determined by the solutions of the system of
homogeneous linear equations (3.14). In matrix notation

n „i(k„)=E i+'(k„)n „i(k„) .

The Ni)&Ni matrix K i+'(k) is

NI

1(.i,
+ (k)= g Gpi„(k)u, ,

s"=1

(3.16)

(3.17)

with 1&s &E~ and 1&s'&EI.
A necessary and sufficient condition for the existence of

solutions of (3.16) and, hence, of (3.7) and (3.8), is the van-
ishing of the determinant b, 'i+'(k) of the matrix
(1—E i+'(k)). The eigenvalues E„are the roots of the
equation

~(i+)(E„)=0. (3.18)

When b, 'i+'(k) has a sim~le zero at k„, we may suppose
that the rank of (1—E i+ (k„)) is (Ni —1), and let Eqs.
(3.14) and also the unknowns n„i, (k„) be arranged so that
the leading submatrix of (1—I(. i+'(k„)) of order (Ni —1)
is nonsingular. Let the cofactors of the last row be taken
as the elements of a column vector M„i,(k„); then

for Imk&0. The analytic continuation of Gpi„'(k) to the
lower half of the wave number k plane follows from the
Plemelj formulae

Gpi»'(k) = f f,' '*(q), f, '(q)dq

X( NI

y fg (q) nnig(k„) —y y Gpigg'(kn )Ug'g "nnig" (kn )
s'=1 s"=1

(3.11)

(1—I(. i+'(k„))M „i(k„)=0, (3.19)

showing that M„i(k„) is a solution of (3.14) or (3.16).
The corresponding solution of the homogeneous
Lippmann-Schwinger equation (3.7) is
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u„i(q;k„)= 2 g g f,'"(q)u„M„Ig(k„) .
k„—q

(3.20}

A number of properties of the solutions u„~(q;k„) are
readily obtained from the properties of the solutions of
(3.16). We notice first that the determinant b,I+'(k) of the
matrix (1—K I+'(k)) has properties similar to those of the
Jost function of local potentials. Indeed, when U~(r) is a
local potential, h~+'(k) is the Jost function. ' These prop-
erties are the following:

(i) As already stated, the vanishing of hI+'(k) is a
necessary and sufficient condition for the existence of
solutions of (3.16) and, hence, of solutions of the homo-
geneous I.ippmann-Schwinger equation (3.7).

(ii) The equation

~', +'(k}=~I+'(—k*) . (3.21)

(iii) The zeros of b,I+'(k) are located on the imaginary
axis and in the lower half of the wave number k plane, in-

cluding the real axis.
(Ni )

(iv) The resolvent of HI
' and the collision matrix SI

have poles in the k plane located precisely where hI+'(k)
has zeros.

Properties (ii) and (iii) follow directly from the analytic
properties of the matrix elements 60~+„'(k). From equa-
tions (3.12) and (3.13) and

that is, n„i, ( —k„) is a left eigenvector of KI that be-
longs to the same eigenvalue k„as n „(k„). This relation
suggests taking the complex conjugate of Eq. (2.11}:

u„'i(q;k„)= f f „UP(q', q")

&( u I(q "k)dq'dq"
n

dq dq'
5(q' —q)

2 q&2
(3.26)

showing that the adjoint u„&(q;k„) of u„&(q;k„) is given by

u„i (q; k„)=u„'i(q; —k„' ) . (3.27)

In the case of interactions between spinless particles, the
potential U~(q, q ) is a real function, symmetric in its argu-
ments. We can make use of this property to rewrite Eq.
(3.26) as

Recalling that UI(q, q') is Hermitian and 5(q —q') is sym-
metric, and substituting —k for k, this equation may be
rearranged to g1ve

u„*~(q; —k„')= f f u„'~(q"; k*)U—I(q",q')

f(I)( q) ( 1 )lf t )(q)

it follows that

60+I„'*(—k*)=Gu+(, ,'(k),

(3.22)

(3.23)

I

u„i(q;k„)= f f U((q', q")

X u„i(q";k)dq'dq" k (3.28)

and, since the potential u is Hermitian and energy in-
depemient,

K,',+'*(—k*)=K,',+'(k) .

From (3.24), (3.21) follows immediately. Although (iii)
and (iv) are well known, ' for the sake of completeness,
we give an elementary derivation of them in the Appen-
Cilx.

We will now introduce the adjoint u„~(q;k„) of a
Gamow state u„~(q;k„) as the left solution of the integral
equation (2.11) that belongs to the same eigenvalue E„.

From (3.17) and (3.24), we get

which is the same equation as (2.11). Therefore, for spin-
less particles, u„~(q;k„) is proportional to its adjoint.
Without any loss of generahty, we may write

u„I(q;k„)=u„((q;k„) .

It is now easy to prove an orthogonality relation for
bound and resonant states. From (3.27) and (3.29), we ob-
tain

NI

u„~(q;k„)= g g n„*~,( k„*)u„f,"'*(q) —2, (3.30)
s=l s'=1 k„—qz

Ng

n„*(,( —k„*)= g n„*(,-( k„')K(',+,'(k„), —
s"=1

(3.25) and from this equation and the definition of 60+I'(k), a
straightforward calculation yields

CC

u„((q;k)u„((q;k')dq =
I n „((—k')uLGc(+'(k) Gu+('(k'))u n „I(k—')I,

with k and k' in the upper half plane. Now, we take the limit k~k„and k'~k„with k„&k„and make use of (3.16)
and (3.25),

f u„i(q;k)u„ i(q;k')dq I, k
——0 . (3.31)

Taking the same llmIt %'1th k~ =k~~ yields

d(1 —K I+ (k))
u„i(q;k)u„i(q;k)dq = n „I(—k„*)u n „I(k„) .

k„
(3.32)
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Collecting these results in one formula,

u„i(q;k}u„r(q;k')dq I, I,
———5„„n„r(—k„)u

k'= k„.

dG ()+r '(k)
v n „((k„).

k„
(3.33)

When u„I(q;k„) is a real bound state wave function, E„
is real and negative, k„ is imaginary, and Eq. (3.33)
reduces to the usual orthogonality relation for bound
states. However, for Gamow states the wave function
u„r(q;k) is complex, and it is equal to its adjoint; there-
fore, in this case Eq. (3.33) differs from the usual ortho-
gonality relation for eigenfunctions with real eigenvalues.

A convenient way to relate the integral appearing in
(3.33) with processes of physical interest is provided by

I

I

the study of the Green's operator for outgoing particles. '~

In what follows we examine the behavior of the resol-
vent of HI near one of its complex poles. It will be shown
that the residue of the resolvent of H( at the pole k„ is
proportional to the inverse of the integral that appears on
the left-hand side of (3.33).

The restriction to the 1th wave of the resolvent of Hr
satisfies the integral equation

1 ' =5(q q) p 5(q q ) U(" "') "' 1 'd "d"',
( ) q =

2 2 + J ~( ) 2,q ( ) q qE —HI k —q' K —q I
(3.34)

where

(~) q — p (~) 5'

(W) )

When UI(q, q') is approximated by a separable potential U( (q,q'), the integral equation (3.34) may be readily solved
to yield

NI N
1

(x) q kr(~), 2+ X X k2(~) 2f
1 (&)( ) (g (+ )(k) )

—1 (l)«( i)l„f,E'+' —~, ' & -q'' s=i s=i & —q A: —q'
(3.35)

The matrix A I+'(k) that appears in this expression is

given by

~ (+'(k) =(I—I(,'+'(k))v-' . (3.36)

Since the first term on the right-hand side of (3.35) is

analytic at E„, to study the behavior of the resolvent near
one of its complex poles we must study (A I+'(k)} ' in
the vicinity of E„.

Let us notice first that

From (3.36) and (3.16), it follows that one of the eigen-
values of & 'r+'(E), say a ) (E), goes to zero when E goes to
E„,while the corresponding right and left eigenvectors go
to u n „I(E„)and n „I(E„)u respectively, and, since we as-
sumed that the zero of 3 'r+'(E) at E„ is simple, all the
other eigenvalues are nonzero at E„,

dA I+'(E)
ar(E)=(E E„)n „r(E„)u — u n „((E„)dE

det[A I+'(k)] =(detu) 'hI+'(k) . (3.37)

Let us suppose that the zero of b.I+'(k} at E„ is simple;
then, since v is independent of the energy, detA I+'(k) has
a simple zero at E„. We expand (A I+'(k) } ' in terms of
the left m „and right m „eigenvectors of A I+'(k); then

NI

(A I+') '= g m„(E) mq(E) .
a„(E)

(3.38)

+o(~E E.~')—

ap(E)=m p(E„)A 'r+'(E„)m ~(E„)~O (
~

E E„~ ) )M&1 . —

From these relations we obtain

lim (E E„)(A I '(E)) '=—un „((E„)
En

Recalling (3.36) and (3.17), we obtain

dA I+'(E) dG oi '(E)

dE dE

1

da '+'

dE
un „r(E„)

En

n „((E„)v . (3.39)

(3.40)
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From this result and Eqs. (3.33) and (3.25), it follows that

lim (E E—n)(A!+'(E)) '=u n „!(k„)E~E„ f u„!(q;k)dq
n „,(k„)v . (3.41)

Therefore,

lim (E E„—) q, ! q' =u,!(q;k.)
1 1

E H—! f u„!(q;k)dq „
(3.42)

IV. NORMALIZATION OF GAMOW STATES

The resolvent operator occurs in the calculation of transition amplitudes and cross sections in matrix elements which,
in the approximation we are making, are typically of the form

O! (+) Q! X = f f f C*(q)O!(q q ) 2,2 Q!(q',q")X(q")dq dq'dq"Et+!

+ g g f f 4*(q)O((q, q') f,' (q')dqdq'[P'!+'(k)], , '

s=1 s'=1

X f f f,' '*(q'), , Q!(q',q")X(q")dq'dq" . . (4.1)

The operators 0!(q,q') and Q!(q,q') and the functions 4(q) and X(q) are functions of the real momentum variables q
and q', and they may also be functions of the wave number k, in which case, we shall assume that they may be analyti-
cally continued in this variable to the lower half plane. In general, the second term on the right-hand side of Eq. (4.1)
has a pole at k =k„where the resolvent has a pole, while the first term is regular at k„. The residue of the matrix ele-
ment of the resolvent at the pole k„may be evaluated with the help of (3.41) and (3.30):

lim (n E„) 4 0) ) )
—Q) X)=

1

E~E„ E~+~-~s

C'* qor qq'~. i q' q q"'
~ ~.r q i qq'&q'' q q'

&

t u„,(q)dq „
(4.2)

This result shows that the matrix elements of quantum
mechanical operators between properly normalized
resonant states and an arbitrary state are given by

&C IO, Iu„, &=

and

f 4*(q)O!(q,q')un!(q'&k)dq dq'

oo
2 1/2f u !(q;k)dq

(4.3)

u„)q; q ~
——l. (4.5)

f,
"

u.!(q;k)Q!(q q'»(q')dq dq',
&un! I Q! I

X& =
f u„!(q;k)dq

(4.4)
The integrals are evaluated with Imk & 0, and then they

are analytically continued to k„.
It follows from this result that the normalization rule

appropriate for resonant states in momentum representa-
tion is

This rule simplifies the orthogonality condition (3.33)
and makes the set of bound and resonant states an ortho-
normal set. It has the additional advantage of simplifying
the relation between Gamow states and the resolvent of
H).

We observe that when the left-hand side state of a ma-
trix element is a resonant state, (4.4) requires that we use
u„!(q;k) in the integral rather than its complex conjugate,
as is usually required. This is a consequence of the non-
self-adjoint character of the integral equation satisfied by
resonant states. The corresponding problem in position
representation of a Schrodinger equation with non-self-
adjoint boundary conditions was discussed by Hokkyo' in
the case of local short ranged potentials. In this same
case, the rules for calculating matrix elements of operators
between resonant states and for normalizing resonant
states in position representation were obtained by Hok-
kyo, ' Garcia-Calderon, Peierls, ' and Rorno. ' This last
author also discussed the validity of the analytical con-
tinuation of the integrals in the k plane.

In what follows it will be shown that the norm of
resonant states and the matrix elements between resonant
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states and arbitrary square integrable states are indepen-
dent of the representation. It will be explicitly shown
that, in the case of local short ranged potentials, the nor-
malization rule derived in this work, Eq. (4.5), is

I

equivalent to the prescription given by Hokkyo. '

First, we will show that resonant states in momentum
representation u„i(q;k) are square integrable functions.
From (3.20), (3.12), and (3.23) we obtain

NI

0

~
n
~

It n tI
~~

~ 2
~I

~~ 2
~~ I I ~~

n
~

s ss
( ~

s s
) ~ ~ ( ~

s
)
s s s n s Iu I(q k)u l(q k)dq y y In 1 (k)u '[Gol ' "(k ) Goj " '(k)ju" "'n 1"'(k))

s=i s"=a
s'=1 s"'=1

(4.6)

Let us call (k —k' )W'1(k) the anti-Hermitian part of
G oi '(k ); in terms of 8'i(k), Eq. (4.6) may be written as

u„i(r;k)=&2/~ f ji(qr)u«(q;k)dq . (4.8)

f u„*i(q;k)u„i(q;k)dq = n «(k)u Wi(k)u n „i(k) .

(4.7)

Since the right-hand side of (4.7) is the product of finite
vectors and matrices and 8'I is Hermitian when Imk) 0
and Rek&0, the integral is finite and positive definite.
Therefore, u„i(q;k) is square integrable and it has a
Fourier transform

u„i(q;k) =v'2/~ j~(qr)u«(r;k)dr .
0

(4.9)

Similar relations are valid for XI(q) and 4&i(q). Next,
we insert these expressions in the integrals that appear in
(4.3) and (4.4) and rearrange the integrals to obtain

The integral is defined with Imk&0, and ji(x) is the
Bessel-Riccati function of order 1. The inverse relation is

41 q OI q, q' uni q'; q q'
k

—— C I r OI r, r' unI r' rdr' (4.10)

where

OI(r, r') =—f f j i(qr)OI(q, q'j)I(q'r')dq dq' (4.11)

and

f f u«(q;k)Qi(q, q')XI(q')dq dq' „= f f u«(r;k)QI(r;r')Xl(r')dr dr' k (4.12)

Qi(r, r') is related to QI(q, q') by an expression similar to
(4.11). Now, we insert (4.9) into the normalization in-
tegral and make use of the orthogonality of the Bessel-
Riccati functions to obtain

I

on the right-hand side is defined over a finite interval and
u„o(r;k) is an analytic function of k, we may take k„ in-
side the integration sign. In this way we arrive at the re-
sult

f u„i(q;k)dq k
—— t u „i(r;k)dr (4.13) f u„o(q;k)dq k

——f u „o(r;k„)dr+i
Therefore, the normalization of resonant states and the

matrix elements of quantum mechanical operators be-
tween resonant states and arbitrary states are independent
of the representation.

When u„i(r;k„) is the solution of a radial Schrodinger
equation with a cutoff potential of range Ro and purely
outgoing wave boundary conditions, u„i(r, k„) is equal to
its asymptotic form u „'I'(r;k„) for r & Ro. For 1=0,

u „'o'(r;k„)=C„oe ", r &Ro . (4.14)

Then

f u „o(r;k)dr k

R u „'o"(r;k)f u „o(r;k)dr+
0 2ik

for R &Ro. Since Imk&0, u '„'o'(r;k) vanishes when r
goes to infinity, and the second term on the right-hand
side gives a contribution only for r =R. Since the integral

(4.15)

for any R larger than Ro. The right-hand side of equation
(4.15) is the normalization condition for Gamow functions
given by Hokkyo. '

It has already been shown that the integral of the
modulus squared of u„i(q;k„) exists, Eq. (4.7); this result
suggests the possibility of normalizing Gamow states in
momentum representation in terms of the integral of the
square of the modulus of the wave function. Speaking in
terms of physics, this makes sense since u«(q;k„) may be
expanded as a linear superposition of scattering states of
real energy, and u«(q;k„) may be interpreted as a wave
packet. Therefore, we may calculate the expectation value
of an operator according to the usual rule

uni q~kn OI q~q unh q ~kn dq q(Oi)"= f I
u«(q 'k. )

I
'dq

(4.16)
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However, it will be shown that the result obtained ac-
cording to (4.16) is not the expectation value of the opera-
tor Oi(q, q') when the system is in a Gamow state, that is,
in a purely outgoing particle state.

Since the wave packet u«(q;k„) is square integrable, it

has a Fourier transform, but since Rek„&0 and Imk„&09
u«(q;k„) as a function of q has poles in the second and
fourth quadrants. Its Fourier transform may be obtained
from (2.11):

T
v'2/~ f j,(q»)u„, (q;k„)dq = ——j&(k„») f hi '(k„»')M«(»';k„)d»'+hi (kn») ji(kn»')M«(»', k„)d»'

(4.17)

Therefore,

&2~i» f ji(q»)u«(q;k„)dq ~ C«h, ' '(k„») .
0 &~ ao

u«(q;k. ) = g n«. «.)f'"(q)
s=1

suggests the definition

(4.18)

It follows that, although u«(q;k„) is the solution of the
Lippmann-Schwinger equation (2.11) and, in this sense,
we may call it the Gamow state wave function in momen-
tum representation, the result obtained in (4.16) is the ex-
pectation value of the operator 0& when the system is in a
purely incoming particle state. This seemingly paradoxi-
cal result is owing to the fact that, in momentum repre-
sentation, the functional dependence of the Gamow state
wave function u«(q;k) on k carries two different pieces of
information that depend on the location of k in the com-
plex plane. In the first place, the fact that u«(q;k„) is a
solution of the homogeneous Lippmann-Schwinger equa-
tion for outgoing particles that belong to the complex en-
ergy eigenvalue E„requires that 1=k„, with Rek„&0
and Imk„&0. Second, the location of the two poles of
u«(q;k) coming from the energy denominator in (2.11) in
the first and third quadrants of the q plane determines the
purely outgoing nature of the state, that is, u«(q;k)
represents a purely outgoing particle state when Rek&0
and Imk & 0. It is clear now that, in order to keep all this
information, the integrals occurring in the calculation of
matrix elements and the normalization integral must first
be defined correctly with k in the upper half of the k
plane. Gnly after the integrals have been correctly defined
may they be analytically continued to k„ in the fourth
quadrant of the k plane to obtain the matrix elements of
operators defined between purely outgoing particle states
of complex momentum k„, as is done in Eqs. (4.3) and
(4.4).

We have still to examine another possibility of defining
a norm of u„i(q;k„) in terms of its modulus squared. The
expansion

(u«lu. I)= 2 In„„(k„)I'.
s=1

(4.19)

We use parentheses to avoid any confusion with our previ-
ous results. From (3.8)

(u«
I
u«) = X I

n«(k)
I

'
s=l k„

u„,(q;k) I'dq k . (4.20)

As in previous expressions, the integral is defined with
Imk & 0 and then is continued to k„.

Now, it may be shown that the term on the right-hand
side of Eq. (4.20) vanishes identically. In order to do this
let us consider the Schrodinger equation for u«(q;k„) in
momentum representation:

(k„—q )u«(q;k„) — f Ui(q, q')u«(q', k)dq k
——0 .

(4.21)

As explained in Sec. II, the notation means that the in-
tegral in square brackets is defined with k in the upper
half of the wave number plane, and the resulting function
of k is analytically continued to k„ in the lower half of
that plane. When the left-hand side of Eq. (4.21) is
evaluated at k rather than k„, the right-hand side of the
equation is no longer zero, but we may always write

(k q)u«(q;k) —f Ui(q—,q')u«(q';k)dq'=(k —k„)g(q;k),

with Imk & 0. From (4.21) and (4.22), it follows that

(4.22)

g(q;k„) =
Bk' (k q)u„I(q;k) —f —Ui(q, q')u«(q', k)dq' (4.23)

which, in general, is not zero.
Now, we take the complex conjugate of Eq. (4.22),

(k* —q )u„'q(q;k) —f U~(q, q')u«(q', k)dq'=(k* k„* )g*(q;k) . — (4.24)
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Next, we multiply (4.22) and (4.24) by u„r(q;k) and u„'r(q;k), respectively, integrate over q, and take the difference; in
this way we obtain

(k k—' ) f I u„~(q;k) I
dq=(k —k„)f g(q;k)u„*~(q;k)dq —(k —k„)*f g*(q;k)u„r(q;k)dq . (4.25)

All the integrals in (4.25) are defined with Imk&0. We
take the limit when k goes to k„on both sides of Eq.
(4.25) and, recalling that Imk„= —i (m /A' )1 „,we obtain

I „ f Iu„r(q;k)
I

dq k
——0.

4*q q q= (e Iu., )&u., IX&

(bound states)

+ @ ~ki ~kr (5.1)

Since the resonance width I „&0,it follows that

f Iu„r(q;k) I
dq k

——0. (4.27)

&@
I u~r &

= f C'*(q)umph(q)dq,

(u r I
X) = f u'r(q)X(q)dq,

(5.2)

From this result it follows that, when I „&0,a resonant
state in momentum representation cannot be normalized
in terms of its modulus defined as in (4.19), since the in-
tegral in (4.20) vanishes at k„.

V. EXPANSIONS IN TERMS OF A SET OF BOUND,
RESONANT AND SCATTERING STATES

In this section it will be shown that an arbitrary square
integrable state in momentum space representation may be
expanded in terms of a set containing bound and resonant
states, and a continuum of scattering wave functions of
complex wave number. The expansion coefficients are ex-
pressed as integrals of well-behaved functions.

We start by recalling that the orthonormal set of bound
and scattering solutions of the Schrodinger equation form
a complete set. This has been shown for local ' and nonlo-
cal ' potentials under fairly general conditions. Then, for
any two square integrable functions 4(q) and X(q), the
following relation holds:

&@Iukl&= f, C"(q)ukl(q)dq

&uk~ I
&& = f ukr(q)&(q)dq .

(5.3)

uk'(q)=&(q k)+ —f f „q„q,V, '(q, q")

X uk((q")dq'dq" . (5.4)

The explicit form of the solution of (5.4) is

The partial wave function u &(q) is a bound state solu-
tion of the homogeneous Lippmann-Schwinger equation
(3.7) (3.8), corresponding to a negative energy E, and
ukr(q) is a scattering partial wave function which satisfies
the inhomogeneous Lippmann-Schwinger equation

uk((q)= g g f,'"(q) &„+(&('+'(k)),, ' —, , f,""(k) . (5.5)

In general, the functions 4(q) and X(q) are functions of the real momentum q, and they may also be functions of the
wave number (energy) k. In this case we will assume that, as functions of k, they may be analytically continued to the
lower half of the k plane. Then, from (5.3) and (5.5), it follows that the term (C)

I uk~) (uk'
I
p) may also be analytically

continued to the lower half of the k plane.
Now, from the spectral representation of the resolvent of Hr for outgoing (incoming) particles,

(5 6)

with k ' +—' in the upper (lower) half of the k plane, and from the Plemelj formulae, it follows that

q (q
( kf)( kj(X)= f J q"(q) q, — q' —q, ,

—q') X(q')dqdq'
0 0

(5.7)

The resolvent for incoming particles that appears in (5.7), as a function of k, may be analytically continued to the
lower half of the k plane without crossing the real axis, and it has no singularities in that part of the plane. The analytic
continuation of the resolvent for outgoing particles may have poles in the lower half of the k plane. Now, the integra-
tion contour of Eq. (5.1) is deformed into the lower half plane, as shown in Fig. 1. When the deformed contour C
crosses over resonant poles, but avoids other singularities of the analytically continued integrand, the theorem of the resi-
due yields
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2' &4
l uk( &&uk( l

X& =

(resonant states)

res. f f @"(q)(q, ~
q')X(q')dqdq'

+ f dz f 4'(q)uk)(q)dq f u„,(q')X(q')dq' (5.8)

(bound states)

n

(resonant states)

u„i(q)&u„i lx&

+ f u„(q)&u„lX&dz.

The expansion coefficients are given by

(5.9)

with z =2 '~ (1—i)k. Right and left eigenvectors are dis-
tinguished with a tilde on the left eigenvector. This dis-
tinction is made because when the wave number is corn-
plex, the left eigenvectors are not equal to the Hermitian
conjugate of the right eigenvectors. It was shown in Sec.
III that, in the case of spinless particles, & u„i l q &

=&q lu„, &=u„,(q).
Since 4(q) and X(q) are arbitrary, the above discussion

justifies writing the expansion

u i(q)&u, lX&

&u i lX&= f u i(q)X(q)dq, (5.10)

&u„i I X& = f u)qt(q k)&'(q)dq k (5.1 1)

& u, i l
X & = f uk((q)X(q)dq (5.12)

Matrix elements of the resolvent operator of Hi for out-
going particles may also be expressed as a summation over
bound and resonant states, and an integral over a continu-
um of scattering functions. This result follows immedi-
ately from the spectral representation of the resolvent
operator, Eq. (5.6), defined with k in the upper half plane,
when this resolvent, as a function of the wave number k,
is analytically continued to the lower half of the k plane
and the integration contour that appears in (5.6) is de-
formed as explained in the preceding discussion. In this
way, we obtain the following expansion:

m

(bound states)

, &u, ly&+
1

k —k
(resonant states)

&0 lu„, &, , &u„
1

k —k„

+ f &+lu„&, , &u„l»d .z1
2 2 (5.13)

The expansion coefficients are given in (5.11), (5.12), and (5.10), and

&@
l

u i & = f qp*(q)u i(q)dq,

@*(q».i(q k'+')dq k'

00 I(4(e„)= f 4"(q)sess(q)dq

(5.14)

(5.15)

(5.16)

Again, since N(q) and X(q) are arbitrary functions, we are justified in writing the expansion

m

(bound states)

1
u i(q) z u i(q')+

(resonant states)

1
u„i(q;k„) z u„i(q', k„)

k —k„

1+ f u,i(q) u, i(q')dz .
C '

k —z
(5.17)

It must be kept in mind that, when using these expan-
sions for the calculation of transition amplitudes or ma-
trix elements, one must be careful to define the integrals
of resonant and scattering states appearing in (5.17) with
the wave numbers in the upper half plane and then contin-
ue them analytically to k„or z in the lower half plane in
order to obtain physically and mathematically sound re-
sults.

VI. GAMOW STATES
OF A DELTA SHELL POTENTIAL

IN THE MOMENTUM REPRESENTATION

The properties of resonant states in momentum repre-
sentation discussed previously are illustrated with a simple
example. These results are compared with the well-known
properties of Gamow functions of local short ranged po-
tentials in position representation. The so-called delta
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FIG. 1. The straight line with slope —1 is the integration
contour C in the wave number plane k that appears in Eqs.
(5.10) and (5.14). The dashed line shows the way in which the

original contour along the positive real axis is deformed into the
lower half of the plane, passing over the proper resonant poles
(circles) to obtain the new contour.

with k in the upper half of the k plane and then it is
analytically continued to k„ in the lower half of that
plane.

The existence condition for solutions of (6.4} is the van-
ishing of the Fredholm determinant, which, in this case, is
given by

~(+)(k) 1
2k f sin qa
ma o k2 —q2

(6.5)

b,c+'(k) = 1+ e' sinka .
ka

(6.6)

Therefore, the integral equation (6.4) has an infinite
number of solutions of the form

The integral in (6.5) is also defined with k in the upper
half of the k plane. The integration is readily performed
to yield

u„o(q;k„)= t/'2!nn„(k. —„) z sinqa,
1

k„—q

where k„ is a root of the transcendental equation

(6.7)

shell potential is particularly well suited for this purpose,
since it is local and short ranged in position representa-
tion, while it is separable of rank one in momentum repre-
sentation.

In position representation, the delta shell potential is de-
fined as

ik„a .1+ e " sink„a =0 .
k„a

(6.8)

—ik„a
Multiplying both sides of (6.8) by e " and writing the

exponential in terms of trigonometric functions, the ex-
istence condition (6.8) may also be written as

(r
i

V
i

r'}= A5(r —a)5' '(r —r') .
2ma

(6.1)
sink„a i +c—osk„a =0 .

The momentum representation of the potential (6.1) is

Ji(p/'~} Ji(p'/~}
(P}

@ma i 0 i p

na

%riting

k„=~„—I y„,

XIi (P') (6.2)
with ~„and y„real, and separating real and imaginary
parts in (6.8), we obtain the set of coupled equations

where ji(x) is the Riccati-Bessel function of order l.
In this case, the Lippmann-Schwinger equation (2.11)

for the partial wave u„i(p) is

u„i(q;k„)=

27n 2y„a+e " cos2~„a —1=0

2zn y„a .+e " sin2v„a =0.

(6.9)

(6.10)

x f ji(q"a)uni(q" k)dq" k„.
When A, is positive, the solutions of (6.9) and (6.10}are

of the form

We recall that fiq =p.
In what follows we will solve (6.3) in the particular case

of l =0: and

a„=— m. +5„(A,)
1 4n —1

a 4
(6.11)

2A, ~ 5(q —q')
u„o(q;k„)= 2 2

s q'a dq
a 0 k q' k„

y. = 1

2a
4n —1

~+25„(A,) tan25„(A, ) (6.12)

x sinq "au„o(q",k)dq"
0 n

(6.4)
with n=1,2,3,4, . . . , and

0&5„(A,) & —.
We seek a function u„o(q;k}, of the real variable q and

the complex variable k, such that it satisfies (6.4) when the
integral on the right-hand side of this equation is defined

The resonant state u„o(p;k„) is normalized according to
(6.11)
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This expression may be simplified with the help of (6.8) and (6.9):

1+ e' sinka = [1+1,—i 2k„a] .
ka

(6.25)

Substitution of (6.25) in (6.24) yields

1 4A,
lim (E E„)—p p' =

E E„" E —Ho Ma (1+A, i—2k„a)

I /2
n 4

2 sinqak„—q2 ~Ra ( I+1,i—2k„a)

1/2
n ~ J

2 2slnq a,k„—q'

(6.26)

d u„o(r)
+k„'u„o(r)——5(r —a)u„o(r) =0, (6.27)

which are regular at the origin and behave as pure outgo-

ing waves for r larger than a. At r =a, the function

u„o(r) is continuous, but its derivative is discontinuous so
as to satisfy (6.27),

which is the product of two Gamow functions correctly
normalized.

In position representation, the resonant states in a delta
shell potential, with i=0, are the solutions of the radial

equation d„,(r;k„)=/2))/rr l j)(gr)u ~)q;k)dr/ r

In the example we are discussing, we must evaluate

1/2
2

u„o(r;k„)=
7T

2iL,

a (1+A, i 2k„a—)

~ sinqr sinqa
dq

~ ~

~

k„

In Sec. IV, we found that resonant states in momentum
representation are transformed to position representation
according to

dr a+

du„o(r)

dr
+au„,(a) . The integration yields

ik„r=Xsink„ae ", r &a . (6.29)

When the solution (6.29) is inserted in (6.28), we obtain
the existence condition for solutions of (6.27),

sink„a[A, —ik„a]+k„a cosk„a =0 . (6.30)

Combining the two terms proportional to k„a into one ex-

ponential function, it is verified that (6.30) is equivalent to

A solution of (6.~8) satisfying the boundary condition

stated above and the continuity condition is

ik„a .
u„o(r)=Ne " sink„r, 0&r &a

f ~ sinkr sinqa dq= sinkae' ", r &a
0 k q

e' sinkr, r &a,

u„o(r;k„)= 2A,

a (1+1, i 2k„a)—
1/2

ik„a .
e " sink„r, r &a

1/2
2A, ik„r

a (1+1,)—i 2k„a)

which, when substituted in the expression for u„o(r;k„),
yields

ik„a .1+ e " sink„a =0,
k„a

(6.31) in agreement with (6.29) and (6.32).

2 i 2k„a
2ik„a s1Il knae

e " sin k„rdr+i
0

This yields

i2k„a
N„. [k„a —sink„ae " ] =1 .

2k„a

Simplifying with the help of (6.30), we obtain

&a= 2i,
1+1,—i 2k„a

1/2

(6.32)

which is the existence condition for solutions of the in-

tegral equation (6.4).
The normalization condition for Gamow states accord-

ing to Peierls and Hokkyo' is

VII. SUMMARY

In this paper, Gamow states in momentum representa-
tion are defined as right solutions of a homogeneous
Lippmann-Schwinger equation for purely outgoing parti-
cle states. This condition makes the problem non-self-
adjoint. Therefore, resonant states are eigenfunctions of
the Schrodinger equation in momentum representation be-

longing to complex energy eigenvalues with a negative im-

aginary part. Although there is no difficulty of principle
in extending the theory to include the Coulomb interac-
tion, in order to avoid unnecessary complications, it was
not considered here.

The potential Ui(q, q') was approximated by means of a
separable potential of rank Xi, and the Lippmann-
Schwinger equation was solved with this potential for NI
arbitrarily large. It was found that resonant states in
momentum representation are square integrable functions.
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This is in sharp contrast with the weB-known properties
of resonant states in position representation which are
waves of exponentially increasing amplitude.

Some-properties of resonant states in momentum repre-
sentation are the following:

(i) The adjoint (left solution of the integral equation) of
the Gamow state function is the same function rather
than the complex conjugate.

(ii) The norm of a resonant state is the integral of the
square of the Gamow function u„)(q;k), defined with k in
the upper half of the wave number plane and then analyti-
cally continued to k„ in the lower half of the plane.

(iii) Bound and resonant states form a biorthonormal set
with their adjoints.

(iv) Matrix elements of quantum mechanical operators
between properly normalized resonant states and arbitrary
states are obtained as integrals defined with the wave
number k = (2mE/I)I ))~ in the upper half of the k plane.

(v) The position representation of a Gamow state is ob-
talIlcd fl'OIn lts 111OIIlcIltllIn I'cp1'cscIlta't1011 as 'tllc Follrlcl'
transform of u„)(q;k) defined with Imk&0, and then
analytically continued to k„. The momentum representa-
tion of a Gamow state is obtained from its position repre-
sentation in a similar way.

(vi) The norm of a Gamow state is independent of the
representation. In fact, with the help of (iv), it was shown
that the norm of resonant states defined in this work is
equal to the norm defined by Hokkyo' and Rorno'5 in po-
sition representation.

It was also shown that, although Gamow state func-
tions in momentum representation are square integrable,
Gamow states are unnormalizable in terms of the integral
of the modulus squared of the state function. It is possi-
ble to define a normalized momentum probability density
in terms of

~
u„)(q;k„)

~

. However, since Imk„~0, the
expectation values obtained with this probability density
correspond to purely incoming particle states rather than
to Gamow states. When we try to define the normaliza-
tion integral in terms of

~nI Ii

with Imk~o, it coxresponds to outgoing particle states,
but when the integral is analytically continued to the
Gamow state wave number k„, it vanishes. Therefore,
when we try to calculate expectation values of quantum
mechanical operators as the analytic continuation to k„of
the integral

f f u„'I(q;k}OI(q,q')u„)(q, k)dq dq'

defined with Imk&0, the results are finite, but cannot be
normalized.

Following a standard procedure, it was shown that a
square integrable function may be expanded in terms of a
set containing bound and resonant states, and a continuum
of scattering functions of complex wave number.

Finally, to illustrate these results with an example, we
discussed the properties of resonant states in a potential
shell, both in momentum and in position representation.

ACKNOWLEDGMENTS

We are grateful to M. Fortes for useful criticism and
the suggestion of the example. We also thank M. Berron-
do for several useful discussions and Sir Rudolf E. Peierls
for his critical suggestions and his interest in this work.
This work was supported in part by Instituto Nacional de
Investlgaciones Xucleares Mexico.

APPENMX

It will be shown that:
(XI )

(i) The location of the poles of the resolvent of H&
and the collision matrix SI in the wave nu~ber plane k is
determined by the zeros of the determinant bI+'(k) of
l —I(.',+'(k).

(ii) The zeros of b, ')+'(k) are located on the imaginary
axis and in the lower half of the momentum plane k in-
cluding the real axis.

(NI )
The restriction of the resolvent of H) to the 1th wave

satisfies the integral equation

~

~

NI N(
5(q —q } (l)r i (I) (&)+ r

())( ) q z 2 + 1 . 1 g g f$ 'q $$
()

f$
+lE—g k +lE—g

1 PP

()v)) q dq
k +i@—HI

(Al)

which 4as the solution

where

g (+)(k)=u —I 6 '+'(k) =( I —I(". I+'(k) }u

The inverse of A I+'(k) is

J(,+)(k)
g (+'(k) —'= detu .

g(+)(k)

A I+'(k) is the arithmetic complement of A I+'(k), and
hi+'(k) is the determinant of l —X I+'(k).

Once the resolvent (A2) is known, the S) matrix is
readily obtained

S,=trI~ ', -)(k)(a ',+'(k))-'I —(X,—l) . (A4)
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From Eqs. (3.12) and (3.13), the matrix elements
Gp~+~ (k) are holomorphic functions of k for all finite
values of k when the functions, '"(q) are entire and
Holder continuous, in this case A t+ (k) and A I+'(k) are
also holomorphic for all finite k. It follows from (A2),
(A3), and (A4} that the poles of the St matrix and the
resolvent

by m ~I and subtracting, we get

rrt »t[Got (k»}—Goi '(k„) ]rn„t=0.
The symmetry relation

G oi '«» ) =G 'pi '( k—:}

brings (A8) to the form

m»l(k» ) [6Ol (k» ) —6 Ol ( k» )]m»l(k» ) =0 .

(A8)

(A9)

(+)Gpi (k„)m„t——u m„t.
Taking the adjoint of this expression

(+)tm „tG pt (k„)=m „tu

(A6}

Multiplying (A7) on the right by m „t and (A6) on the left
l

in the wave number k plane are determined by the zeros of
the determinant b,I+'(k). '

Now, since det(u)&0, the condition

bI+'(k„)=0
is a necessary and sufficient condition for the existence of
solutions of the homogeneous linear equations

The matrix in square brackets is anti-Hermitian, and
may be brought to diagonal form by means of a unitary
transformation. Calling Got+' and m„t the transformed
quantities,

[Go! (k ) G—ot '( —k„')]„=0.

Since m»&0, there is at least one value sp of the index s
for which lm„t,

~

'&0, then

[Got+'(k„)—Gpi '( —k„")],, =0.
«t us write relation (A10) explicitly for the case when

Imk„& 0:

p so [(Rek )2 (Imk )2 2]2+4R k )2(I k )2 so (A 1 1)

Rek„=O . (A12)

Since the integral on the left-hand side of this equation is
a positive definite quantity and Imk„& 0, it follows that

When Imk„(0, we get a similar expression in terms of
the difference of two positive definite quantities; there-
fore, for Imk„negative or zero, condition (A9) can be sa-
tisfied with Rek»&0.
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