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Quasiadiabatic three-body dynamics of deuteron stripping and breakup reactions
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A convenient new method, the quasiadiabatic approximation, is developed for the standard
three-body model of deuteron-induced stripping and breakup. The approximation gives the breakup
wave function at "coincidence" (r„=r~} directly as the solution of a simple differential equation
with a source term that depends on the elastic channel wave function. The derivation assumes only
that the internal Hamiltonian of the broken up deuteron can be replaced by a constant, eL, , whose

value depends on the c.m. angular momentum 1.. No approximation restricting the relative n-p an-

gular momentum is needed. The quasiadiabatic approximation reduces to the Johnson-Soper adia-

batic approximation if eL, is replaced by —ed, the internal energy of the bound deuteron. The adia-
batic approximation for the elastic channel wave function gives an estimate of the quasiadiabatic
approximation source term. The behavior of the coincidence breakup wave function in the nuclear

interior {previously calculated using a coupled channels method) is well explained by the quasiadia-

batic approximation with the use of a simple prescription for eL. The separation of internal and

external breakup, and the "L=9"effect are easily explained by the use of the quasiadiabatic ap-
proximation. The decrease of the coincidence breakup wave function at large distances is not repro-

duced by this approximation. In applications to stripping calculations the quasiadiabatic approxi-
mation coincidence wave function gives a marked improvement over the Johnson-Soper adiabatic

wave function, and it seems promising for practical calculations. This is tested by means of a previ-

ously described distorted-wave Born iteration applied to the adiabatic wave function. The rather

lengthy distorted-wave Born iteration adiabatic calculations agree with the stripping derived by cou-

pled channel calculations and give a good description of the long-range features of the coincidence

breakup wave function. The stripping comparisons are complicated by the necessity of allowing for
"closed" breakup channels, which are absent from the coupled-channel comparison, optional in the

distorted-wave Born iteration adiabatic approximation, and fully included in the quasiadiabatic ap-

proximation. The empirical use of phenomenological local deuteron optical potentials is discussed.

I. INTRODUCTION

Deuteron stripping theory shares the inherent vagueness
of other direct reaction theories, ' caused by the approxi-
mate restriction of the dynamical analysis to a very small
model space. A further traditional question in criticisms
of the standard distorted waves (DW) theory of stripping
concerns the large, loose structure of the deuteron. Thus,
in the DW approach the proton-neutron relative motion is
taken to be that of an unmodified deuteron. To remedy
this defect, improved analyses of deuteron-nucleus reac-
tions usually apply some three-body picture, in which the
relative motion is affected by the interactions with the tar-
get nucleus.

Several truncated coupled channel (CC) calculations
have been constructed which omit rearrangement from
the three-body model and which introduce discretized rep-
resentations of the deuteron breakup continuum. Howev-

er, these calculations are sufficiently lengthy so that it has
not been possible to obtain a general survey of breakup ef-
fects from them, not even from the recent extensive work

by the Kyushu group. ' The CC calculations typically
analyze the three-body continuum with respect to proton-
neutron relative momentum. Great complications are
caused by long range continuum-continuum interactions
among different k values.

We present in this paper an approximate closed-form

version of the CC three-body theories, which is simple
enough to clarify many aspects of stripping and perhaps
even to be used for the practical analysis of experiments.
Our new approach emphasizes the three-body wave func-

tion P(r, R) at coincidence, with the relative coordinate
(see the notation in Sec. II) chosen to have the value r =0.
By this restriction, and by use of an average energy Z for
the breakup continuum, we obtain a closure theory for

g(O, R) that entirely avoids the complications and detail of
the CC method. In particular, discretization is avoided.

The coincidence wave function P(O, R) only has relative
orbital angular momentum 1=0. Although it certainly
does not describe all aspects of the three-body dynamics, it
suffices for the calculation of stripping. Because the n-p
interaction V(r) has short range, the exact post form ma-
trix element for (d,p) reactions,

(X,' '(r, )P„(r„)
~

&(r)
~
1b(r, R)),

is dominated by the function g(O, R). The coincidence
wave function also does not describe the asymptotic re-
gions of configuration space that contribute to the deute-
ron breakup cross section. But here again, the exact post
form matrix element for breakup,

&X,
' '(,)X.' '( .)

~

&( ) ~q(, R)),
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generates all the required asymptotic amplitudes. Once
again, this matrix element contains the short range opera-

tor V(») and it is dominated by g(O, R). We can expect an

improved theory of f(O, R) to yield interesting modifica-
tions of post form breakup calculations.

Because ouI' closuI'c theory I'cprcscnts thc continuum by
a single, average excitation energy (in each partial wave),
it resembles the adiabatic theory of stripping. " It also
uses the standard adiabatic theory as a starting point for
calculation. For these reasons we refer to the new theory
as quasiadiabatic (QAD).

To some extent the QAD theory goes beyond previous
CC work. It incorporates some effects of breakup angular
IIlonlcn'ta l & 0. It also lllcorpola'tcs soIIlc effects of cl0$8d
channels, which have breakup energies c'(kl&E. The
latter effect is seen to cause sensitive modifications of
stripping cross sections. Phase relations in the construc-
tion of the cross section are particularly strongly affected
by closed channel contributions.

Thc plcv1ous CC and ad1abatlc thcor1cs a1c rcvlcwcd 1n
Sec. II A. The QAD theory is derived in Sec. II 8, leading
to Eq. (2.26), on which all our applications are based. Nu-
merical calculat10Ils and comparisons w1th thc CC results
of Farrell, Vincent, and Austern (FVA) (Ref. 4) appear in
Sec. II C. Section GD describes a simple improvement of
the QAD theory by averaging with respect to the excita-
tion energy e. A more involved improved theory is also
described there, which restores much of the CC momen-
tum analysis in an iterative framework (DWBIA). Section
III applies these theories to a (d,p) stripping example.
Section IV describes several qualitative aspects of breakup
effects in deuteron dynamics including the sensitive conse-
quences of rather weak coupling to breakup and the plau-
sibility of phenomenological "deuteron optical potentials. "
Section V is a summary.

II. TREATMENT QF THE THREE-BODY M()DEI.

and H is rewritten in the convenient form

H=T, +h, +U, (~R+-,'r ~)~U„(~R——,'r ~),

for which the Schrodinger equation is

(E —T~ —h„—Up —U„)g(r, R) =0 .

(2.3)

(2.4)

The above model is often truncated to relative angular
momentum I =0, for which

[E—Tz —h„—U(», R)]g(»,R)=0, (2.5)

U(rR)—= f d()'.,(Up+U„) .
4m

(2.6)

Our approach to the analysis of {2.4) or Q.5) is related
to the adiabatic approximation, therefore it is helpful to
begin by describing that approximation. For the 1=0
case, the model Schrodinger equation (2.5) is rewritten

[E+Cd —Tz —U(», R)]p(», R) =(h„+ed)1((»,R),
where

h„pd(»)/» = edpd(»)/»—,

(2.7)

(2.8)

Rnd pd(») ls tllc dcutcloI1 radial wave fllIlctloll. Tllc cIltlrc
set of n-p eigenstates is defined to be

I (()d{»),p(k, »)I, (2.9)

h, $(k, »)/» =E(k)p(k, »)/» =(fi k /M)p(k, »)/» . (2.10)

In the adiabatic approximation it is conside«d p»u»ble
that the higher-energy terms of the set (2.9) occur ln tp

with low pIobab111ty; on this bas1s thc right-hand s1dc
(RHS) of (2.7) is expected to be small, and it is omitted.
%'e get

[E+ed—Tz —U(», R)]f (»,R)=0 . (2.11)
A. Theoretical background

Our analysis concerns the simple three-body model in
which a proton and a neutron move with respect to a sta-
tionary target "nucleus" according to the Hamiltonian

H=Tp+T„+V(
~

rp —r„~ )+Up(»p)+U„(»„) .

Relative and center of mass coordinates are introduced,

(2.2)

This is now an clastic scattering problem for the coordi-
nate R, in which v appears only as a parameter. This
problem is solved separately for each value of », using par-
tial waves in the vector R and outgoing wave boundary
conditions. Evidently the» dependence of P defines a
rather complicated wave packet composed of the states
(2.9).

In a CC approach to the 1=0 case, 1i) is expanded im-
mediately in the set of eigenstates (2.9), in the form

1((»,R)= g aL~[YL~(R )/»R] Pd(»)fr, (R)+ J dk P(k, »)gI (k,R)
I.hf

(2.12)

in which al ~ are coefficients determined by the incident plane wave part of 1{). Substitution in (2.5) gives the coupled
cquatlons

[E+ed T1,(R) (d/ U fd)]f—L(R)= —I dk(d/ U
/
k)gL(k R),

[E—e(k) —Tl(R)]gl(k, R)—(2/Ir) I dk'(k
[ U

/

k')gL(k', R)=(2/~)(k
/

U
] d)f1(R) .

(2.13)

(2.14)
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The potentials in (2.13) and (2.14) are matrix elements of
U(r, R) between the n-p eigenstates of the set (2.9). It is
typical of three-body calculations that these potentials are
somewhat long ranged. This is especially true of the
continuum-continuum potential (k

I
U

I
k'), which de-

creases as R if k =k'. In most calculations by the CC
method the continuum integrals in the coupled equa-
tions are converted to sums, by some process of discretiza-
tion that approximates the integrands in a finite series of
momentum bins. Such sums have a finite upper limit,
often chosen so that E —e(k) )0.

The coincidence wave function required in stripping
calculations, as explained in the Introduction, is obtained
from the CC calculation as

11)(O,R) =N +aL~R 'YLM(R )[fL (R)+hi (R)]
LM

where

N= lim [r 'Pd(r)],
r —+0

hL(R)—= f dkt(k)g, (kg),
t(k) = lim [(t)(k, r)/(}I)d(r)] .

r —+0

(2.15)

(2.16)

(2.17)

(2.18)

B. Quasiadiabatic approach

Then the exact Schrodinger equation (2.4) for the three-
body model becomes

(E —Tz —h„—Up —U„)[PQ(r,R)+Qg(r, R)]=0. (2.20)

If the elastic channel wave function is described in terms
'of an exact optical potential (perhaps quite different from

This new approach provides an immediate approximate
calculation of the coincidence breakup functions hL, (R) in
(2.15), without evaluating the individual continuum func-
tions gL (k,R) of the CC method, without discretization,
and without truncating the spectrum of breakup energies.

For a derivation we first distinguish elastic and nonelas-

tic (breakup and rearrangement) parts of g(r, R) by means
of projection operators

(2.19)

phenomenological fits) by the equation

[E—T~ —h„—U,p„(R)]P1()=0,
then (2.20) can be rearranged in the form

(E —Ttt —h „—Up —U„)Q(tl)

(2.21)

where

Up (R ) + U„(R ) = UJs (R ) = U (0,R ) (2.24)

is the familiar Johnson-Soper potential (JS) of adiabatic
stripping theories. It is interesting that the strong, short-
ranged JS potential on the left-hand side (LHS) of (2.23) is
related to the long-range, continuum-continuum coupling
terms, introduced in the CC equations (2.14) by the use of
r, R coordinates. It is the restriction to r =0 that isolates
the short-range part of these interactions when (2.23) is
derived. The strength of the JS potential on the LHS of
(2.23) emphasizes the importance of continuum-
continuum coupling. ' '

Under the restriction r =0, Eq. (2.23) only treats the
1 =0 part of the breakup spectrum, rather like our sketch
of the CC approach in Sec. II A. The r k0 limit
suppresses the 1&0 parts of the exact equations (2.20) and
(2.22). On the other hand, l&0 effects are not omitted
from our theory; in principle they influence the deter-
mination of the optical potential introduced in (2.21).

A more complete QAD analysis introduces the 1=0
partial wave expansion of (2.12) in the exact equation
(2.22). Using the notation of the CC approach, this exact
equation becomes

= [Up(rp)+ U„(r„) U—,p, (R)]PQ . (2.22)

The inhomogeneous equation (2.22) determines the break-
up and rearrangement function Qg, if by some means we
have available a suitable approximation for PP or U,p, .

One simple way to convert (2.22) to a quasiadiabatic
(QAD) equation for the coincidence wave function is to
approximate the operator h, by an average excitation ener-

gy e for the breakup continuum Qg and then set r =0.
This yields

[E—&—Tz —UJs(R) ]QP.=o= [UJs«) —U.pt ]PC.=o

(2.23)

[E Tt. —UJs(R)]hL,—(R)—f dk t(k)e(k)gL (k,R)=[UJs(R) U,p, ]fr.(R) . — (2.25)

In our QAD approximation e(k) in (2.25) is now replaced
by e and removed from the integral, which then reduces
by definition [see (2.17)] to hL(R). Since the breakup
spectrum is affected by centrifugal repulsion (see Sec.
II C), we allow F to depend on L, and we therefore get

[E Et —TL —Uzs(R—)]hL(R) =[UJs(R) Uop, ]fL (R) . —

(2.26)

Equation (2.26) is the basic equation of the QAD ap-

proach. The remainder of this paper is devoted to appli-
cations and tests of (2.26). Throughout this article we
substitute l =0 adiabatic elastic radial wave functions
fL (R) for fL(R), with U,p, determined from fL (R) by
the equation of motion.

C. Calculations

Numerical solutions of the exact CC equations are
given by FVA for the case E =22.9 MeV, with
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Up(rp) = U„(rp)
+2p 2= —(50 MeV)(1+0. li)e (2.27)

with a=0.25 fm '. Five continuum bins are used, and
the relative energy e(k) is cut off at e,„=E T. he
Coulomb potential is omitted. It is convenient to apply
the new analysis to this same case, for ease of comparison.
In fact, we will see that comparison with FVA has some
limitations, because the new QAD theory has no upper
cutoff of the breakup energies e(k).

It is already known that the adiabatic approximation of
(2.11) is in reasonable agreement with fz(R) from the CC
calculation. "' We therefore take f~(R) and the associat-
ed operator U,p, from the adiabatic wave function

(r, R), by projection on the ground state wave function
Pd(r). Thus the source term on the RHS of (2.26) is ob-
tained from an adiabatic model in which UJs and U,z, are
included consistently. Indeed, with this source term the
solution of (2.26) would return the adiabatic coincidence
breakup function hz (R), if eL were replaced by —ed,

'

this serves as a test of the numerical calculation. More
appropriate values of eL then yield improvements of
hL, (R).

Our choice of the average excitation eL is guided by
FVA experience. The range of excitations in a CC theory
is in the first place controlled by the bound-continuum
matrix element (k

~

U
~

d), which drops strongly for e(k)
above about 20 MeV. We see further that as L increases
the centrifugal repulsion in the kinetic energy operator
TL, (R) limits the contributions from continuum functions
that have small net energies E —e(k). On this basis, we
estimate eL -10 MeV for small L, decreasing gradually as
I. increases. A suitable expression for the FVA case is

eL =(10 MeV)exp( —L/12) .

This rough estimate is easily modified, as needed.
Figure 1 shows the source potential

(2.28)

Usource ( ~ ) opt

required in the RHS of (2.26), calculated from fL(R)
under the assumption that U,p, is treated as a (trivial) lo-
cal equivalent potential. " Of course, such a local
equivalent U,p, fluctuates with respect to R and it has
some L dependence. The calculation shows that (a) U„„„,
is weak, with a maximum depth of about 10 MeV, (b) the
real part of U„„,«changes sign at the nuclear surface, at
R =5 fm, (c) the L dependence of U„„„,is mild, primari-
ly a gradual weakening of the small imaginary part as I.
increases.

Figure 2 compares calculations of
~
hl (R)

~

for several
variations of eL and from the CC calculation. Although
the approximate hL(R) functions do not decrease ap-
propriately at large R, it can be noted that in the nuclear
interior the detailed structure of the approximate func-
tions improves progressively as el becomes more realistic.
The exact hr (R) decreases at large R, as we see in (2.17),
because the coincidence functions are mixtures of gL (k,R)
functions with different momenta. Since the mixtures
consist of functions that start in phase near R =0, they
decrease in magnitude as R increases. In the approxima-

20—
50urce Potent I o I

for L = 0

I 0 —
]I

OP 0—

J I

~ ImII
I l

I

I I I

I

I

—IO - I

—20
0 8

R (fm)

I

l2

FIG. 1. Local equivalent source potential U(O, R)—U, , for
the QAD calculation, evaluated for partial wave L =0.

tion, each outgoing function hL(R) has a single momen-
tum kL, and therefore its magnitude remains constant at
large R.

(h (R,k))= 1

2n +1 hI (R,kI +jb), (2.29)

Coincidence 8reakup 0/ave Functions

0.25-

Ct

c
0.25—

(o ) Adiabatic

(b) QAD, Eo=5MeV

(c) QAD, 6'o= lOMev

- 0.25—
(o) Adiobotic

0 I I

(b ) QAD E'o 5 Mev

(c) QAD, Ea= IOMeV

0
0 10

(d) Coupled Channels

0
20 30 0

R (fm}

upled Channels

20 30

FIG. 2. Coincidence breakup functions
i
hL(R)

i
for partial

waves L =0, 6 from (a) adiabatic theory, (b) QAD with ZL, =(5
MeV)exp( —L/12), (c) QAD with eL =(10 MeV)exp( —L/12),
(d} CC theory.

D. Averaging, iteration

The mixture of momenta in the exact hL(R) is pro-
duced by the energy integral term in (2.25), the exact
equation derived from the CC theory. The mixture of en-
ergies in this term introduces a mixture of momenta in hl .
We lose this effect when all the gL(k, R) functions are
given the same energy. A possible ad hoc compensation
for this defect is to calculate breakup functions hl (R,k)
for several values of k and then average with respect to k.
We use the expression
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where b is some plausible small increment of momentum.
The strong potential UJs in the nuclear interior helps to
keep hL (R,k) in that region stable as k varies. We see in
Fig. 3 that (hL, (R,k) ) at large R is damped by the averag-
ing.

A more fundamental improvement of the k mixture in
hL is obtained from the original CC equation (2.14),
which we consider in the form

0.50

0.25—

0
0 IQ

R (fm}

I

20

Averoged 0 A 0 Breakup Function

for L = 0

[E e(k—) TL—(R)]gL(k,R)=—(k
~

U(r, R)
~

~/ll (r,R)),2

(2.30)

FIG. 3. Averaged QAD function
~

(hL, (R, k))
~

from Eq.
(2.29), using n =4, b =0.05 fm &I. =(10 MeV)exp( —L/12),
for partial wave L =0.

with

Pz(r, R)=gd(r)fL(R)+ f dk'P(k', r)gL, (k', R) . (2.31)

=—(k
~
U(r, R) U(O, R) —

~ gl (r,R)) .2
(2.32)

Equation (2.30) can be used as a starting point for itera-
tion" of any approximate 1ijl that is inserted on the RHS.
But first, a kind of "distorted waves" modification of
(2.30) is introduced, by subtracting U(O, R)gL (k,R) from
both sides, so that

[E—e(k) —Tt (R) U(O, R)—]gL (k,R)

The Johnson-Soper potential U(O, R) in (2.32) largely can-
cels the continuum-continuum coupling from the RHS of
(2.30) and transfers it to the LHS of (2.32). At this stage
(2.32) has a tempting formal resemblance to the basic
equation (2.26) of the QAD approximation. But the
resemblance is limited. For example, if we put adiabatic
wave functions on the RHS of these equations, then (2.32)
contains the entire wave function PL, whereas (2.26) only
contains the elastic fP term.

A formal solution for hl (R ) in the once iterated-
distorted-wave Born adiabatic method (DWBIA) is

00

hL(R)= —f dk t(k)[E+ e(k) T—t. (R) —U(O, R)—] (k
~
U(r, R) U(O, R) tijL—(r,R)) . (2.33)

&&(k
~

U(r, R)—U(O, R)
i gt (r,R)) . (2.34)

It is important that (2.33) collapses back to the solution of
(2.26) if e(k) is replaced by a constant, e(k)~eL. This re-
placement allows the use of closure to express hl. (R) as
the operation of a simple Green's function on the quantity

(1 P)[U(r, R—) U(O, R) JQ—L (r,R)

evaluated at r =0. Then there is considerable cancellation
between the large potentials U(r, R) and U(O, R) in the
evaluation of this expression. Obviously, use of the
correct e(k) in (2.33) affects this cancellation; this is the
principal dynamical effect that is lost by the e approxima-
tion in the QAD method. Thus at the cost of a rather
tedious calculation, the DWBIA iterated method can in-
corporate much of the k dependence of the exact coupled
equations. It seems of sufficient accuracy to use as a stan-
dard to test the simple quasiadiabatic approach. Figure 4
gives an example of an hI (R) function computed by this
method.

It is helpful to recognize that the k integration in (2.33)
can be separated into two parts, with e(k) &E and
e(k) ~E. We obtain open and closed channel parts of
hL (R), respectively. By this procedure, since the replace-
ment~f e(k) by eL in the Green's function of (2.33) re-
turns the QAD approximation, we are able to isolate the
open channel part of the QAD calculation of ht (R),

max—I dk t(k)[E+ —eL —TL (R)—U(O, R)]

This truncated, open channel part of hl. (R) is more suit-
able than the full QAD hr (R) for comparisons with previ-
ous CC work that omitted closed channels. All our
DWBIA calculations, with or without the e approxima-
tion, limit the k integration in the above manner.

0.50
Iterated DWB I 4 Breokup Function

for L= 0

I

lQ
I t t

20
R {frn)

FIG. 4. Coincidence breakup function
~
hl. (R)

~

from
DWBIA iterated theory of Eq. (2.33), with closed channels ex-
cluded by an upper cutoff of the integration at k =0.72 fm
for L =0.

III. STRIPPING CROSS SECTION

We calculate stripping cross sections for the same case
treated by FVA. The various radial wave functions
under consideration, such as Fl (R), are inserted in place
of the deuteron distorted wave in a suitable zero range
DWBA code. The proton distorted wave is computed
with the (non-Coulomb) optical potential of (2.27). The
captured neutron is chosen to have 1=2, with a wave
function computed with a real potential that has the same
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FL, (R)=fL (R)+br (R) (3.1)

do not agree so simply, we see the possibility of a
discrepancy in the relative phase between fz(R) and
hL (R) at the nuclear surface. In this regard, the cross sec-
tion of Fig. 7, for the simple QAD method, does not agree
with the CC result, and the averaging introduced in Fig. 8
does not help very much. However, the DWBIA iteration
in Fig. 9 does agree well with the CC calculation.

IO

geometry as (2.27), but a depth adjusted to the neutron
binding energy Ez„——6.6 MeV, for which Q =4.4 MeV.

The stripping angular distribution is a sensitive test of
the three-body model, because it is affected by phase rela-
tions among the component wave functions of our approx-
imations. Our standard for comparison is the self-
consistent CC calculation of FVA, checked more recently
by Shepard, Rost, and Kunz. ' Figure 5 gives the CC
stripping cross section and the corresponding cross section
obtained using I'L (R) from the JS adiabatic approxima-
tion. Figure 6 is an analysis of the JS cross section into
separate contributions from the elastic fP and breakup

hi. components. Figure 7 is the stripping cross section
obtained with the hz (R) functions from Eq. (2.26), using
(2.28) for eL. Figures 8 and 9 use the "improved" hL (R)
functions of Sec. IIC. Figure 10 applies the DWBIA
method of Sec. IIC to construct the open channel part of
the QAD approximation of Eq. (2.26). We recall that
throughout Figs. 7—10 the elastic wave function fL (R) is
taken from the adiabatic approximation, and only the
hL, (R) functions vary.

In all of Figs. 7—10 the breakup contribution to strip-
ping is much larger than in the adiabatic calculation of
Fig. 6, in agreement with CC calculations by Iseri et al.
It is interesting to see in Figs. 7—10 that the differential
cross sections calculated from the hL(R) breakup func-
tions alone agree well with each other. Since the stripping
cross sections obtained with the total radial functions

10

b

O. l—

0
I

60
I I

l20

Hc. ~ (deg)

l80

FIG. 6. Stripping cross sections as in Fig. 5, computed with
the total adiabatic wave functions F& (solid line), only the elas-
tic adiabatic functions fL (dashed line), and only the breakup
adiabatic functions hL, (dotted line).

IO

Stripping Cross Section
from Q A D Theory

We trace the discrepancy between the QAD and CC in

Figs. 5 and 7 to the closed channel inconsistency discussed
earlier. Figure 10 shows that good agreement with CC is
restored, if (2.34) is used to remove closed channel parts
from the QAD theory. Of course, in both cases some
closed channel contributions correctly belong in the
theory. It is not clear at this stage whether the discrepan-
cy between Figs. 5 and 7 should be attributed to the ab-
sence of closed channel parts in Fig. 5, or to some exag-
geration of closed channel parts in Fig. 7. Further calcu-
lations would be needed to settle this question.

b

O. I

0I—
Breakup &

Part Pnly r
/

0
I

60
I I

120

ec ~ (deg)

IBO

FIG. 5. Stripping cross sections for the case described in the
text taken from the CC theory (Ref. 4) (solid line), and the adia-
batic theory (Ref. 11) (dotted line).
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FIG. 7. Stripping cross section as in Fig. 5, computed with
the @AD theory, using eL

——(10 MeV)exp( —L/12). Total wave
function (solid line), only breakup wave function (dotted line),
and elastic wave function same as in Fig. 6.
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FIG. 8. Stripping cross section as in Fig. 5, computed with
the averaged QAD wave functions of Eq. (2.29), as in Fig. 3.
Total wave function used (solid line), only breakup wave func-
tion (dotted line), and elastic wave function same as in Fig. 6.

FIG. 10. Stripping cross section as in Fig. 5, computed for
the QAD theory, using Eq. (2.34) with closed channels excluded

by an upper cutoff at k =0.72 fm '. Total wave function used
(solid line), and only breakup wave function used (dotted line).

IV. DISCUSSION

= Up(R)+ U„(R)—U,p, , (4.1)

as we see initially in Eq. (2.23). This potential is weakly

l0
Stripping Cross Section
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FIG. 9. Stripping cross section as in Fig. 5, computed with
the DWBIA iterated theory of Eq. (2.33), with closed channels
excluded by an upper cutoff at k =0.72 fm '. Total wave func-
tion used (solid line), only breakup wave function (dotted line),
and only elastic wave function (dashed line).

A. Aspects of the coupling to breakup

The elastic channel is coupled to the coincidence break-

up wave function by the rather weak difference potential

Usource UJS Uopt ~

attractive inside the nucleus, and it has an even weaker

long range repulsive tail in the exterior region. These
properties are understandable: The JS potential U(O, R)
tends to be strong and short ranged; it is the sum of the
short-ranged interactions of the nucleus with a neutron
and proton that remain near each other. On the other
hand, either in the calculation of U,~, or of the rather
similar folded potential (d

~

U
~
d), the separation of the

proton and neutron assumes large values, of the order of
the size of the deuteron. " This geometrical looseness pro-
duces potentials U,~, or (d

~

U
~

d) that are more diffuse
than U(O, R) and that are weaker in the nuclear interior.
This characteristic geometry of U„„„,produces the dis-
tinction between interior breakup and exterior breakup,
noted before. " The zero of U„„„,at the nuclear surface
leads to the "l.=9 effect" of FVA; ' '" breakup becomes
very small at L =9, because at that angular momentum
the first maximum of fl (R) falls near the zero of U„„„,.

The significance of the weak tail ( —1 MeV) of U„„„,is
tested by imposing a cutoff of U„„„,at R =5 fm, where
the real part goes through zero. We find this cutoff en-
tirely eliminates breakup in partial waves with L &9.
Omission of the repulsive tail does not affect hL (R) in the
interior region in lower partial waves, but it does slightly
increase the asymptotic amplitudes of the (unaveraged)

hL (R) functions for low I.. Omission of the tail also elim-
inates the oscillations of

i hl. (R)
~

in low partial waves in
the region R ~ 5 fm, these oscillations therefore must re-
flect the standing wave patterns in the scattering wave
functions fL(R) in the region R & 5 fm.

Although, U„„„, is weak, the coincidence breakup
wave functions hL(R) for penetrating partial waves are
very large in the nuclear interior, as much as one-half or
two-thirds of the elastic wave functions fL (R). We attri-
bute this to a "resonance" effect. Thus we see in the prop-
agators in the LHS of Eqs. (2.21) and (2.26) a tendency for
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f~(R) and hL, (R) to have nearly equal kinetic energies in
the nuclear interior, with the potential difference
U(O, R) —U,z, compensated by the energy shift e. There-
fore oscillations of fL, (R) and hI. (R) tend to remain in
phase throughout the interior, and the effect of U„„„,is
enhanced. This close momentum matching does not con-
tinue outside the nucleus. [A related effect in more com-
plete CC calculations ' is that momentum mI'smash in
the exterior causes channel functions gI (k,R) for large k
to be confined to the interior region. ]

The resonance coupling of elastic and breakup channels
implies that the effects of breakup might be sensitive to
small changes of the physical model, perhaps to absorp-
tion or to Pauli modifications. Questions such as these be-

long in future work. However, straightforward adiabatic
calculations have been used already" to test changes of
the absorption strength in the single-particle potentials Up
and U„. Increased absorption reduces fL(R) and hL (R) in
the nuclear interior, but it leaves their ratio essentially
unaltered.

then

[E+Ed TL(R) —k L(R—)]F1(R)=0, (4.2)

PL (R)=(f~+hI ) '[E+ed —TL(R)](fL+hL ), (4.3)

where (3.1) has been used. From the definition of U,~„
and from (2.25) and the definition of U„„„„weobtain an
exact expression

+L, (R)= U(O, R)+(fg+hI )

x [edhI. + f dk r(k)e(k)gI (k,R)] . (4.4)

Using the e approximation of (2.26) this local equivalent
potential simplifies to

(R)L= U(O, R)+(ed+PL)hL, l(fL, +hL, ), (4.5)

B. Relation to phenomenology

Phenomenological DWBA calculations of stripping use
local deuteron optical potentials that are fitted to deuteron
elastic scattering data. Let us ask how this procedure is
related to the three-body theory. Because hL(R) in the
three-body theory vanishes at large R, the asymptotic am-
plitudes of the elastic radial wave functions fI (R) and the
complete coincidence functions FI.(R) of (3.1) must be
identical. Our question about phenomenology is then
whether a local potential fitted to the asymptotic data ac-
curately generates one of these wave functions, and if so,
which one? The adiabatic approximation gives a clear
answer to this question: The FPD(R) functions (which are
asymptotically invalid) are exactly governed by the local
potential UJs(R); however, the fL (R) functions are fitted
by the somewhat nonlocal" adiabatic potential U,p, used
in this paper. How far does this conclusion persist when
the more accurate QAD method is used? Let us attempt
an answer by deriving the (trivial) equivalent local poten-
tial O'L(R) for the improved I'I (R) functions obtained
here.

If we define EI (R) to be the solution of the Schrodinger
equation

which we further improve by inserting the localized, aver-
aged (hI. ) functions discussed in Sec. IIC. Thus

+ (R)= U(O, R)+( + )(& &l(f + &h ) ) . (4.6)

Figure 11 shows the second term of (4.6), which is a
correction to U(O, R), using eL from (2.28). We see espe-
cially in (4.3) that the fluctuations in Fig. 11 are indica-
tions of nonlocality in the calculation of I'I (R), because
nonlocality displaces the zeroes of the numerator and
denominator from each other.

Of course, all the above expressions tend to be dominat-
ed by the strong, local JS potential. Nevertheless intro-
duction of the weak correction potential shown in Fig. 11
suffices to generate agreement with elastic scattering data
and to produce a good approximation to the total coin-
cidence wave function IiI(R). The correction slightly
reduces the real potential and the imaginary potential in
low partial waves. As to nonlocality, the fluctuations in
Fig. 11 are of the same magnitude as fluctuations" in the
corresponding equivalent potential for fI (R). It is not ob-
vious that phenomenology generates either function more
accurately than the other.

V. CONCLUSIONS AND OUTLOOK

ZO—
Correction Te&m in Phenomenological

Potential for L = 0
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FICx. 11. Correction term in local equivalent potential of Eq.
{4.6), with eL ——{10 MeV)exp{ —I./12), for partial wave I.=0.

Our principal conclusion is that the QAD approxima-
tion provides a good, simple treatment of breakup effects
in the dynamics of deuteron stripping and breakup. This
approach focuses on small neutron-proton separations,
with r =0 and with relative angular momentum 1=0. It
produces the coincidence three-body wave function
g(O, R), which tends to dominate the calculation of the
matrix elements for breakup and stripping, as discussed in
the Introduction. We primarily considered stripping. Of
course, approximate finite-range improvements of our ex-
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treme zero-range theory are available. '

The QAD method clarifies our qualitative understand-
ing of properties of the three-body model of deuteron-
induced reactions. For example, complete CC calcula-
tions, which analyze the breakup wave function with
respect to relative momentum k, need to deal with long
range, continuum-continuum interactions, with tails that
decrease as R . However, although we do find that in-
teractions in the continuum are very important, our em-
phasis on r =0 avoids the long range interactions. Our
treatment of the continuum is dominated by the strong,
short-range JS potential U(O, R). The QAD method also
shows that the elastic-breakup coupling reverses sign at
the nuclear surface; this clarifies, for example, the familiar
"I.=9 effect."

It is clear that the hL(R) coincidence breakup wave
functions are largest in the nuclear interior, where they
have nearly the same momenta as the elastic wave func-
tions fI(R). At larger radii the hL(R) are essentially
decoupled from the elastic channel. As we proceed fur-
ther outward, the coincidence functions hL (R) decrease in
magnitude, because as the separately moving nucleons
travel onward, they gradually move apart, an obvious
property of a three-body system.

The importance of the fI(R) and hl. (R) functions in
any actual stripping calculation depends on the degree of
momentum and angular momentum matching between the
entrance and exit channels. Good matching emphasizes
contributions from the nuclear surface region and the ex-
terior, poor matching allows greater importance to interior
contributions. Since the hL (R) functions are largest in the
interior, they tend to play a limited role in well-matched
stripping reactions. A further suppression of hi, (R) con-
tributions in stripping occurs because it is in the grazing
partial waves that dominate stripping that we find the
sign reversal in the hl, fL coupling, mentioned earlier.
Additional suppression of hI (R) occurs if the U~ and U„
optical potentials are given more realistic, i.e., larger ab-
sorption strengths than in (2.27). Since the IiL (R) for low
partial waves originate in the nuclear interior, more ab-
sorption in that region reduces these hL functions overall.
On the whole, the breakup continuum seems to give rather
modest contributions in well-matched stripping reactions;
presumably poor matching requires a more careful treat-
ment.

The QAD theory depends significantly on the average
energy parameter eL. For example, as compared with the
adiabatic theory, use of plausible el. values increases the
magnitude of hl. (R) and it more than triples the purely
breakup cross section for stripping, in agreement with CC
calculations. On the other hand, although a correct
correspondence with CC calculations requires eL to de-
crease with respect to I., the precise details of this de-
crease do not seem to matter much. A more careful

analysis of the el parameter would be helpful.
We noted a difficulty in comparing stripping calcula-

tions using the QAD theory with previous CC results, ap-
parently because of a discrepancy in the relative phase be-
tween fI (R) and hL (R) at the nuclear surface. We trace
this to closed channel effects in the QAD theory, which
are missing from the comps, rison CC calculation. Howev-
er, while it is interesting to find these additional effects in
the approximate QAD theory, their accuracy is uncertain.
It would be helpful to compare the QAD approximation
with more complete CC calculations. Such a comparison
might be easier at higher bombarding energies, because as
E increases the entire important range of e(k) tends to be
included in the open channels, with E —e(k) & 0.

Our study of the basis for phenomenological deuteron
optical potentials in Sec. IV 8 is inconclusive. It is not yet
clear from this work whether local phenomenological fits
to deuteron elastic scattering more nearly generate the
elastic wave function fz(R) or the entire coincidence wave
function I'I. (R). However, a possible improved phe-
nomenology seems indicated: to fit elastic data by means
of a JS potential with I.-dependent corrections, as in (4.5)
and (4.6).

One advantage of a closed-form theory is that the ef-
fects of parameter changes are easily seen. For example,
we see that an increase of ed, to make the "deuteron" more
tightly bound, would tend to make U,z, more like U(O, R)
and therefore would reduce the breakup source function
U(O, R) —U,~, . Increasing the bombarding energy seems
to have more complicated effects. An increase of E on the
RHS of (2.26) tends to weaken U,~, and this enhances the
coupling to breakup; however, an increase of E on the
LHS of (2.26) tends to reduce h~. Moreover, as E in-
creases, the centrifugal cutoff of el must move to higher
I. values. Overall, an increase of E probably leaves the
breakup contribution per partial wave nearly unchanged,
but it extends this effect to more partial waves.

We note here that a recent paper by Thompson and
Nagarajan' introduces a related closure method to treat
the continuum in a three-body model of Li breakup.

¹teadded in proof. We also note a formal similarity
between the present paper and a paper by S. Mukherjee, S.
Ray, and S. K. Samaddar, Frog. Theor. Phys. 55, 482
(1976). Their Eq. (2.40) resembles our Eq. (2.26). Howev-
er, the two papers have very different points of view.
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