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Using the E-matrix formalism, we give a simplified reformulation of the S-wave rank-one inverse
scattering problem. The resulting Cauchy integral equation, obtained differently by Gourdin and
Martin in their first paper, is tailored to rational representations of F{k)=kcot{6O). Use of such
F(k) permits a simple but general solution without integration, giving- analytic form factors having
a pole structure like the S matrix that are reducible to rational expressions using Pade approxi-
mants. Finally, we show a bound state pole condition is necessary, and makes the form factor
unique.

Finite rank NN potentials are used primarily because
they simplify calculations of structure and reactions. '

Such potentials are being developed to reproduce NN
phase shifts with increasing accuracy. In particular,
rank-two and rank-three interactions possessing form fac-
tors that are rational functions of momentum have recent-

ly been introduced. It would be desirable for there to be a
convergent procedure for constructing analytic low-rank
potentials that (a) are interchangeable with meson-
theoretic potentials in an appropriate energy range and (b)
have a simple and direct connection with two-body data.
Such a procedure would simplify realistic nuclear calcula-
tions, in some cases decisively, while helping to justify
the use of finite rank representations, known not to be ful-

ly equivalent, at higher energies, to local potentials. ' In
an approach which emphasizes the first goal, recent work
based upon new Pade approximant methods ' for bound
states can generate rational form factors for a variety of
local potentials such as sums of Yukawas. Here we focus
upon the second goal. We present a new formulation of
rank-one inverse scattering theory that yields simple ana-

lytic form factors, and is designed to take advantage of
the discovery that rational representations of the scatter-
ing function F(k)=k cot(5o) can be accurate. Relating
to the first goal, we employ our formulation to construct a
rank-one potential phase-shift equivalent to a Yukawa po-
tential.

Despite an interesting attempt with a rank-one interac-
tion, it is generally accepted that at least a rank of two is
required to reproduce one salient feature of the NN in-
teractions: a long range attraction together with a strong
short range repulsion. ' A rank-two inverse scattering for-
malism, that of Fiedeldey, already exists. It allows for
the initial introduction of a somewhat arbitrary long range

attraction such as could be constructed using the formula-
tion we present here. We will address the rank-two in-
verse scattering problem in another paper.

We present a E-matrix formulation of rank-one inverse
scattering theory that accomplishes several things:
simpler physical and mathematical analysis than previous
formulations direct use of the known solutions of the
inhomogeneous Riemann boundary value problem;" and
presence of data in the form of k cot(5o), which provides a
context for introducing Pade approximants, facilitates
analytical continuation, and enables a pole analysis of
form factors not previously carried out. When the scatter-
ing function F(k) is rational, we obtain the form factor
without integrations. For a rational S matrix S(k) we find
that the poles of S(k) and of the squared form factor h (k)
coincide and are of the same order in the upper k plane,
except at the bound state pole, ik~, and we obtain a gen-
eral bound state pole condition: The order of the pole in
h(ikii) must be one less than the order in S(ikii). This
condition makes h (k) unique, and as seen in our example,
is easily enforced.

Our work is aligned most closely with the initial ap-
proach of Gourdin and Martin (GMI). ' Using the
Schrodinger equation, GMI arrived at our Eq. (5), which
was analyzed extensively and partially solved for rational
F(k). The authors did not make use of Riemann bound-
ary value theory, and their lengthy discussion of rational
F(k) did not utilize a bound state pole condition. Subse-
quently, Gourdin and Martin (GMII) (Ref. 12)
transformed Eq. (5) into a form which enabled them to
find a complete solution, with h (k) proportional to

sin5(k)exp ——P I dpp
2 5(p)

p2 —k~
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Although this expression can presumably be evaluated
when F(k) is given in rational form, it would appear im-
mensely more practical to understand the simpler ap-
proach we present and to avoid integrations altogether.
Subsequent work has led to the same expression for h (k).
Bolsterli and MacKenzie obtained this result starting with
the T matrix, ' while Chadan and Sabatier explicitly re-
ferred to the Riemann problem while supplying extensions
and more rigor to GMII. ' Our approach uses the same
analyticity properties of scattering states but differs sig-
nificantly in detail by working with a Cauchy integral
equation. Coupled with the high accuracy of rational
scattering functions, our formulation provides a powerful
tool for inverse scattering problems.

We specialize to S-wave scattering states and an attrac-
tive interaction. The repulsive case is easily traced
through upon changing the sign in Eq. (1). Given a
scattering function F(k) =k cot(5p), we find the rank-one
interaction producing F(k), if it exists, by (a) solving the
S-wave K-matrix equation for a rank-one interaction, and
(b) treating the formal solution as an integral equation in
the squared form factor, h(k)=g (k). The S-wave in-
teraction is

Vp(k', k) = — g (k')g (k),
M

where A'= c = 1 and M/2 is the reduced mass. We solve

Kp(k', k, E)= Vp(k', k)

m
2

Vp(k' y)Kp(y k, E)
+ dyy E —y /M

(2)

where Cauchy principal values are understood, obtaining

K (k', k,E)=-
M 1+2~J(ME)

where we have defined h (k) to be an even function and

J(co)= f dy—00 ~ y
(4)

glvlng

h(y) '
1+2~ f dy =2~ F(k)h(k) .

Equation (5) can be put in the standard form of the dom-
inant integral equation of the Cauchy type for which a
general solution is known. " We write

(6)

with a(k)=kcot(5p), b(k)=ik, and f(k) becoming the
constant

f—=f(k)=, ——f dyh(y) .

In turn, Eq. (6) is reducible to a special case of the inho-
mogeneous Riemann boundary value problem, which is to

The fully on-shell K matrix is related to the scattering
function by

Kp(k, k, k /M) = 2/[vrMF(k)]—,

f (k)
a (k)+b (k)

(10)

Finally, the form factor is given upon application of the
well-known Plemlj formulas, " also used to establish the
connection between the Riemann problem and our integral
equation:

h (k) =y+(k) —y-(k),

. f dy =P+(k)+P (k) .

As with local interactions the S matrix links functions an-
alytic in D+ and D

If G and t are Holder continuous, " then the existence
and uniqueness of solutions are determined in a straight-
forward way, and depend upon the index of 6,

7= indG =5[arg(G) ]/2~,
where the total change of the argument of G(k) over the
real line is denoted by b, [arg(G)]. The number X is easily
calculated in terms of phase shifts, becoming

X=2[5(0)—5( ce )]/~ .

For nucleons, it is realistic to assume there is no zero ener-

gy resonance and
~

5(0)—5(oo) (m, and we shall make
these assumptions here. Then g is twice the number of
bound states. ' If X=O, the requirement that h(k)~0
as k~ oo makes the solution unique. If7=2, our method
will be shown to give the unique form factor consistent
with the binding energy.

The general algorithm for solving the Riemann problem
is somewhat complicated, especially in the case X&0, re-
quiring the introduction of ancillary functions. " When
F(k) is rational, the algorithms become simple. As the
basic application of our formulation, we specialize in what
follows to a rational F(k). Then

c(k)
d(k)

c+(k)c (k)

d+(k)d (k)
(12)

where polynomials c+,d+ (c,d ) have roots in the
upper (lower) half plane. Then g=m+ n+, where m+-
(n+ ) is the number of zeros of c+ (d+ ), and the number
of bound states is half the difference between the number
of poles and zeros of the S matrix in the upper half plane.
When poles and zeros are counted here, it is their multi-
plicities that are added.

The decomposition of 6 in Eq. (12) permits the use of

find functions P+(z) and P (z) that are analytic, respec-
tively, in the upper (D+) and lower (D ) half complex
plane with limiting values on the real k axis, P

—(k), that
satisfy

P+(k) =G (k)P (k) + t (k) .

The coefficient of the Riemann problem is

a (k) b(—k)
a(k)+b(k) '

which is simply related to the S matrix by G (k) =Sp (k).
The free term t (k) of the Riemann problem is proportion-
al to the scattering amplitude:
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c+(k)
(k) —f (k). (14)

We require P-(Oo)=0 to restrict to solutions h(k) that
also vanish at infinity. Consequently, by the generalized
Liouville theorem, R (z) can be an arbitrary polynomial of
degree X—1, written Rz i(z), but with R &(z)=0. The
P+—(k) are found by taking the real limit of z, z~k +—

, of
those functions analytic in D+ and D

For a detailed discussion of the solution both for 7=0
and X=2, we make use of the function

the generalized Liouville theorem. " One writes the
Riemann equation as

d (k) c+ (k) d (k)
k

P+(k) — P (k)= g(k) . (13)
c k +

The terms on the left are boundary values of functions an-

alytic in D+ and D . It is convenient to specify the ana-

lytic structure of Eq. (13) by requiring F(k) to have the
form PL, (k )!QM(k ), just [L/M] in Pade approximant
notation, where PL, (k ) and QM(k ) are polynomials in

k of degrees L and M. We require M &L to ensure the
vanishing of 5(k) at infinity. Any such F(k) leads

uniquely to a rational S matrix with the structure dis-
cussed following Eq. (16), and conversely. Then the right
side of Eq. (13) is the rational function

fQM(k')/d+ (k)c (k),

expressible as g+(k) —P (k), where

g+(k) =x (k)/c (k),
degree[x(k)] &degree[c (k)],

and

q-(k) = —[y+(k)]' .
Equation (13) expresses the equality on the real axis of
functions analytic in D+ and D, which must therefore
together represent an entire function R(z). On the real
axis,

d (k)
R (k) = P+(k) f+(k)—

c (k)

h (y)y'
A (z) = I+2m. f dy (15)

which is analytic '" in D+ and D for the rational solu-
tions h(v) we obtain. A(z) has the limits A (k) [or
A+(k)] on the real axis approached from D+ (or D ),
given by

h (y)y'A+(k)=1+2m f dy +2m ikh(k) . (16)

c (k)=d+(k)"=d+( —k) .

Furthermore, the zeros must be distributed in each of the
functions c+ (k) and d+(k) symmetrically about the ima-

ginary z axis.
We are now able to examine the symmetry and analytic

structure of the solution h (k) as a consequence of proper-
ties of the S matrix, including well-defined behavior of
S(k) at the poles and real zeros of the analytically contin-
ued rational solution h(z). If h(z) has a zero for real
z=+k„then A+(k, )=A (k, ) and 5(k, )=0. The ex-
istence of a zero of 5(k), analyzed in detail in Ref. 7, can
be associated with a strong short-range repulsion, and will

not be dealt with here. Then h(k) has no zeros and no
sign changes for real finite k, and if attractive, satisfies
h (k) & 0. A solution with h (k) & 0 for finite k would cor-
respond to a repulsive interaction, as seen by starting with
a different sign in Eq. (1).

The explicit solution is given from Eqs. (14) and (11):

The S matrix

S(k) =exp[2i5(k)]

is written from Eq. (5) as

S(k) =A+(k)/A (k) .

Since A+(k)=A ( —k), it follows that S(—k)=1/S(k),
while from unitarity, S(k)*=1/S(k). It follows by sub-

stitutions from Eq. (12) that we may require

c+(k)=d (k)*=d ( —k)

and

h(k)=I[x(k)c+(k)+x(k)*d (k)]+[c (k)c+(k) —d (k)d+(k)]Rx &(k)j/d (k)c+(k) . (17)

When X=O, then R i(k)=0, and h(k) is an even func-
tion. When 7=2, then h (k) is real and even only if R 1 (k)
is imaginary and odd. Hence, Ri(k)=ikCi, where Ci is
real. The bound state condition, which we establish now,
is used to determine C1. A negative energy bound state
pole would occur at z=ik~, with k~&0. It follows
directly from the Schrodinger equation for the separable
interaction that A (ik~ )=0. Since D+ represents the
domain of continuation of the function A (k), then ik~ is
a pole of the analytically-continued S matrix. Clearly, ik~
is a simple zero of A(z) because dA(z)/dz&0 if z&0.
The numerator of $(k) at ikii becomes 4m. h(ik~)k~, —
and therefore if N is the order of the pole of S(ik~ ), then
N —1 is the order of the pole of h (ikz). From Eqs. (12)

and (17) it is evident that h (k) has the same poles as those
of S(k) in D+, and that these poles have the same order
unless the remaining constant Ct in R i(z) is assigned the
value that creates a common factor k +kii in the
numerator. This bound state condition in practice is sim-

ple to apply.
Our first example is for a shape-independent F(k) con-

sisting of the first two terms in the effective range expan-
sion. The choice of scattering length a & 0 corresponds to
a low energy approximation of the triplet np interaction
with one bound state. Then

c+ ——(ro/2) [k —i (a+P) ][k i (a —P)]—
and c =1, where a= I lrv and
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FIG. 1. The form factor g(k) for the shape-independent ap-
proximation using S] np parameters. The exact curve (solid
line) and Pade approximants shown: [1/2] (dashed line) and

[4/5] (dotted line).

200 400
Ec m (MeV)

FIG. 2. The scattering function F(k)=k cot(50) for the at-
tractive Yukawa with 'So np parameters (solid line) and its [3/2]
approximant (dashed line). The exact curve and [4/3] approxi-
mant coincide in the energy range shown.

P= [1 2ro/a]—'/ /ro

If we assume ks ——a —P, then

h(k)= (18)
[k +(a+P) ]

Although the form factor g (k) =Vh (k) is hardly rational,
Pade approximants of g(k) converge rapidly, as seen in
Fig. 1, where the values' a=5.414 fm and ro ——1.7SO fm
are used. Here, Pade approximants express g(k) as a
combination of functions of the type (k +yJ )

The shape-independent approximation illustrates two
other cases. When a&0, as characteristic of the 'So np
state, we find P & ct, and the poles shift so that X=0. The
analysis, simpler because the bound state pole condition is
not needed, results in the same expression for h (k) given
in Eq. (18). Finally, when p=0, S(k) has a double pole at
ikz. The bound state pole condition, easily applied, lowers
the order of the pole of h (k) at iktt to unity. The solution
is still given by Eq. (18) with p=0. These simple results
may be compared with those given in Ref. 10.

As a final example we consider a Yukawa potential that
fits the 'So np effective range parameters. ' Figure 2

shows our rational least squares fits of Ii (k) that we com-
puted for this potential. The [4/3] approximant curve is
indistinguishable from the data in the energy range
shown, while the [3/2] approximant gives a reasonable fit
for E, &120 MeV. The [3/2] approximant to F(k) is
exactly reproduced by

EX ) A2+ CX3k
h(k)= k'+k', (k+k»)'+k»

u2 —o.3k+ 2 2(k —k2i) +k22

with a i
——0.0201873 fm ', a2 ——0.000811496 fm

a3 ———0.0175540, k i
——0.0667608 fm ', k2i ——0.585295

fm ', k22 ——1.20083 fm '. Here, rational approximants
to g(k) would be most easly obtained by least squares
methods. '
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