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The sensitivity of inclusive observables in heavy ion collisions to the nuclear equation of state can be
tested with the Boltzmann equation. %e solve the Boltzmann equation, including mean field and Pauli

blocking effects, by a method that follows closely the cascade model. We find that the inclusive pion pro-

duction is insensitive to the nuclear equation of state, contrary to recent claims.

A recent article by Stock et al. ' suggests that the nuclear
equation of state might be measured by the pion production
cross section in heavy ion collisions. Interpretation of the
pion yield data is based on comparison with cascade models
of heavy ion collisions; a disagreement between the cascade
prediction and the measured pion yield is taken as evidence
for collective effects. Clearly, there is a need to develop a

I

calculable model that goes beyond the cascade assumptions,
and includes collective field effects and essential quantum
effects.

An obvious candidate for a better theory is that based on
the Boltzmann equation with a self-consistent potential
field, and with a collision integral that respects the Pauli
principle. The equation to be solved for the single-particle
distribution function f(p, r) is
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The left-hand side of the equation, set equal to zero, is the
Vlasov equation. The collision integral on the right-hand
side depends on the nucleon-nucleon cross section o-. The
right-hand side differs from the classical collision integral'
by the Pauli-blocking factor (1—f)(1 f). A theory based-
on Eq. (1) has much to recommend it, as it exhibits proper
behavior under a broad range of limiting conditions. %'hen
the collision term dominates, hydrodynamics becomes valid.
Without the collision term, the theory is classical time-
dependent Hartree theory, which reproduces quite well the
behavior of the quantum theory. The mean field U can
be an arbitrary function of density, making it possible to
model a variety of equations of state. A theory of heavy
ion collisions should give correct physics for noninteracting
nuclei, namely, vanishing time dependence to the internal
properties. This is achieved easily with Eq. (1), putting a
constraint on the function U. In contrast, there is no con-
sistent way in the cascade description to treat Fermi motion.

Although the cascade model is inadequate as a complete
theory, it provides a framework for solving the Boltzmann
equation. The distribution function f (p, r ) is represented
by test particles, i.e., the density of the test particles is the

l

measure of f, as in Ref. 4. Then the Vlasov equation is
solved by propagating the particles according to the
Newtonian mechanics,

p = —O'U (2a)

(2b)

If the number of test particles were equal to the number of
cascade particles, the collision integral on the right-hand
side of Eq. (1) would be given by the cascade collisions of
the test particles, except for the Pauli-blocking factor. This
difference is implemented by randomly permitting or block-
ing the particle-particle collisions called for in the cascade
according to the probability (1 f,)(1—f ). —

An individual heavy ion collision, simulated by the cas-
cade, has too few particles to usefully determine either the
mean field or the Pauli blocking probability. We shall use
an ensemble of cascade simulations to build up an adequate
number of test particles. Our cascade program evolves the
collision by fixed time steps, so there is no difficulty in gen-
erating ensembles at definite times. In practice, cascade
comparisons use ensembles of simulations anyway to im-
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Ifnum(pi&) =
n;

(3)

prove the statistics, so the major change is in the ordering
of the loops in the program.

We now address the question of how accurately U and f
need to be calculated. Since we are testing inclusive effects
of changes in the equation of state, a rather coarse mesh in
U should suffice. We determine U using cubes of 2 fm on
a side. The number of particles in each cube is used to
determine the density and U for the entire cube. Statistical
fluctuations in the particle number cause fluctuations in U,
which produces a systematic error because of the nonlineari-
ty in the U(p) relationship. The results we present are
based on ensembles of 10 simulations. At normal density,
there is an average of 13 particles in a test cube, for a fluc-
tuation of 30%. For our parametrization of U, Eq. (5)
below, this produces less than a 20 MeV systematic bias in
U over the densities of interest.

The occupation factor f cannot be calculated in the same
way because a six-dimensional space divided into fixed
cubes would require too much storage. Instead, we exam-
ine the neighborhood of the final state phase space whenev-
er the cascade simulation calls for a two-particle collision.
The phase space density in the vicinity of one of the final
state particles is calculated as

I I ~ I
/

I I ~ ~ ) I ~ ~ f g ~ I ~ ~ $ ~ ~ I ~

I ~ I I I I I I I I I I I I I I I I I I I I I I0
0 5 IO I5 20 25

TIME (fm/c)

FIG. 1. Maximum density for Ca+ Ca collisions at E~»=360
MeV/nucleon as a function of time. The solid, dashed lines show
the densities for the stiff and soft equations of state. The result for
a super, soft equation of state, with U(p & po) = U(po) is shown as
the dotted line.

This procedure has a systematic error arising because f„„
can exceed one but the blocking factor cannot. Some feel-
ing for the importance of this can be obtained by examining
the average blocking factor when f = 1 for the distribution
function. We choose as our test volume cubes of sides
p = —1 fm ' and '7 r = 3 fm, contianing about four parti-
cles in the ensemble sum. The average blocking factor aris-
ing from the Poisson statistics associated with four particles
is P = 0.96, which is adequate for our purposes.

The potential function U will be chosen with the Skyrme
parametrization:

stiff: U(p = —124p/po+ 70.5(p/po)' MeV, (sa)

soft: U(p) = —356p/po+303(p/po) ~ MeV . (Sb)

Here (p, r ) are the phase space coordinates of the particle,
0 (p, r) is a volume of phase space centered on (p, r), n; is
the number of particles in that volume in 1th simulation,
and N is the total number of simulations. The volume is
chosen as a cube in momentum and coordinate spaces,
which allows a rapid computation of Eq. (3). The particle
collision is blocked with a probability P given by

P = 1 —max[0, 1 —f„„(1)]max[0, 1 —f„„(2)] . (4)

Both these potentials produce proper saturation of nuclear
matter, and both potentials are about 50 MeV deep at ordi-
nary density. The stiff potential produces a compressibility
coefficient K =375 MeV, while the soft potential has a
more realistic compressibility coefficient K = 200 MeV.

Collisions governed by the soft equation of state should
reach higher central densities, and we found this to be the
case, as may be seen from Fig. 1, showing the maximum
density as a function of time. The kinetic energy should
also be higher, but within the limitations of our statistics the
effect was not significant. Our pion production is calculated
in a delta resonance approximation, so we do not want to
emphasize the absolute production rates here, but merely
compare the effect of various model assumptions. Table I
shows the pion production calculated for two of the energies
reported by Stock et al. , 360 MeV/nucleon and 722
MeV/nucleon. The first column shows the results with
Pauli blocking of nucleons, and the second column the
results with the Pauli blocking turned off. Evidently, the
Pauli blocking of nucleons has a small effect on the yield.
At first this seems surprising; one might expect the Pauli
blocking to have a substantial effect. However, if the sys-

TABLE I. Yields of negative pions in Ar+KC1 collisions.

Laboratory
energy

(MeV/nucleon) Stiff

Equation of state
Stiff, no

Pauli blocking Soft
Cugnon
Cascade' Exptb

360
722

1.1 + 0.05
3,3 + 0.07

1.17 + 0.06
3.4+ 0.06

1.3 + 0.04
3.4+0.08

0.8
3.3

0.2
1.6

' Reference 5, quoted in Ref. 1. Reference 1.
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tern reaches equilibrium the pion abundance is determined
by the temperature at freeze-out. At the collision energies
we consider, the Fermi gas temperature is only slightly
higher than the temperature of a Boltzmann gas of the same
energy. The predicted yield for the soft equation of state,
including blocking, is shown in the third column. There is
an increased yield for the soft equation of state, but the ef-
fect is rather small. We believe that the insensitivity is a
consequence of the system reaching statistical equilibrium
while expanding to densities below nuclear matter density.
As long as the system is in thermal equilibrium at some in-
termediate density, it will be difficult to see residual traces
of the physics at earlier stages of the collision. This paral-
lels the situation in the study of the early universe: it is
hard to look back farther than the point of last equilibrium
at the time of nucleosynthesis. Of course, the situation is
more promising for the heavy ion collisions because the to-
tal entropy production depends on the equation of state.
From entropy considerations we expect and find an increase
in pion yield for the softer equation of state. Ho~ever, the
effects on pion production are evidently too small to mea-
sure.

Turning to the absolute magnitudes of the yields, we see
from the comparison with the experiment in the last column
of Table I that our calculations predict too much cross sec-

tion. This contrasts with a recent study by Kitazoe et al. ,
who found a smaller cross section using a more ad hoc re-
cipe for the mean field and Pauli effects. We are presently
studying the various cascade assumptions to understand the
discrepancies between various codes. For example, we do
not Pauli block a nucleon associated with a pion, since it is
assumed to be in a delta state. However, some of the low-
energy pion production is not mediated by deltas, and in
that case the exclusion should be applied to both final state
baryons. We have just learned of other work9' on the pion
production question using different techniques than the nu-
merical solution of the Boltzmann equation.

It appears that the present technique will be workable for
solving the Boltzmann equation down to much lower ener-
gies, where presently neither the cascade nor the time-
dependent Hartree theory is justified. If so, this would pro-
vide a very useful tool for analyzing intermediate energy
heavy ion collisons.
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