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Transitions to stretched states in the deformed limit
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The rate for the excitation of stretched states in a deformed model can be considerably smaller than in

the single particle model. In one specific case, and in an approximation in which rotational currents are
neglected, the two rates differ by a factor of (2J +I)/2, where Jis the angular momentum of the stretched
states. Thus, as has been noted by Amusa and Lawson, nuclear structure effects can explain all or a large

part of the observed quenching.

NUCLEAR STRUCTURE The calculation of the transition rates to stretched states,
e.g. , 6 state in Si, using a deformed model and comparing this with the single

particle model.

Stretched states are particle-hole states in which the parti-
cle and hole have the largest angular momenta within their
respective major shells, and which furthermore couple to
the largest possible total angular momentum. For example,
in the 1s-Od shell, the stretched state is (f7/2d5/2 '); in

the Ip-Of shell it is (g9/2f7/2 )
It has been argued that these states should be rather pure,

since no other one-particle-one-hole states could couple to
such a large total angular momentum J,i„=(j~)
+(jh) „. It was therefore surprising to find that states

with the stretched total angular momentum and parity quan-
tum number were excited with transition rates much less
than the single particle model predicted, e.g. , in some cases
by about a factor of 3.

Very recently it was noted by Amusa and Lawson' that
this could be explained as a nuclear structure effect. Refer-
ring to the 6 states in 2 Si, the authors noted that if, in-
stead of taking a simple Od5~2' configuration, one allowed
the particles to be both in the Odqp and 1s~j2 shells then
there would be considerable fragmentation of the 6
strength, and the hindrance of the strong transitions could
be partly understood.

In this work, we wish to support this point of view by
considering a deformed picture. This picture, while too ex-
treme, will show that certain features of the experiments on
stretched states can be explained —e.g. , the fact that the
quenching of the excitation strength in inelastic scattering is
greater than what one would expect from the measured
spectroscopic factors in single nucleon transfer reactions.

We take Si as an example. If one assumes that 28Si is a
closed 15/2 shell, and if one limits the particles to the Of-Ip
shell, then the J=6 "stretched" states have a unique con-
figuration [f7/2d5/2 ]

In the deformed picture, we first consider the @=6
band in which the intrinsic state is f7/2, K -7/2(d5/2 )K„-5/2

P

Values for other values of E can be expressed in terms of
this "reference" case.

In the rotational model, we write the M(6) operator for
exciting the 6 state as M(6) =M(6)»T+M(6)77 where
M(6)K is the term analogous to g&R for Ml's and arises
from the rotational (convection) current. Note that the ro-
tational term is isoscalar and hence will not contribute to the
excitation of the T=1 states in Si. This may be one

reason for the difference in results noted by Petrovich
et a/. ,

' for the pp' strength to T =0 and T =1 states.
In what follows we will neglect the rotational term and

consider only M(6)iNr. With this approximation, the ex-
pression in the deformed model for the B(M6) rate can be
related to the single particle value,

8(M6) K-6 = 21&O[f7/2d5/2 ],',M(6) „-6o)I',
where IO) is the deformed ground state of 2aSi. The expres-
sion for the single particle value is

8(M6),P
=

I $ 1&O[f7/2ds/2 ]M M(6)~O) Ii+ MNMf i
F

(2Jf +1)
I &O[f7/2d5/2 ]MM(6)A) I',

Ji

where Mean be any allowed value. We thus find

8(M6)K 6=
( )

8(M6),p= —,', 8(M6),pf +

Thus, we see that whereas in the extreme single particle
picture, the stretched states are unique, one easily obtains
large fragmentations in the deformed picture. Amusingly,
the larger the angular momentum J~ the greater is the devi-
ation from the single particle model.

For a band with E &6 for which the particle and hole
have values E, and Eh (E=E, +E&), we have

8(M6) K K„

7 5
6=IC (f7/2)K I IC (ds/2)K I

' 8(M6)K-6,

where I C (f7/2)K I is the probability that in the Nilsson or-
P

bit a the particle is in an f7/2 state with projection E~, etc.
We can now sum the strength. We are allowed to do the

unrestricted sum

However, the sum /PI Cp(d5/2) K„I' is restricted to occupied

states. Of course in the spherical limit this sum would be
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unity. Because of deformations this sum will be less than
one. For example, with a deformation 5= —0.2 the above
sum is 0.72.

This means that 26% of the single particle M(6) strength
in this model disappears because of deformation effects.
The remaining 74% gets fragmented.

As we approach the spherical limit, i.e. , replace gp by 1,
we note that

7 5
6

2 2

KpKh Ep Eh E

Hence for each E & 0 we get 2/(2Jf+ 1) of the single parti-
cle strength. For E =0 we get 1/(2Jf+1) of the strength.
Summing over E, then, this model gives us back, in the
zero deformation limit, all of the single particle strength.

The summed strength can be written as

ga(M6) = —,
' a,„X I C a(d„,)» I' .

K~, p
OCCU PlCd

For E values less than 6, we will limit ourselves to the
case where Eh= 2. The reason for this is that for 'Al

Eh= —, for the I=
2

ground state. If K„ is not equal to5 5+

in the 6 states, the spectroscopic strength for proton

transfer to these states would be zero. The value of the
square of the Clebsch-Gordan coefficients

7 5 6
2 2

Ep Eh E

are (for Eh= —,)5

1 7E =—
2 44

3 7

2 22

5 7

2 12

1
7

2

(Note that the coefficients themselves are all positive. )
Thus, for a E = 5 band, we would have (with Eh =

2 )

etc.
In the work of Petrovich et al. , one finds that the ratio of

the experimental to single particle strength in inelastic pro-
ton scattering is 0.29 for the 61 T=1 state at 14.4 MeV
and 0.10 to the 61 T=O state at 11.6 MeV. They conclude
that the difference in the ratios implies that the 6» T=0
state has a more complicated structure than the T =1 state.

In our model, the T=O ratio would not be inconsistent
with a E =5 which is dominantly [f7~2d5~2 ']» 5

—we get

13
0.09. The E = 6 band value of —,3

=0.15 cannot7 2 = 2 =
be ruled out either. The El=6 value, which is the largest
for any E band, is still smaller than the T =1 ratio of 0.29.
This indicates that band mixing is important for the T =1
states.

%e next consider the spectroscopic strength in the reac-
tion "Al(3He, d)'SSi. We refer the reader to the work of
Nann3 and Snover et al.

In a stripping reaction, the cross section is proportional to
the quantity M(J, T, ,JfTf), which is related to the spectro-

scopic factor via

M( J, T;,JfTf) = C2S(2JI+1)
2JI+1

Thus, for J=6, M= —„;alternately S=1. Evidently the

experimental values of Square of the order of 0.4 of the sum
rule values for both T =0 and T =1 states.

In the deformed model, we take Al to be a proton hole
with E= 2. For E=6, we must deposit the proton in a

Ep 2
orbit. There is only one way of doing this. Thus,

for E =6,

(2J, +1)
(2J, +1)

Including the factor of C yields a strength of 0.5 for T =0
and 0.5 for T=1.

Note that for E=6, the spectroscopic strength is —„of
the sum rule value while the M(6) strength is only —,3 of
the single particle value. Thus, there is no reason why the
M(6) fragmentation should be given by the spectroscopic
fragmentation.

For other values of E=
2 +Ep,5

5 7
2 2

s»=lc» I' 5

2

6
SK 6

Thus

S6 =—„XS,„(as before)

s, =Icy, l'( —,', )(—,', ) Xs„,
s, = lc;„I'(—,', )(—,', ) Xs„,
S3=

I cp(2 I'( —„', )(—,', ) xs„.
The spectroscopic factor data is fit best by E =6 for both

In the above C = 2, i.e., a state of isospin 0 or 1 is a

proton particle-hole 50% of the time.
As noted by Nann [who defines the stripping strength

G = (2Jf +1)C'S], the quantity M obeys the sum rule

XM=1/(2T +1) (neutron holes) IJ, for Tf = T + —,

/M = (proton holes) s —1/(2T&+1) (neutron holes)
~&

where I& characterizes the orbit of the transferred particle.
Thus in the single particle limit in which 7Al consists of a

d5g2 proton hole, and in which the transferred particle is in
the f7@ shell, the sum rules become

XM=4, for Tf=0

XM=4, for Tf=1

%e thus get the expected result that the entire sum is 8, the
number of available states in the f7~2 shell.

If we now sum over M only for states of a given JfTf, we
get the well known (2J +1) rule,

(2Jf+1) (2Jf+1)
g X,(2J+1) 48
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616
(Ml) = 8(M ), = B(M1),pJ+1

=—
„98(Ml), p

Thus there is some reduction in the rate, but not nearly
enough to explain the experiment.

We now consider a more general case in which the transi-
tion from

(fv/2iKp, .d5/2, 5/2 ) K( (f7/2iKpfd5/2, 5/2 )/f

This is not the most general case because we are assuming
C (f7/2) Q 1 . We now find, with these limitations, that

B(M1)d,r(E, Kf)

T=O and T=l, although E =5 is marginally tolerable.
Mixtures of E =6 and K =5 are certainly acceptable.

We next consider the Ml transition from the J=6, T = 1

to the J=6, T=O state.
As noted by Amusa and Lawson, ' and by Snover, " the

value of the Ml rate is much less than the single particle
value,

B(M1)/B(M1),p
=0.19 +0.03

For a K =6 band, we obtain

with gi =0.5, g, =4.706; note that f(6, 6) =1,

f(6.5) = —f(5.6) =(7)'"(3a„+g, /2)/(5g/ +g, ) .

Defining the ratio R (K;,Kf) as 8(M1)d,r/8(M1)„we
find R (6, 6) =0.73, R (5, 5) =0.36, R (4, 4) =0.16, R (3, 3)
=0.05, and R (5, 6) =R (6, 5) =0.01. This is to be com-
pared with the above experimental value of 0.19+0.03.

The Ml data can be fitted to a low E, i.e., K =4 or 5.
Alternately, band mixing of E = 5 and K =6 could also ex-
plain the data.

Looking at all the data at once, we note again that the de-
formed model gives predictions which are significantly dif-
ferent from the single particle model and which qualitatively

go in the right direction. However, the extreme deformed
picture, in which no band mixing is allowed, cannot explain
all the data at once. The deformed picture, though, pro-
vides insight into why there can be greater fragmentation of
the excitation strength [(p,p'), (e,e'), or (m, m')] than of
the spectroscopic strength.

A possible scenario which could fit all the data, transfer,
inelastic, and M1, is one in which the J=6, T=O and
T=l states consist of admixtures of E =5 and K=6
bands. Not to be forgotten is the possibility that the rota-
tional current being isoscalar could be a factor in why the
inelastic excitation of T =0 states is different than the exci-
tation of T =1 states.

We have hoped to convince the reader that the considera-
tions in this work, while somewhat crude, nevertheless help
to unravel the mystery of why the stretched state properties
deviate so much from the single particle values.

6 1 6 616
0 6 lf

! f,

Selected values of f(K, ,KI) are

1

6K' 2f(K,K)= 2+ '
g, +(1+—,K,)g, /, (&g/„ +g,„I ,
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