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We use sum rules to calculate the zeroth moment of photoeffect for a central nucleon-nucleon potential

with Serber exchange. We explore the consequence of using the full potential on this moment, and hence

on the variation of cross section with the incident photon energy. The results are compared with recent

experimental observations.
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Over the last few years there have been important
developments as well as continuing interest in applying the
formalism of hyperspherical harmonics (HH) to the study of
the alpha particle photoeffect. Levinger' and Elminyawi and
Levinger use the HH technique to obtain the alpha particle
wave function. They employ sum rules to find the mo-
ments of photoeffect, and invert them to get the cross sec-
tion. Dzhibuti also uses the HH technique to tackle the
problem of alpha particle photodisintegration, using a
square-well potential. In the present work we recalculate
the zeroth moment of photoeffect ((rp) for the Volkov po-
tential with a Serber exchange. This same potential was

used in the work of Levinger and Elminyawi. However, we
use all the potential multipoles, as distinct from the ap-
proach of Refs. 1 and 2, which consider only the first mul-

tipole. Hence the present work clearly demonstrates the ef-
fect of the full potential on a-0. We use our value of a.o and
that of o ~ of Ref. 2 (rechecked by us) to get the cross sec-
tion [o (E~)] on the incident photon energy (E„). Lastly
we compare the results with experimental observations.

In the HH technique the ground state wave function ~i )
is expanded in the complete orthonormal basis set of HH
as4

~i ) = /Uk(r )Hk(Q ) Xk(s, t )
k

Hk(Q) are the HH; the hyper-radial functions Uk(r) are
the expansion coefficients. Xk(s, t) are some suitable spin-
isospin functions. In the present work we restrict the above
expansion to the first term alone. Thus,

~i) = Up(r)Hp(Q)xp(s, t)

We note that both Up(r ) and Hp(Q ) are completely sym-
metric with respect to exchange of identical particles. For
the wave function to be antisymmetric Xp(s, t) has to be a

normalized, antisymmetric function, e.g. , a (4&&4) Slater
determinant of the individual spins and isospins of the four
nucleons. Up(r ) is obtained as a solution of the equation:

I

+ (Hp( Q )[ V(Hp( Q ) ) Up(r ) = EUp(r )
m dr2 I 2

t t

(2)
Vis the total potential of the system. Let Vbe given by

V= g V(r&)(1 —x+xPp)
I &J

Here (1 —x) is the Wigner exchange fraction and "x" is
the Majorana fraction. PJ is the Majorana exchange opera-
tor. We see

&pit) = li )

The moment era is given by

o'p= (i I [D, [H,D ]]li )
2m'

hc
(5)

In the above expression D is the dipole operator and 0 is
the Hamiltonian of the system. Owing to the presence of
the Majorana exchange operator the potential does not com-
mute with D. It can be shown using (4) that, for the wave
function (la), o-p is

op= —3m. —x i
~ X XV(r„p)r„p ~i +597 MeVmb

n r

(6)

V)2(rcos&) = x V2k(r )H2k(Q )
k

Applying the triangular inequality obeyed by the HH to the
integral over, "8" in (7) we find that only the first two
terms of the expansion (8) contribute to o.p. The major
point of difference between our work and that of Ref. 2 is
that in the latter only the first term of the potential expan-
sion is taken into account. Hence they do not consider the
full potential. Using the Volkov potential we get

ap= 59.7 —x( —119.4+40.2) MeVmb

The summation symbols "n" and "p" stand for neutrons
and protons, respectively. The numerical factor 59.7
MeV mb comes from the kinetic energy part of the commu-
tator [H,D ]. Expressing the right-hand side of (6) in

hyperspherical coordinates we obtain

2

o p = ——m —x (i ) V~2(r cos8) r cos 8 [i ) + 59.7 MeV mbtc
(7)

V~2(rcos8) is the potential between particles "1"and "2."
Since the wave function ~i) given by (la) is completely an-
tisymmetric, the potential between all particle pairs will be
equal. We now expand V~2(r cose) in the symmetric HH as
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TABLE I. The energy parameter D and the expansion coeffi-
cients X„of the present work and Ref. 2.

D (MeV)

Present work
Ref. 2

0.509
0.746

2,780
1.895

—3.407
—2.321

1For x=—
2

o-0= 99.3 MeV mb

For the sake of completeness we outline the calculation
for o- i. For the alpha particle, o- i is given by'

2'—'(I IR,'lI ) .
hc

(10)

Here (i lR,'li ) is the expectation value of the mean square
charge radius. It should be noted that 0- i does not depend
upon the potential explicitly. Using (la) we find

2
a. i = —m'—(Up(r )I r'I Up(r ) )tc
cr i=2.83 mb

We now invert the two moments to get a(E~) as a f-unc-

tion of E~. We express a. (E~) as

= w' 'exp( —w' ') QX„S„(w)
E~ n

(12)

gz„s„(0)= 0 . (13)

S„(w) are orthonormal polynomials with weight functions
as w'i'exp( —w'r ).

In Table I we present the values of A. „and D of our work
and those of Ref. 2. Figure 1 shows the respective cross-
section curves as well as the experimental results of Gibson'
(circles) and Gorbunov' (dots). The experimental error
bars are not shown because of large discrepancy between
the results of various groups for the (y, n ) reaction.

Here w = (E~—B)/D. B is the threshold of two-body break
up; B =19.8 MeV. D is an adjustable parameter with ener-

gy units, such that
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To conclude, we see that the integrated cross section (a.p)
of the present work [Eq. (9)] is closer to the experimental
result of 103 MeV mb. Elminyawi and Levinger obtain
119.4 MeV mb. We also note that the position of the
cross-section peak is reproduced more accurately, as also is
the higher energy part. We would expect the theoretical
results to improve still further if the full potential were used
to calculate the higher moments of photoeffect.

We are grateful to Professor Levinger for useful
correspondence, to the Council of Scientific and Industrial
Research for financial support, and to Professor Zickendraht
for illuminating discussions.

FIG. 1. Photoeffect cross section of alpha using the values of D
and A.„ofTable I. Present work —solid line. Reference 2—dashed
line. Experimental points —dots (Ref. 8) and circles (Ref. 7).
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