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Renormalized dipole moment operator in the second half of the 2p-If shell
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Renormalized single-particle matrix elements of the magnetic dipole moment operator for the
(2ps/q, 1fs/2, 2p, /i) space are calculated in the framework of perturbation theory involving first- and
second-order excitations from the if'/2 core. The calculated dipole matrix elements are consistent
with thc cITlpirical values deduced from thc observed M 1 transitions as well as dipole moments in
several Ni and Cu isotopes.

NUCLEAR STRUCTURE Renormalized magnetic dipole moment operator;
restricted valence space spanned by the 2p3/i, 1fs/2, and 2pi/q orbits; first- and
second-ordeI' diagrams; empirical values of the effective M 1 single-particle

matrix elements.

I. INTRODUCTION

The mass region A =57—70 has been extensively stud-
ied' both theoretically and experimentally in recent years.
A number of explicit shell-model calculations have re-
vealed that the energy spectra of low-lying-states in the Ni
and Cu isotopes can be fairly well described in the
(2p3/z, lf5/z, 2pi/2) space provided reasonable effective
two-body interactions are employed between the active nu-
cleons outside the Ni core. However, the omission of the
lf7/z orbit from the configuration space necessitates the
use of effective electromagnetic operators for a successful
explanation of various transition rates as well as static
moments. In th1s connection, Glauclemans and Koops
have recently found that the effect of the polarization of
the 1f7/2 core cannot be described simply in terms of a re-
normalization of the g factors. They have, therefore, ob-
tained the effective M 1 single particle matrix elements by
treating them as free parameters in a least-squares fit to
the recent experimental data involving 13 M1 transitions
in 'Ni, 14 M1 transitions in Cu, and 11 dipole
moments in 57-65Ni, "-"Cu.

The purpose of this paper is to demonstrate that the
empirical M1 single-particle matrix elements, which ex-

II. EXPRESSIONS FOR FIRST-
AND SECOND-ORDER DIAGRAMS

The perturbed state Lf) in terms of the unperturbed
state

i PJ~ ) is given by

)+ H
I ~)) )+ (2.1)

where we have taken zeroth-order eneI'gy in the denomina-
tor, thereby limiting ourselves to only the connected dia-
grams in the theory. "

The perturbation series for the effective matrix element
of the p operator is, therefore, given by

hibit significant deviation from the Schmidt values, can be
understood in a microscopic perspective in terms of the
contributions resulting from various first- and second-
order diagrams describing the excitation processes from
the 1f7/2 core.

In Sec. II we present an explicit evaluation of the con-
tributions resulting from first- as well as second-order
graphs. The results of our calculation are given and dis-
cussed in Sec. III. Our main conclusions are presented in
Sec. IV.

(2.2)
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FIG. 1. First-order renormalization of magnetic dipole mo-

ment operator (exchange diagrams are implied).
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where p' ' denotes a bare magnetic moment operator.
The diagrams corresponding to the first- and second-

order terms are given in Figs. 1 and 2, respectively.
Evaluating Fig. 1(a) yields the contribution

(j 'm, pm' I
V

Ijm, hm» ) (hm» I

p'O'
I pm~ )

6J —Ey+ 6'p —6p
jtt ~ p

(2.3)

m &&j~m J1j' ln
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+jg) tg j~ Q Q Qj~ + Qjl~ g f @j

Here vie have suppressed the isotopic spin labels. The
two-body matrix element appearing in (2.3) can be ex-

pressed as

(j 'm, pm~ I
V

Ijm, hm» )

= g (j 'pmmp
I
Jm+m~)(jhmm» I

Jm+m»)

(2.&)

The matrix element & hm»
I

pjoj
I pm, ) can b«a«o«d

as follows by using the Wigner-Eckart theorem:

(hm„ lp,' 'Ipm )=(lpOm lhm )(h[p' 'p] ) (2.5)

The task of carrying out the summations over the mag-
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FIG. 2. Second-order terms contributing to the renormaliza-

tion of magnetic dipole moment operator (exchange diagrams

are implied).

netic projections is facilitated by the use of the formula
(Al} given in Appendix A. Thus one obtains the contribu-
tion

1/2
2jp+ l

y. (2J+I} '. (- I}'+J~-'(j 1-mO
I
j-m)

2J+ 1

&«j'J,
I

V ljj & IVV'wh»)&J, [p"i']I & (2.6}

It is convenient to rewrite the magnetic moment operator

p"'= g [gi(i) 1(i)+g,(i)s(~')]
i(p, n)

in terms of two operators p, and p2 such that

P =P )+P2%0(O) (I)

(2.7)

(2.8)

p 1
=0.5(g 1 +g i ) 1 +0.5(gg +g,

"
) s, pg ——0.5(gf —g' i ) 1 +0.5 (g, —g,

"
) s

One may finally write the contribution of Fig. 1(a) in terms of the operators pi and pz as follows:

- j/2j,+, &i, [pi»]'&&i&J» I
ljj' &io, ;-in &j [p2j»l &&i,j» I vl jj' '&»

2j+1 E~
—61~+6g —Ep

—E'+ e» —6'
(2.9)
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Thc contribution of Fig. 1(b) comes directly from (2.10) if we interchange j and j'.
We have given here the general expressions for the first-order reno~alization of the M 1 single particle matnx ele

~c&t~; thcsc cxprcs~10&& I'cdUcc to thc OIlcs «1cflvcd cd'11c1 by Mavl'onj8tjs and (:o-grol'kcrg ' jg cog11cct10g ~jth thc
correction to magnetic dipole moments in some 2s-Id shell nuclei.

We now discuss an explicit evaluation of various second-order graphs. The contribution arising from Fig. 3(a) involv-
ing 2/l-Ih intermediate states is

&jim ]j2m2 I
V

I Jm J4m4 & &j)m ) j3m 3 I
V

I j mj4m4 &

J J PO ),JgNR2, J3Nl3, J4Nt4
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+6'J J~ J3 J4
( —1)&j2m 2 I

/4' '
I j3m 3 & .

Here we have suppressed the isotopic spin levels for the various single-particle states involved. Carrying out the summa-
tion over the magnetic projections with the help of the identity (82) given in Appendix 8 one obtains
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(2.12)

Here pt and/4q refer to the isoscalar and isovector part of the magnetic operator defined in (2.g).
Thc contrlbutlon corresponding to thc flivc diagrams shown in Ftgs. 3(b)—(f) can easily be related to that of Fig 3(a).

thc various diagrams shown in Fig. 3 differ from each other only in their energy denominators.
The contnbution of the diagrams shown in Fig. 4 can be expressed in a similar manner by the following expression
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FIG. 3. Diagrams involving 2p- lh [(a)—(c)] and 3/l-2h

[(d)—(f)] intermediate states. The magnetic moment operator
operates on a particle intermediate state in (a) and on a hole in-
termediate state in (d) (exchange diagrams are implied).

(CI) (b) (c) (d) (c) (&)

FIG. 4. Diagrams involving 2/l- Ih [(a)—(c)] and 3p-2h
[(d)—(f)] intermediate states. The magnetic moment operator
operates on a hole intermediate state in (a) and on a particle in-
termediate state in (d) (exchange diagrams are implied).
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FIG. 5. Second-order TDA [(a)—(d)] and

agrams (exchange diagrams are implied).
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RPA [(e) and (f)] di- FIG. 6. Second-order core renormalization diagrams (ex-

change diagrams are implied).

The Tamm-Dancoff (TDA) and random-phase approximations (RPA) diagrams of Fig. 5 give
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Finally, the contribution of the core renormalization diagrams shown in Fig. 6 is given by the expression

&j'mls(o'Ijm&
1 2~ 1

I &j»II I
jjl&Jrl' 1&j»ll 1'I j'jI&n I'

(2.15)

We have employed here as an effective interaction a
modified version of the Kuo-Brown (KB) interaction'2
wlllcll had carllcr' explained successfully thc observed
suppression of Ml as well as M3 moments in Ni. The
lowest-energy Hartree-Fock (HF) solution obtained with
this version of the KB interaction (labeled in Ref. 13 as
the KB2 interaction) is found to bc spherical with the

structure (lf7~q}q q. As pointed out earlier, ' the un-
modified KB interaction does not satisfy the observed de-
formation systematics in the 2p-lf shell; in particular, it
does not reproduce the 1f7~2 subshell closure. The
mimmum-energy HF solution resulting from the KB in-
teraction is, in fact, deformed.

Tllc spllcrlcal, 111111111111111-cllcrgysolutloI1 fol Nl lcslllt-
ing from the KB2 interaction is characterized by a gap of
RboUt 6.8 McV. Thc sphcH. CRl 81Ilglc-pRrtlclc c1MI'Iles I'c-
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TABLE I. First- and second-order renormalization of the single-particle dipole moment operator (in units of p~) for valence neu-
trons. Here the notation (j~ I p I jz ) stands for the matrix element (j& z I p I jz z ). The empirical values obtained by Koops (Ref. 8)
from a chi-square fit to the data in Ni and Cu isotopes involving the MSDI and the ASDI effective interactions for the {2p3/2 2p&q2-
1f5&z) space are given. The values obtained by Glaudemans and others (Refs. 5 and 7) resulting from a fit to the data on only Ni iso-
topes are also given. In the MSDI and ASDI cases, the matrix element ( z I p I z ) could not be determined by the available data.

&ji I

p"'
I j.&.

j~ jz & j~ I p I jz & Proto n N«t«n

&ji I

p"'I jz&.
Figs. 3
and 4 Fig. 5 Fig. 6 &j, lp"'+p"'+p"'I j,&„

Empirical values'
MSDI ASDI Refs. 5 and 7

1

2 2

1 3
2 2

3 3
2 2

3 5
2 2

5
2 2

0.64

1.80

—0.64

0.00

0.27

—0.39 —0.92 0.01

0.20 —0.05

0.90 —0.24

0.11

—0.19

0.26

0.29

0.09 —0.23 0.12

0.05 —0.11 0.00

—0.08 —0.10 0.01 0.11 —0.05

—0.25 —0.10 —0.01 0.43

1.16b

—0.29

0.04'

0.16

0.49(8) 0.34(7)

—0.30(2) —0.29(2)

0.27(5) 0.27(4)

0.10(1) 0.10(1)

1.13

0.80

—0.30

0.27

0.10

'These values are taken from Ref. 8. The numbers in the parentheses give the errors resulting from the fit multiplied with the square
root of g . In the case of Refs. 5 and 7, the average absolute deviation between theory and experiment for the available M1 transi-
tions, ranging between 0.01 and 0.14 W.u. , is 0.03 W.u.
The calculated value of the transposed matrix element is 1.20. The correction due to non-Hermiticity inherent in the truncated per-

turbation series [Eq. (2.2)j is thus quite small.
'The calculated value of the transposed matrix element is —0. 13.

suiting from this spherical solution are employed as the
unperturbed energies for the orbits 2p3~z, 2@~~z, and 1f 5'.

The results of our first-order perturbative calculations
are presented in columns 4 and 5 of Tables I and II. It is
seen that the first-order calculation can account for a
large part of the discrepancy between the Schmidt values
and the empirical ones. A comparison of the results
presented in column 4 of Table I with those given in
column 5 of Table II reveals that the contribution of the
core protons towards the first-order renormalization of
the neutron single-particle matrix elements is comparable
in magnitude to the contribution of the core neutrons to-
wards a renormalization of the proton matrix elements.
This can be understood in terms of the involvement of the
same channel of interaction —the neutron-proton
channel —in both cases. The contributions, however, are
of opposite signs mostly because of the differences be-
tween the proton and the neutron g, factors. In a similar

manner one can explain as to why the contribution
(column 5 of Table I) of the core neutrons towards a re-
normalization of the neutron single-particle matrix ele-
ments is almost the same in magnitude (but of opposite
sign) as the contribution (column 4 of Table II) of the core
protons towards the proton matrix elements.

van Bees et al. have recently examined the effect of
explicit inclusion of the If7~z hole on the Schmidt values
in Ni; their shdl model calculation involved the KB in-
teraction in conjunction with an empirical value of the
1f7 fz 2@3/2 separation which is smaller by only about 0.5
MeV compared to the spherical HF value employed here.
It is interesting to note that the shell model results involv-
ing lp Ih states are comparable to our first-order perturba-
tive estimates.

Next we discuss the second-order contributions to the
Schmidt values of various matrix elements. The contribu-
tions arising from various second-order diagrams

TABLE II. First- and second-order renormalixation of the single-particle dipole moment operator for valence protons. As men-
tioned in Ref. 8, the matrix elements ( z I p I z ) and ( z I p I z ) could not be determined through a chi-square fit to the available
data.

J2 (j~
I

p"'I jz)-
Figs. 3
and 4 Fig. 5 Fig. 6 (j, I

p'o'+p, '"+p'z'I j, ) MSDI ASDI

Empirical
values'

1

2
3
2

—0.26

—2.16

0.12

0.33

—0.07 —0.20

0.06 —0.92

—0.18

—1.29 —0.99(16) —0.68(17)
3
2

3
2

3
2

0.00

—0.31

—0.34

—0,09 0.05

0.12 0.00

0.23 —0.24 0.90

—0.04'
0.88(4) 0.86(4)

—0.75(12) —0.44(14)
5
2 0.17 0.12 0.07 0.02 —0.11 —0.03 0.24

'Reference 8.
'The calculated value of the transposed matrix element is —1.35.
'The calculated value of the transposed matrix element is —0. 11.
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displayed Ill Fig. 2 1IRvc bccn prcscII'tcd Ili columns 6—8 of
Tables I and II. The contributions resulting from the
TDA and RPA graphs (Fig. 5) as well as those due to the
core renormalization graphs (Fig. 6) have been given
separately. It may be mentioned here that the intermedi-
ate states involved in our second-order calculation corre-
spond to excitations from the occupied ( 1f,&2 shell) orbi-
tal to the unoccupied 2p-lf shell orbitals, with the energy
denominators ranging from about 13.2 to 19.3 McV. The
KB interaction employed here has already been partially
renormalized by Ca core excitation processes; these pro-
cesses cannot be described within the 2p-1f shell space.
The use of the unrenormalized KB interaction would
clearly necessitate an explicit involvement of higher-order
intermediate states.

Prom the results presented in columns 6—8 one notices
that the overall second-ordeI' corrections aI'e not very
large. This is seen to be mainly due to a partial cancella-
tion of the contribution resulting from the TDA (or RPA)
graphs and the rcnormalization graphs. One also finds
that the sum of the contributions resulting from the dia-
grams given in Figs. 3 and 4 is consistently quite small.
This is related to the fact that these diagrams have an en-

ergy denominator (expression 2.12)

The diagrams shown in Fig. 5, on the other hand, possess
energy denominators which are approximately (1/b, E~I, ) .

It is interesting to compare the present results with
those obtained earlier' by Mavromatis and Zamick in the
case of the dipole moments of the ground states of the nu-
clei Si and Bi; they had obtained comparatively large
dequenching, arising from the TDA and RPA graphs, to-
gether with small contributions from the renormalization
term. Ripka and Zamick' later found that the large de-
quenching is associated with the existence of deformed
HF minimum in Si. The absence of large dequenching
in the present work can, therefore, be related with the fact
that the minimum-energy HF solution for ' Ni is spheri-
cal; the deformed HF solution occurs at an excitation en-

ergy of about 6.8 MCV.
In columns 9—12 (Tables I and II) we have compared

the renormalized values of the M 1 matrix elements with
their empirical values obtained by Koops. We find that
the renormalized values for the diagonal matrix elements

&2 lol-', &. & 2 IVI I)„and (2 IVI I &. R« in excel-

lent agreement with the empirical values obtained by
Koops as well as by Glaudemans. It may be mentioned
that the empirical value of the ( —', lp l

—,
' ), matrix ele-

ment is just the observed magnetic moment in Ni. In
the case of the matrix element ( —,

'
l p l

—', )„whereas the
renormalized value agrees reasonably with the fitted value
obtained by Glaudemans, it shows a discrepancy of about
0.67 p~ and 0.82 p~, respectively„with the empirical
values obtained by Koops in corjunction with the modi-
fied surface-delta interaction (MSDI) and the adjusted
surface-delta interaction (ASDI). The renormalized ma-
trix dement ( —,

'
l p, l

—,
'

)~ is in acceptable agreement with
the fitted value resulting from the MSDI interaction.

However the empirical value for this matrix dement re-
sulting from the ASDI interaction shows a discrepancy of
0.61 pz. Further~ oUr I'csUlts foI' thc rcnorTQR11zatlon of
the matrix elements ( —',

l p l

—', )„ indicate that it is diffi-
cult to account for the fitted values of these matrix ele-
ments in terms of the present perturbative framework in-
volving only the 2p-1f shell orbits; the large empirical
values may be imitating the effects of intruder states aris-
lIlg from cxc1tat1on of thc CR coI'c Rs well as of h1ghcr-
order diagrams within the 2p-lf shell.

In view of the fact that the present perturbative calcula-
tion yields unambiguous estimates for the renormalization
of the diagonal matrix elements (j lp l j) „—the off-
diagonal ones are not determined uniquely due to the
non-Hermiticity inherent in Eq. (2.2)—we have also ex-
pressed their renormalized values in terms of the effective
g factors which define the generalized M 1 operator

Whereas we obtain the values g~
——0.93, g, =3.44, and

g~"=1.71 in the case of the renormalization of the mag-
netic moment operatoI for the valence proton, we obtain
the values gI' =0 03, g,

". = —1.72, and g~ = —0.90 in ihe
case of the valence neutron. The renormalized values of
the (j l p l j),matrix elements thus imply a significant
reduction in the spin g factor as well as a sizable contribu-
tion from the spin-polarization term ( Y' 's'")'".

IV. CONCLUSIONS

We have calculated here the one-body matrix elements
of the effective dipole moment operator in the

(2pig2 ~ 2p I y2 ~ lf5y2 ) spRcc by tRklilg IIlto RccollIlt tlic ic-
normalization effects due to excitations from the closed

lfI&2 core. It turns out that the empirical values of the
M1 matrix elements can be explained reasonably well in
most of the cases in a microscopic, parameter-free manner
in terms of the contributions resulting from various first-
RIld second-order graphs.

A major motlvat1on 1I1 undertaking this work was a
dcs11c to cxam1ne thc valld1ty of a pcrturbatlvc Rpploach
in the context of the renormalization of electromagnetic
operators in the second half of the 2p-lf shell. We have
seen that a calculation involving just the first- and
second-order graphs is successful because of the large en-

ergy denominators involved. Enomoto et al. ' have some-
time Rgo reported R stI'ong supplcss1on of thc M 3 part of
magnetic scattering in nuclei involving a closed f7&I shell.
Thc pl"cscnt work suggests that 1t may bc poss1blc to
understand the observed anomalous momentum transfer
dependence in M3(q) in terms of first- and second-order
core-excitation pI'ocesses.

We wish to thank Dr. J. E. Koops for communicating
some of his results prior to publication.
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APPENDIX A

Using the identity

(afay a~—cy) U(abed;ef) = g (abap
~

ea+ p)(eda+ py —a —p ~
cy)(bdpy a—p—

~ fy a—)
P

we obtained

(j'mjpmy
~

V
~ jmjqmh)(jump ~/t' '~jhmh)5

m mI,

= g g(j'jymm~
~
Jm+m~)(jjqmmq

~
Jm+mh)(ljqOmh ~jimmy)(jr[it jh] )(jj'~

~

V ~jjh)J
J m

1/2
~ t ~

= X(2J+1) ( ) ~(j' m lj m)W(j—'pjh'J1)(jp[p' j'h]")(jj'y
l Vljjh)J

J

(Al)

(A2)

APPENDIX B

We have

(akae a~ he—) U(afhg;ck) U(abed;ef ) = g (abap
~

ea+ p)(eda+/3y a p~ cy)(—bdp—5 p~ f5)—
p5

&&(cga+5e —a —5
~

he)(fg5e a 5~ k—e —a—) . (B1)

Using this we obtained

(1j3 3 l
j2m2)(jij2mim2 i Jimi+m2)(jij3 1 31 2 1+ 3)

m)m~m3m4

X(jj 4mm4
~
J&m+m4, )j(j'4mm&

~
J2m+m4)

( —1) (2j, +1) (2J, +1)(2J,+1)W(1J~j4,Jj ') W(1j3J,J, ;J2J2) .
(1f'Om —

l
Jm) J2+J, ,n

v'2j+1 (B2)
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