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Constant-volume constraint and many-body forces in the Nilsson model
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It is shown that the Nilsson prescription for calculating equilibrium deformations of nuclei under
the constraint of constant volume may be interpreted in terms of a Hartree mean-field approxima-
tion applied to nucleons interacting via many-body forces. Such an interaction is obtained in closed
form, having a Taylor expansion beginning with the familiar quadrupole-quadrupole interaction,
and then successively adding three-body, four-body, etc., terms. Since the interaction is not unique-
ly determined, two interesting forms are discussed. One, having both monopole and quadrupole
parts, has a Hartree field identical to the Nilsson potential. The other, which is purely quadrupole,
permits a generalization to all orders of a result obtained by Moszkowski for small deformations.
The scalar many-body interaction naturally explains the nonscalar effective two-body interactions
used in random-phase approximation calculations of deformed nuclei.

I. INTRODUCTION

A very important aspect of the Nilsson model of the
atomic nucleus is the determination of equilibrium shapes.
In the most pristine version of the model, the equilibrium
deformation parameters were obtained by minimizing the
sum of the energies of individual nucleons moving in-
dependently in a phenomenological deformed potential,
subject to the constraint that the volumes enclosed by
equipotential surfaces remain constant as the deformation
varies. ' This volume-conservation (VC) constraint is in-
tended to simulate the incompressibility of nuclear matter
and provides a restoring force. The more modern version
of the model, usually called the Nilsson-Strutinskii
model, incorporates pairing and Coulomb effects and
Strutinskii averaging, but such refinements are peripheral
to the discussion at hand. The success of this intuitive
prescription over the years has been "disconcertingly spec-
tacular, " especially since it appears at first sight to be
rather different from conventional mean-field approxima-
tions, such as the Hartree-Fock approximation. In spite
of efforts by Moszkowski, and later Bassachis, to relate
the Nilsson model to the Hartree approximation for small
deformations, this model in its full generality poses some-
thing of a mystery. The aim of this paper is to at least
partially dispel some of the mystery.

It is shown that the energy in the Nilsson model corre-
sponding to an equilibrium deformation may be interpret-
ed as the expectation value in the Hartree sense of a Ham-
iltonian involving a many-body effective interaction. Al-
though the interaction is not unique, two interesting
closed forms are discussed, both of which have Taylor ex-
pansions beginning with the familiar two-body
quadrupole-quadrupole interaction, with successive terms
bringing in three-body, four-body, etc., components. One
interaction has the property that its Hartree field precisely
replicates the Nilsson Hamiltonian from which one start-
ed. This interaction has the minor esthetic drawback of
including somewhat unorthodox monopole-quadrupole

coupling terms. Kishimoto has independently derived the
first two terms in the Taylor series of a similar interac-
tion. The other interaction contains pure quadrupole
terms, but its Hartree field is not exactly identical to the
Nilsson Hamiltonian. However, it is amenable to a gen-
eralization of Moszkowski's interpretation of the relation
of the Nilsson model for small deformations to the Har-
tree field of the usual two-body quadrupole-quadrupole in-
teraction.

It shall also be shown that these rotationally invariant
many-body interactions generate in a natural way the non-
rotationally invariant effective two-body interactions
which have been used in random-phase approximation
(RPA) calculations of deformed nuclei. In addition, the
closed form allows one to generate the many-body correc-
tions required to maintain the Goldstone mode at zero en-
ergy when doing calculations beyond the RPA.

II. EQUILIBRIUM CONDITIONS
IN THE NILSSON MODEL

The Nilsson Hamiltonian H~, excluding for simplicity
the hexadecapole term and Coulomb effects, may be writ-
ten in the form

H~ ——Hp+ UD,

where Ho is the spherically symmetric Hamiltonian for 3
nucleons,
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PI PICO OHo= g + r;+Cl; s;
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The pairing Hamiltonian H~»„ the 1 s, and the l terms
do not play a role in the ensuing arguments, but are in-
cluded for generality to emphasize the validity of the re-
sults even in the presence of these terms. ' The term U~
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is that part of the oscillator potential U„, involving defor-
mation effects:
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with the notation

I.et ( ) denote the expectation value with respect to ei-

ther an exact ground state of (1) or else a variational ap-
proximation, as, for example, a Bardeen-Cooper-Schrieffer
state to take care of H~„,. In either case, the Hellmann-

Feynman theorem" is valid, so that the minimization of
(H~ } with respect to the oscillator frequencies ol„, ol„,
and ~„subject to t4e constant-volume constraint

Fl'oIII Eq. (8), thc total cIlclgy coll'cspoIldlIlg to aII cqlll-
librium deformation may be written as

E=&Hx&=&Ho&+&&D&,

may be written in the form
——,

' mtoo2(R') .

BH~ —P (co~olrcog)=0, k = JX1, z,

~k ~k

%vhere p 18 a Lagrange multiplier whose subsequent elim-
ination yields the following equations for an equilibrium
deformation:

67~ Xi =63@ Pi =Q)z Zi

III«DERIVATION
OF EFFECTIVE INTERACTIONS

It shall now be shown that (10) can be written as the
Hartree expectation value of a rotationally invariant
many-body interaction. The first step is to express (10) in
terms of the expectation values of the monopole operator
(4) and the mass quadrupole operators

A

Q2q
—g r; YI„(Q;), @=0,+1,+2.

This is just the condition that the shape of the oscillator
potential and that of the density distribution coincide, the
justification for which is the short range of nuclear
forces. ' Equation (7) is equivalent to the following:

I

Since U„, is aligned along its principal axes, the condi-
tions (QZ+I)=0 and (Q„)=(Q, , ) are fulfilled.
Then, (Q2o), (Q2Z), and (R } may be expressed as
linear combinations of & g, x; &, ( g,.y; &, and ( g,.z; ).
These relations may be inverted as follows:

E

g 2

& Q2o)+
24m.

1/2

Upon substituting Eqs. (12) into (10) and expanding, one finds

——,'mo')o(RI) .

The aim is to write (13) as the Hartree expectation ualue of a rotational scalar, involving direct factorization. This
means that the expectation value of a product of one-body operators is approximated by the corresponding product of
expectation values of these operators. Hence, in any function of one-body operators, these operators are replaced by c
numbers. Now, there are only two scalar invariants that can be formed from the quadrupole operators, namely,
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Q2 Q2 ——~5(Q2Q2)0 and (Q2Q2Q2)0, where ( )0 denotes angular-momentum coupling to spin zero. It is a straightfor-
ward exercise to show that the Hartree expectation values of these invariants are

&Q2 Q2& &Q20&+ (Q22& ~ ((Q2Q2Q2)0) (35) (&Q20& 6&Q20&&Q22)

Equation (13) can now be written as the Hartree expectation value of a rotational scalar interaction V,

(14)

(15)

but Vis not unique. In fact, there are an infinite number of possibilities depending on the treatment of the (R ) terms.
Here, two limiting cases are considered, which are also the most interesting. In the first case, (R ) in (13) is directly re-
placed by R to give

0

2 5 5

m~o( 2) (R ) —(R )
&R')'

R' 1+
1/3

1277R2 Q2 Q2 gvT
14 &/2 Q2Q2Q20 ~~OR2

(R')' 5 (R')' (16)

The interaction Vmay be expanded in powers of (R ) ' as follows:

Q2'Q2—1 R —(R)
) 2(1 )~/2 Q2Q2Q20 R —(R &

(Q Q)(R') ' (R') (R')

4 ~/2 R —(R ) Q2Q2Q20
&R'&

4~ Q2 Q2
'

(17)

where
02

4~ tncoox= (R')
The leading term in expansion (17) is just the familiar quadrupole-quadrupole interaction with the strength I ap-

propriate to taking all nucleons into account. ' The expansion parameter for spherical nuclei is reasonably small, being
of the order of the quadrupole zero-point amplitude Pz.

Another possible choice of V satisfying Eq. (15) may be obtained from (13) by keeping (R ) as a parameter but re-
placing the (Q2~) by operators in accordance with Eq. (14). This choice of V, denoted by V, is

I/3

V'= (R2) 1 —12m Q2'Q2 —Sm(14 )1/ Q2Q2Q20 0(R2) (19)2 (R2)2 5 (R2)3

Its expansion may be obtained from (17) by dropping all
terms involving the radial fluctuations
(R —(R ))/(R ). Hence (19) is a special case of (16).
However, (19) is free of the somewhat unusual monopole-
quadrupole cross terms contained in (16). On the other
hand, these pose no mathematical difficulties and give rise
to important properties discussed below. Both interac-
tions have the feature that the successive terms in the ex-
pansion bring in many-body forces of increasingly higher
order. Thus, the leading-order quadrupole-quadrupole in-
teraction contains two-body and one-body terms; the next
order brings in three-body as well as two- and one-body
interactions, etc.

IV. THE HARTREE APPROXIMATION

Turning first to the interaction V given by Eq. (16), it
shall be shown that it gives rise to a self-consistent Har-
tree potential which is identical to the Nilsson oscillator
potential. The first step is to express U„, at equilibrium
in terms of appropriate deformation parameters. From
the inverse of Eq. (12) together with (8), one obtains

&Q,.&= 5

(Q22& =&Q2-2&=

2 1 1 .2(R)0
COO

CO CO CO&

1/2 ., (R'),
No

3

15
327T

(20)

(R') = 2+ 2+ 2 COOco„co~ co,

4m

5

4m

5

(Q,.&/&R'&,

&Q„&/&R'& .

(21)

In the case of axial symmetry, when o.
z ——0, the usual

Nilsson parameter 6 is related to oo by

It is convenient to choose as deformation parameters the
ratios o.o and o.

2 defined by

1/2
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30O

2(1+oo)
(22)

Then, from (20), (21), and the VC condition (5), one may
solve for the oscillator frequencies as functions of oo and

cr2 as follows:

c0„=(1+2oo)(1—oo —~6o2)coo(oo„oz),

~r =(1+2cro)(1—cro+ v 6cr2)~0(cro, o2),
~s =(1—cro+ i 6cr2)(1 —cro —~6o2)c00(cro, cr,),

where

c00(oo,o2)=[(1+2oo)(1—era+ v 6crz)(1 —oo—v 6o~)] ir'co
(~) .

In terms of the parametrization (23), U„, may be written in the form

2 2 2 16%= —,maro(oo, cr2) (1—oo—2oz)R —{oo—cro+2o2)
5

1/2
16m'

Q20 —o2(1+2oo)
5

] /2

(Q»+Q2 ~)

@2+

where ( ) denotes the Hartree expectation value with
respect to the self-consistent ground state. It is a straight-
forward exercise to show that

0

c)v PlN 0

M , mcoo{o—o,oz)(1 —oo—2or)—
2

c)v 16m= —
2 md)0(cro, cr2)(cro —cro+2crp)aQ„= 5

1 2 16m= ——,m c00(o 0,o i)o z(1+2cro)
5

' I/2

with Rll other cxpcctat1on VRlucs van1sh1ng, RQd with Eq.
(21) playing the role of the Hartree self-consistency condi-
tions. From Eqs. (25), (27), and (28) it is seen that UD and

Uri are identical in form. It still remains to be proven
that the Hartree self-consistency conditions (21) are
equivalent to the VC conditions (7). This result easily fol-
lows by combining Eqs. (12) with (21) to yield

(~")

which is readily converted to (7) with the aid of Eqs. (23).
It may therefore be concluded that

(30)

The point has often been made that in the Nilsson

If, on the other hand, one starts with the nuclear Hamil-

tonian H,

H =Ho+ V,

the Hartree potential UH arising from V may be defined

by

I

model, the total energy (apart from the pairing energy) is
the expectation value of the independent-particle Hamil-
tonian, in contrast to the Hartree (-Fock) method in which
the energy contains a correction term subtracting —,

' of the

expectation value of the two-body interaction to prevent
double counting. ' Since it has just been shown that the
Nilsson model is equivalent to a Hartree approximation, is
there a contradiction'? The answer is negative for the sim-

ple reason that the Hartree potential is arbitrary up to an
additive constant, and the choice (27) already tacitly in-
cludes the constant which compensates for overcounting
many-body interactions. It is worthwhile to understand
just how this occurs. From Eq. (17), it is seen, first of all,
that since V contains no pure monopole terms and that
since the monopole-quadrupole cross terms depend on
powers of R —(R ), they do not contribute to ( V) in
the Hartree approximation, which therefore contains con-
tributions only from pure quadrupole interactions.
Second, the Hartree potential obtained by direct factoriza-
tion of (16) or (17) differs from (27) by the replacement
Ri~R2 —(R ), and therefore this term would give a
vanishing expectation value. Hence, in the actual choice
of UH given by (27), the constant &c)v/M2}(R~} has
been added on already. Since, as follows from (15) and
(30), (U~}=( V), this constant compensates for over-
counting of the pure quadrupole interactions in the quad-
rupole field of UH. One must therefore have the identity

& V) =&a VZa~'&&~'&+ y &av~aQ, „&&Q,„&,

which is proven immediately by applying Euler's theorem
on homogeneous functions to V, followed by Hartree fac-
tor1zat1on.

Keeping in mind the discussion of the preceding para-
graph, consider next the alternate interaction V' [Eq. (19)].
If the Hartree approximation is applied to the Hamiltoni-

8'=Ho+ V',
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the Hartree potential U~ arising from V' may be taken as.-=~('",.) ' =~(.", )"
where ( }'denotes the Hartree average with respect to the
self-consistent Hartree ground state, which, as shown
below, is not identical to the Nilsson-model ground state.

Equation (33) has exactly the same form as the quadru-
pole field of the Nilsson potential as a function of parame-
ters &70 and &72 given by equations of the form (21) (with

( } replaced by ( }'), which play the role of self-
consistency conditions. However, the total spatial one-
body potcntlal, including thc cxtcrnal sphcflcal oscilla-
tor, is given by

U,'„=2m'�—&)R + U~

0 2 2 J 2 16'7T=—,m&)) 0R —, m0—)0(&70,a2)
5

[(oo—oo+2o2)Q20+2(1+2&70)(Q22+Q2 2)] . (34)

Obviously, U,'„&U„„and U,'„does not conserve the
volume beyond first order, so that the Hartree ground-
state wave function for V' is not identical to the Nilsson
one, and, consequently, the equilibrium values of &70 and

a2 would differ also, although, one might hope, by not too
much.

It is obvious from Eq. (33) that

&U. & =r(,") &a„&~«&,
p 2&&&'

but a constant can always be added to (33) to ensure the
equality. To find this constant, one need only note that
( V'}'=(V}' in the sense of Hartree expectation values,
and that Eq. (31) is valid with ( } replaced by ( }'.
Therefore, the constant is (Bv/M }'(R }'. Thus, the
redefined potential

U" = (a VraR'}'(R'}'+ U„'

= —,
'

[m&))0(&T0,a2)(1 —o0—2crz) —m0') 0](R }'+UH

satisfies ( UH }'= ( V' }'= ( V}'.
If one were to choose V' instead of V, the Vc minimi-

zation could be interpreted- as an approx&morton tc a Har-
tree calculation for V', with the term

1
2[mco0(—o0,o2)(1—o0—2&72) —m0) &)]R

2 2 o 2

in the Nilsson potential serving the function of giving rise
to the constant in Eq. (36) when the expectation value of
the Hamiltonian is taken. Of course, the addition of the
operator (37) rather than a constant has its side effects—
changing the wave functions and the equilibrium
deforrnations —but that is where the approximation lies.
Essentially this kind of viewpoint was advanced many
years ago by Moszkowski, except that only the leading
term of V', the quadrupole-quadrupole force, was used,
and correspondingly, the Nilsson potential was expanded
only to second order in the deformation. Thus, it is seen
that with V', Moszkowski's interpretation can be general-
ized to all orders.

As mentioned previously, there is an infinite number of
interactions intermediate between V and V', but these can-
not be readily related to the Nilsson model via the Hartree
approximation. Of the two, V seems more satisfying since
it exactly regenerates the volume-conserving Nilsson po-

tential which spawned it in the first place. Of course,
whether V or V' is a better schematic interaction must ul-
timately be decided by comparing other theoretical prop-
erties with experiment.

V. EFFECTIVE INTERACTIONS
IN DEFORMED NUCLEI

V V(0)+ V(l)+ V(2)+. . . (3g)

whcrc

v"'=( v},
(39)

V(l)= g 2

Although the conventional quadrupole-quadr'upole in-
teraction has often been employed in RPA calculations for
deformed nuclei, the excitation energies are not very well
reproduced unless the interaction is modified so that dif-
ferent components have unequal strengths. While this
conclusion has been arrived at from purely empirical stud-
ies, ' interactions with this property have also been de-
rived by several techniques, starting with the vibrating po-
tential model (VPM) (Ref. 15) and including adaptations
of I.andau's Fermi-liquid theory for finite systems' ' and
sum-rule methods. ' These interactions have played an
important role in accounting for the splitting of the giant
quadrupole resonance. ' ' Since the interactions are not
rotationally invariant (although they keep the rotational
Goldstone mode at zero excitation energy in the RPA) the
question arises as to how such interactions can arise from
a rotationally invariant interaction. A related question is
how the Goldstone mode can be kept at zero energy if one
wishes to go beyond the RPA.

The rotationally invariant interaction V provides a
natural and simple answer to the above questions. This
interaction can be expanded in a Taylor series about the
equilibrium values (R }and (Q2„};thus, through second
order
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V~»= —' "V (Z'-(Z'))'+ y, 'V (~'-&~'))(Q„-&Q„))
B(R )2 „BRBQ2„

+—,
' g( l(Q~„—(Qz, &ÃQ~. -&Qz. & .8 V

zp zv

From Eqs. (27) and (31), it follows that V' '+ V'"= U~,
so that

the deformation-independent radius (R ~)0 [Eq. (8)], relat-
ed to (Rz) by the last of Eqs. (20). Equation (44a) can
then be written as

V=U +V"'+
giving a series in which the first term is the Hartree po-
tential arising from V, and V' ' is an effective, essentially
two-body residual interaction. Since V is a homogeneous
function of degree one, its first partial derivatives are
homogeneous of degree zero. If one applies Euler's
theorem to these first derivatives, followed by Hartree fac-
torization, the result is

(42)

' 1/2
Gag —Q)g

Q)j +2Nz

where

1—
~ &Xi,Q2„Q2„,

p,+o

QPj +26)g
X20—Xo

360 0

2

Xo
4m ~~o
5 (Z'), '

'2
QPyNz

X21 X2—i XO o 2
co o

(45b)

With the aid of these identities, V' ' may be simplified to

"'*'= *' z I ag ag ) ~*"

&Q,.)x Q,„—

&Q,„)
(z')

The evaluation of (43) is straightforward. With the as-
sumption that the equilibrium shape is axially symmetric,
so that

&Q,„)=~„. ,5
' I f2

(R')oo,

(43) takes the form

2

X2v Q2v —Sp 0
5

p,

5
Q 2p ~fl, o

4m

1j2

where the coupling constants X2& are given by

4~ mcoo(o'

(z'
0o)
) 1+2cro '

m c00(o0,0)
(1—ao),

R

mr00(o s,0)
(1+2oo) .

(45a)

In order to facilitate comparison with previous work
employing different definitions of the deformation param-
eter, it is convenient to express (44) and (45) directly in
terms of the volume-conserving oscillator frequencies
co„=co~=coi (o2 ——0) and co„and to use in place of (R )

Equations (44) and (45) completely agree with those ob-
tained from the VPM (Ref. 15) and more recently by
Suzukl and Rove and Kul asia.

If in place of the interaction V, one uses V, then a simi-
lar treatment gives for axially symmetric deformed nuclei
the effective interaction

z g Xz„Qzl,Q2„

in which the couphng constants are still given by Eqs.
(45a). Absent is the monopole term in the p =0 channel,
which affects only E =0 excitations (P vibrations). An in-
teraction of the form (46) was derived by Bochnacki and
co-workers using a variant of the Landau theory. ' Al-
though their value of X22 agrees with the above, that of
X20 is, for unclear reasons, a little different, while X2i was
never explicitly calculated.

One can now see clearly how the rotationally noninvari-
ant interactions (44) or (46) can arise from the rotationally
invariant interactions V or V', respectivdy, as a conse-
quence of an expansion about a deformed Hartree solu-
tion. The value of X2i guarantees that in the RPA the
Goldstone mode, which is associated vnth the K=1+
branch of excitations, stays at zero energy. ' However, if
one mere to attempt to include anharmonic corrections to
the RPA using V' ' within the framework of, say, pertur-
bative boson expansions or nuclear field theory, ' this
would no longer be true. The solution to this problem is
simple: One must continue expansion (41) to include the
three-body, etc., terms so as to always keep the Goldstone
mode at zero energy. This follows from the fact that V or
V' are scalars even if the successive terms in the Taylor
expansion about a deformed state are not, and also from
the fact that the effective expansion parameter is of the
order of the expansion parameter in the perturbative bo-
son or nuclear field-theory expansion.

One may hope to test the reality of the monopole terms
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in Vby comparing the effects of V' ' and of V'' ' in de-
formed nuclei. It has been shown that in the RPA for the
pure oscillator model, interaction (44) accounts well for
the splitting of the giant quadrupole resonance in de-
formed nuclei. ' ' To first order in the deformation pa-
rameter o.o, one obtains the excitation energies

fico =v2f—icoo(1 ——,
' cio),

ft =V 2ft'o(1 ——,'~, ),
and

fico =- V 2ftcoo(1+ —,
'

cro)

for the K=0, 1, and 2 components, respectively [note
from Eq. (22) that oo-25/3]. However, interaction (46)
gives exactly the same expressions to first order if self-
consistent wave functions are used. Therefore, the split-
ting of the giant resonance is not a sufficient criterion for
distinguishing between the two interactions.

Another property which has been checked is the Inglis
cranking-model moment of inertia. Bohr and Mottelson
proved long ago that in the pure harmonic-oscillator
model with the VC condition, equivalent to the use of V,
this moment of inertia is identical to the rigid-body mo-
ment of inertia. ' On the other hand, the use of V', to-
gether with Hartree self-consistency, gives a cranking mo-
ment of inertia which is not identical to the rigid-body
value. However, the moment of inertia one obtains,

(1+—,
' ~,)(Z'),

3

does agree with the rigid-body value through first order in
0.0. Since there is no general theorem requiring exactly the
rigid-body value of W for finite nuclei, this property does
not clearly distinguish between V and V'.

Finally, it should be mentioned that the earliest micro-
scopic calculations of low-lying P vibrations in deformed
nuclei within the VPM (Ref. 15) did include the monopole
term of V' ', but unfortunately, no attempt was made to
separate out the Goldstone mode associated with particle
number, arising from pairing effects, a problem not appre-

ciated at the time. In addition, because of computer limi-
tations, only the asymptotic approximations to the full
Nilsson wave functions were used. Hence, the results were
not definitive. The possibility of redoing the calculations
properly, using both V' ' and V' ', which is rather trivial
with present computing facilities, is being contemplated.

VI. SUMMARY AND CONCLUSIGNS

Some light has been shed on the arcane but very suc-
cessful prescription for calculating equilibrium deforma-
tions in the Nilsson model by relating it to a Hartree ap-
proxirnation applied to nucleons interacting via many-
body forces. Unlike previous treatments, no restriction to
small deformations was required. Two interactions V and
V' were discussed, both having Taylor expansions begin-
ning with the familiar quadrupole-quadrupole interaction. '

On esthetic grounds, V seems preferable to V', since by
starting with the Nilsson prescription with volume conser-
vation, one is led to V (although not uniquely), which, in
the Hartree approximation, exactly regenerates the
Nilsson model, thus providing a nice consistency. Such a
consistency holds only approximately for V', which allows
for an approximate connection between the Nilsson model
and the Hartree method by way of a generalization of an
old interpretation given by Moszkowski. These interac-
tions, particularly V, naturally account for the nonrota-
tionally invariant effective two-body interactions used in
RPA calculations for deformed nuclei. In principle,
higher-order expansions of V for deformed nuclei, involv-
ing many-body forces, should allow one to maintain the
rotational Goldstone mode at zero-energy. The explora-
tion of such many-body forces in both spherical and de-
formed nuclei may be very iinportant for anharmonic
corrections to RPA calculations. Finally, it would be very
interesting to derive the effective interactions correspond-
ing to other more realistic single-particle potentials, such
as the Woods-Saxon potential.
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