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Angular distributions for elastic and inelastic scattering have been measured on six analog reso-
nances in the '3 Te+p system and at two off resonance energies. Partial widths are deduced from
the angular distributions. Formulae for the spectroscopic amplitudes within the framework of the
quasiparticle random phase approximation are presented. The experimental results are compared
with the theoretical predictions.

NUCLEAR REACTIONS "Te(p, p'), E=7.5 14 MeV;—enriched targets, mea-

sured o.(Ep, O); deduced spectroscopic amplitudes; ' 'Te calculated and spec-
troscopic amplitudes predicted.

I. INTRODUCTION

The study of the elastic and inelastic proton scattering
on analog resonances provides an important source of nu-
clear structure information related to the question of
parentage. ' That is, from these processes we can learn
to what extent a nuclear state can be built up by adding a
nucleon in a definite single-particle state to a definite core
state. More precisely, the inelastic scattering gives a
direct measure of:

(i) the particle-vibrator coupling in the parent nucleus
when the decaying proton is above the neutron Fermi lev-
el, and

(ii) the microscopic structure of the core states, when
the proton decays from a level which is below the neutron
Fermi level.

In the preceding paper we analyzed the elastic and in-
elastic decays of the isobaric analog resonances in the

Sm + p system associated with the low lying states of
the parent nucleus ' 'Sm with spin and parity J

All the single-particle orbitals (fi/2, p3/2 p]/2,
and f&/2) which, together with the positive parity vibra-
tional fields, establish the structure of these states, lie
above the neutron Fermi level. Therefore, the main infor-
mation which can be obtained from that study is related
to the particular-vibrator coupling; the microscopic struc-
ture of the core plays only a minor role.

In the present work we shall study proton inelastic
scattering to the ' Te 2~+ state through analog resonances

», », », », —,z, and» in I. In this case the
negative parity states are also built up dominantly from

the single-particle states, which are above the neutron Fer-
mi level. The positive parity resonances, on the contrary,
come from the orbitals which lie below or just on the top
of the neutron Fermi surface. As a consequence, for the

and —,
'

&
resonances, both the particle-vibrator cou-

pling in the parent nucleus and the macroscopic structure
of the vibrational 2i field turn out to be relevant.

In the same way as in Ref. 7 we make use of the cou-
pled channel formulation for treating the direct non-
resonant scattering. However, as (a) the analog resonances
under study lie 7 to 10 MeV above the neutron threshold
where there is a vast phase space available for neutron de-
cay of the T ~ states and (b) proton decay of the T ~ states
is inhibited by the Coulomb barrier, the fluctuation contri-
bution to the proton cross section should be nil. Thus,
contrary to what happens in the ' Sm + p system, the
proton scattering in this work can be well described by
considering a direct background amplitude and a resonant
amplitude due to the presence of the analog states.

The fluctuation processes, as well as the different esti-
mates for the single-particle escape amplitudes, have been
thoroughly discussed in Ref. 7. Here the main emphasis
is on the nuclear structure calculation of the parentage
coefficients.

It should be noted that previous measurements " on
Te lacked forward angle data and the analysis did not

include the nonresonant direct mechanism.

II. EXPERIMENT

With the proton beam of the Sao Paulo Pelletron-8UD
accelerator, angular distributions of cr(8) were measured
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29 '3 Te(p, p') REACTION ON ANALOG RESONANCES

between 40' and 169' at laboratory energies of 8.00, 8.30,
10.29, 10.54, 10.60, and 11.00 MeV. These energies are at
or near those of analog resonances having J of —,

'

, ( —, ), —, , and ( —,
'

), respectively, and correspond to
the maximum yield in the first 2+ state averaged over
several angles. Off-resonance angular distributions were
taken at 7.50, 9.90, and 14.00 MeV at angles between 30'
and 170'. An array of three surface barrier detectors was
used, each subtending a solid angle of about 1 msr. The
detectors were cooled to O'C using a water-ice mixture.

Targets were made by vacuum evaporation of 99.4%%uo

enriched ' Te from a gold plated Ta crucible onto
10 pg/cm carbon foils and were about 200 pg/cm in
thickness. The carbon foils were evaporated onto clean
BaClz coated microscope slides by electron bombardment
of graphite. Commercial foils and those prepared with a
detergent substrate had contaminants which hindered the
experiment. Targets made by evaporation from unplated
crucibles contained tantalum teluride and were not stable
in the beam.

Absolute cross sections, accurate to within 5%, were
determined by normalization of forward angle elastic
scattering data to optical model predictions. The error
bars on the data points are purely statistical and do not
contain this error.

III. ANALYSIS

The method of analysis is identical to that of Ref. 7.
Following Ref. 12 we express the cross section in terms of
the C matrix defined by

2To+1 g(cJ„)
8(cJ,) =

2P,' sp
(3.4)

where To denotes the isospin of the target nucleus, P, the
optical-model penetrability, and g, the imaginary part of
the optical phase. The quantity y,' is the single particle
reduced width given by

1/2

y P

2ma,
2Pn(tie) ~ (3.5)

where p„(a, ) is the value of the neutron wave function at
the channel radius a, and m is the neutron mass. The
minimum values of

B (EA, ) = ZePcRc
3 A,

4a

[(2To+ 1)/2P, ]' /y',

in the region of the nuclear surface were calculated using
the program ANSPEC (Refs. 14 and 15) and used in the
determination of the 8(cJ„). The spectroscopic factor is
simply given as S(cJ„)=8 (cJ„).

The coupled channel optical potential was obtained by
fitting elastic and inelastic angular distributions at 7.5 and
14.0 MeV using the program ECIS, '6 which solves the cou-
pled equations by a method of sequential iterations. The
first 2+ state is considered as a one phonon vibration.
Figure 1 shows the fits and the optical parameters. The
deformation parameter Pc was taken from the Coulomb
excitation' B(E2), 0.295 e b, using the relation

r

C(cc'J)=C (cc'J)——i k' 2l+1
' 1/2 where Z is the atomic number and Rc is the Coulomb ra-

&&e 'S (cc'J), (3.1)
Te (p, p )

5 MeV o. e

where J is the angular momentum of the resonance;
c=InjlII and c'= In'Ij''I'j stand, respectively, for the
entrance and exit channel quantum numbers; and k, and
o., are the wave number and Coulomb phase, respectively.
The background term C (cc'J) is calculated using the pro-
gram coupled channel JUpIToR. ' The spectroscopic in-
formation is contained in the resonant part of the scatter-
ing matrix, which reads, in the R matrix formalism, ti
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FIG. 1. Optical model fits. The form of the potential is

U(r) = Vc —Vf (r, Ro, ao) i W f(r, R;,a;)——d
dr

R0.=k. + .+4. . (3.3)
m c

~.0 d 1/3—f (r,R„,A, a„),
r dr

Here, E is the incident center of mass energy, EJ the

resonance energy of the vth state with spin J, I J the total
width of the resonance, g', the real optical phase, and li,"
the resonance mixing phase. The resonance amplitudes
g(cJ„) are related to the spectroscopic amplitudes 8(cJ„)
through the expression' '

where f (r,R,a) is the usual Woods-Saxon form and Rc is the
uniform sphere charge radius. We find Ro ——1.253 ' fm,
ao ——0.703 fm, R;=1.273' ' fm, a;=0.634 fm, V75 —57.06
MeV, W75 —8.30 MeV, V14 ——S2.23 MeV, and W~4 ——12.09 MeV
and take V„=6.2 MeV, R„=1.103 ' ' fm, a„=7.50 fm, and
Rc=1 202'~ fm with PcRc=P+v=PsRI=0 690 and fm and
„=0.
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dius. A linear dependence in energy was assumed for V
and 8', the real volume and surface imaginary potential
depths. Using the 7.5 and 14 MeV potentials one obtains

V = —0.59E+60.49 MeV,

8'=0.58E+3.93 MeV .

The 9.9 MeV elastic and inelastic angular distributions
which are affected by the 10.29 MeV resonance showed a
best fit, indicating a dependence of about

W =0.48E+5.37 MeV .

This gave improved resonance fits, particularly at 8.038
MeV, and was used throughout this work.

Resonance mixing phases and elastic partial widths
coine from a reanalysis of the 170' scattering excitation
curves of Ref. 9 using the program ANSFEc. '' Figure 2
shows fits to two resonance regions. We obtain Pi 0=9',
ft", =7', Pi 2 ——5', and gt 3 ——O'. These phases are then
used in inelastic fitting. The "on-resonance" angular dis-
tributions were taken at the energies of the maximum
yield of the first 2+, which are not the resonance energies.
The quantity Ez Ewas d—etermined by varying E until

the elastic angular distributions were fit. Figure 3 shows
the elastic resonant angular distributions.

The only free parameters in the inelastic analysis are the

g(cJ„). Once the correct combination of signs for the
g (cJ„) is found, the iteration procedure rapidly converges.
The resonances were fitted separately, but every three
iterations the background due to other resonances was
corrected. Table I shows the deduced elastic and inelastic
parameters. Errors are estimated from behavior during
fitting and do not include the normalization uncertainly.

IV. CALCULATION

A. Nuclear model

We attempt to describe the energy spectra and the spec-
troscopic amplitudes in terms of the pairing-plus-
multipole model (PMM) with the quasiparticle random
phase approximation (QRPA) for the doubly even system
and the quasiparticle vibration coupling (QVC) for the
odd-even system. A detailed description of the PMM
model can be found in Ref. 18; here we shall merely
sketch the main approximations involved in this model
and derive the formulae for the spectroscopic amplitudes,
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TABLE I. Elastic and inelastic widths. For odd parity resonances, the value of I P was taken to be zero and held fixed on theP)
7 resonance. For even parity resonances, the value of I P was taken to be zero and held fixed on the 2 resonance.

~ 7/2 3+
P)

Ec.m.
J

(MeV)

EJ —E
V

(keV)

Ig
(keV)

Odd parity resonances

I I 1/2
Pp P)

(keV) (keV)

p3/2
P)

(keV)

I 5/2
P)

(keV)

I 7/2
P(

7
2

3
2

3
2

1

2

10.21

10.45

10.51

10.90

+14
+30

78.0

60.0

80.0

103

17.0+1

5.00+ 1

13.8+1

18.9+1

1 ~ 18+0.2

3.27+0.4

3.88 +0.3

0.265+0.2

3.55 +0.4

12.47 +1.5

0.132+0.3

0.860+0.2

0. 117+0.4

6.05 +1.5

2.35+0.3

2.03+0.2

4.97+0.4

Ec.m.J

(MeV) (keV) (keV)

Even parity resonances

r I 1/2+
Po Pl

(keV) (kev)

I 3/2+
P)

(keV)

I 5/2+
Pl

(keV)

3+
2

+
2

7.98

8.28

65.0 6.00+0.5

11.0 +1

3.47+0.3 1.76 +0.3

0.0437+0.2

0.495+0.3

2.26 +0.2

Aj~~ Bja~~ +vja .~; a .~ = ( —) ajJ +m

leading to the independent quasiparticle Hamiltonian

~
f

qp g J~jtB+Jltl
jm

(4.1)

(4.2)

The operator a&~ (a. ) creates (annihilates) a particle in

the state Ijm)(
I j,—m)) andj—:Inlj}; the correspond

ing quasiparticle operators are, respectively, aJ and a.
The symbol EJ stands for the independent quasiparticle
energy

I (~ )2+F2]1/2 (4.3)

which are not available in the literature.
The PMM consists of the one-body shell model Hamil-

tonian (H,p), with the short range pairing (Hp) and long
range multipole (H~) forces as a residual two-body in-
teraction. Usually, the pairing coupling constant 6 is
fixed from the experimental pairing energy b, and the
neutron-neutron, proton-proton, and neutron-proton Inul-
tipole forces are chosen to be equal:

x~ =x~'=x~ =x~

The QRPA implies the following:
(i) An approximate diagonalization of the Hamiltonian

H,„+Hp through the Bogoliubov quasiparticle transfor-
mation

where

M&(s) = Q S(j,j,k)si. (j,j,),
AJ2

~x(j»= 2 X p(jij2~)
J) J2

(4.5b)

&&9 ~'(jij2)+( —)' "S'~ "(jij2)l
(4.5c)

with

S(jijqA)=(2K+1) '/ (Uj Uj —V V )

p(jij2j )=(2A.+1)-1/2(Uj vj +Uj vj )

&«ji IIi'r'&i Ilj2 ~

(4.6a)

(4.6b)

&i.(jij2)=
I &,&;,8

pi. '(jij2)=l-j~i-j~2E .

(4.6c)

(4.6d)

(ii) The scattering terms in the multipole Hamiltonian
are dropped out and the QRPA Hamiltonian,

HgRp~=Hqp —
~ g&i( —)' "~~"V»~~V»

A,p

(4.4)

contained in HM, become

where e~ is the Fermi energy, 6 is the energy gap, and eJ.

is the single particle energy.
The multipole operators

M~q= g (jimi Ii "r Y~g
I j2m, )a~. aj

Jiffy )

J2m2

is brought into the diagonal form,

H„„=g fico;8"+;8";,
A,p, l

by the Bogoliubov transformation

&~, ; =-, g [a;(jij2~)p~ (jij»
J&J2

(4.8)

m", =ji/I", (s)+m&(J ), (4.5a) —b;(jij2~)( —) "p~ (jij2)] (4.9)
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where
j'Vi j2~)

n;Vij2~) AA, ,i
ji + ji x i

j'Vi j~~)
b;Vi j2~) =Ax„

J)+ J2+ A l

(4.10a)

(4.10b)

are, respectively, the forward and backward going ampli-
tudes with the normalization condition

X l~ Vijz~)~'Viji~) —b;Viji~»; Vij.~)]=25;; .

(4.11)

The eigenfrequencies cox; are obtained from the dispersion relation

E E fico —E E . fico
J)J2 Jl+ J2 ~ l Jl+ JP+

while the quantity A~; is given by the expression

(4.12)

c)(fico ) (E E fico ) (E E fico )—jijz j]+ j2+ A i „j/+ jp i„i

After applying the inverse transformation to Eq. (4.5c) the phonon multipole operator reads

Mx =~. ' g A.„[~".,+;+(—)'-"~.
,";l

(4.13)

(4.14)

For the odd system the Hamiltonian is written in the form

H~d ——Hqp+H, ,s+H;„,(QVC),

where

Hin (QVC) = g A~, iMi.+ (s)[&x,i +( )' "&~,"—] .
AP, l

(4.15)

(4.16)

The wave functions of the Hamiltonian (4.15) are expressed as a superposition of one quasiparticle, one quasiparticle
plus one phonon, etc.:

I
JM&= CJ~JM+QCjAiJX(j~~p)

I
JM)~jm&j. i+ '' ' IA&

=Cg
I
JOJM) +g Cjx;g I

jA, i', JM) + (4.17)

where
I Po) is the ground-state wave function of the even system [Bardeen-Cooper-Schrieffer (BCS) vacuum].

The actual calculation shows that only the lowest energy phonon, which corresponds to the vibrational state, is impor-
tant. This is not only because its energy is the lowest, but also because it is strongly coupled to the single quasiparticles
(Ax i is large). Therefore we will consider only the lowest phonon, drop the suffix i, and use the number of phonons N,
together with the total angular momentum I, to specify the many phonon system. The energy matrix element of the
Hamiltonian H~d is given by

j' I' J
(j N I J IH~d IjNIJ) =5jj 5NN'5rr'(Nficox+Ej) Ax( )—j(2k+—1) ' S(jj A,)'I j A,

x[(N'I'll&x IIIN)5N, N+t+(N'I'll&x IINI&5N, N il, (4.18)

where Bx„=(—) i"Bx z In partic.ular,
' 1/2

&j'N'=I l'=~ J=j IH~d I
j»=01=0J=j &= Ax . S(jj'~)—2+1

2J +1 (4.19)

It should be noted that the relation between the quantity A~ and the macroscopic particle-vibration coupling strength
(k) is given by

Ag ——(k) Px
(4.20)

(r ) (2A, +I)'~
where (k) =(rc)V/c)r) =50 MeV and (r")=3/(3+A, )R with R =1.2A'~ fm, A being the mass of the nucleus con-
sidered.

We are now ready to calculate the spectroscopic amplitudes defined by
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8(jNIJ) =(2J + 1)'~ ( IAS;J
I I

aJ~P'+
I II ) (4.21)

and which measure to what extent the isobaric analog state (IAS) with angular momentum J can be built up by adding a
proton, in the single-particle state j, to a core state with N phonons and angular momentum I. To is the isospin of the
target nucleus. The IAS is related with the low-lying parent state (PS) through the relation

IIAS'»=,
I
ps J& (4.22)

where T =g. a~ aJ is the isospin lowering operator. The final result is

I I'A,
8(jNIJ)=( —)'+J C;„, U,'."'U,'"U,'"+ g ( —)'+'+ (2A, +1)C,'„,

j 'N'I' J J

x [[v'"'v"'v'"b'"'( ' J )+ v''"'v', "v'"b'"j'

&&(j'jA, )+ U',"'V'P'U)~P'a'P'j ('jA)]5& (v+1

+ [V(n) U(P) U(P) (n)(fjg) + U(n) V(P) V(P)a (P)(jjg)J J J j

+&q Vj' &j b "(JJJ()]&(v',(v ) I— (4.23)

[V(n) U(P) U(P)b (n)(JJ ~g)+ V(n) U(P)b (n)(jJ~/)

To discuss the physical features of the spectroscopic amplitudes, it is useful to give explicit formulae for specific
cases. In the following, the cases which involve the ground and the first vibrational states of an even nucleus are listed.
Contributions from two phonon states in the odd nucleus are neglected. The cases are the following:

(a) even nucleus in the ground state (elastic scattering):
' 1/2

8(J,I =O,J=J)=C, V,'"'V,'P'V, 'P' — + '
2j+1

+ U(n) V(P)V(P)a(P)(jjlg)]

2A, +1
2J+18(j I g J) ( )I —I+A C V(n) UJ(P) V(P)

(b} even nucleus in the first excited state (inelastic scattering):
' 1/2

CJ

(4.24a)

X [V" V V P a'"'(Jjk)+O'"'U'p'VJ'p'a(p)(JjA)+O(")V(p)UIP)b(p)(JjJ()] (4.24b)

The amplitudes Cz and CJ~ are obtained from the diagonalization of the Hamiltonian (4.16}. This procedure, howev-
er, leaves hidden those physical processes which play the dominant role in creating the properties of the coupled system.
Moreover, the results of diagonalization sometimes show a certain asymptotic behavior which could be eventually
predicted without complicated numerical operations. For these reasons, the results for the spectroscopic amplitudes are
listed below, when only zeroth and first order contributions to the wave functions are considered. This means that:

(1) For a predominantly single-quasiparticle state the wave function of the parent state is approximated by
' 1/2

S(")(JjJ )
(4.25)2J+1 ., E~ —~~—EJ

and

U(n) U(P) V(P)P(P)(
+ J j' j

E(p)+E(p) +~J j

8('I=0 J= }=O'"'U' 'O'P' —AJ~ =
~ =J = j j j 2j+1 ., E —E'—%co~j' J J

v'"'v' 'v' )p(")(jj'x)
x J J J

E'"'+E'"'+ej j' A.

U(P) V(P) U(P)P(P)( ~ .~g)j' J+ (p) (p)E +E' —fur)(J
(4.26a)
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in case (a) and

Ug"'U~"'U~ 'S'"'(j JA, )

8(j,I =A, ,J)= —Ai" 2J+1 E'"'—E'"'—e,J J

U( )U(P)V(P)P(P)(jJg)J J j+ (p) (p)EJ +EJ —Aevi

V(n(U(P) U(P)P(n)( 'Jg)J J J
E(n)+E(n)

U'"'V "'U'"'P'"'(j JA, )
+ J J j

E,(P)+E,'P)+W, (4.26b)

I
JM)= IJ'wM) —A,

2A, + 1

2J+1
S (JJ ~) IJOJM)

EJ +Ac@A,—EJ

and

in case (b).
(2) For a predominantly collective state the wave function is approximated by

1/2

(4.25')

8(j,I =O,J=j)= —Az

in case (a), and

2g I U'"'U' 'U' 'S'"'(jj'k)

2j + 1 EJ'+ Rcug —Ej

U'"'U' 'V P'P'(j.j 'A, )
+ j j

E(P)+E(P) +gj j' A,

V'"'U'P'U'P'P'"'(jj 'I, )J J J
E{n)+E(n)+~J J
U(n) V(P)U(P)P(P)(j'

(4.26a')

l9(j,I =A, ,J)= ( —)J i"U'"'U' p'U' p' A2 2k—+ 1 S'"'(Jj 'k)

2J+ 1 EJ +ficog —EJ
V'"'U'P'O'P'P("'(Jjl, ) U'"'U'P'V'"'P'P'(Jji, ) U'"'V'P'U'P'P'"'(Jj k, )J J J

E(n) +E(n) E(P)+E(P) ~ E(P)+E(P)+g (4.26b')

in case (b). The graphical representation of different
terms in Eqs. (4.26a), (4.26b), (4.26a'), and (4.26b') is
displayed in Figs. 4(a), (b), (a'), and (b'), respectively.
From these figures it is easy to see the physical meaning
of each of the contributions to the spectroscopic ampli-
tude. For example, the last term in Eq. (4.26b) [the last
diagram in Fig. 4(b)] arises from the ground state correla-
tions in the parent state, which create a phonon and two
quasiprotons; the proton in the state J'P' is annihilated, to-
gether with the initial quasineutron in the state J'"', by the
operator T, while the second proton decays from the
state j 'P', leaving the nucleus in the first vibrational state.

The first terms which appear in Eqs. (4.26) correspond
to the conventional processes in which one neutron above
the Fermi level is transformed, by means of the T opera-
tor, into a proton which later on decays. The first terms
in Eqs. (4.25) include, in addition, all the possible process-
es in which one or more phonons are successively emitted
and absorbed through the scattering vertices. The decay
modes mentioned above are the only ones which can take
place in the usual macroscopic QVC model. In this cou-
pling scheme the quasiparticle and collective degrees of
freedom are treated as if they were independent of each
other, i.e., [aJ~,B~i]=0, and the vibrational field cases
only the scattering of the quasiparticles, but neither
creates nor destroys pairs of quasiparticles. The remain-
ing three terms in each one of Eqs. (4.25) and (4.26) arise
either when the microscopic structure of the phonons is
explicitly taken into account or, equivalently, when one al-
lows, within the macroscopic QVC model, for the pair
creation and pair destruction processes in the first order
perturbation theory. In the present work we have fol-
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FIG. 4. Lowest order diagrams contributing to the proton

scattering in an analog resonance. In graphs (a) and (b) the
parent state is a single quasiparticle state and in graphs (a') and
(b ) it is a member of the quasiparticle-phonon multiplet,
Graphs (a) and (a') and (b) and (b') correspond, respectively, to
elastic and inelastic scattering. The pertinent analytic expres-
sions are given by Eqs. (4.26).
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lowed the first option; in the second case one should sub-
stitute the operator M~&+(s) in Eq. (4.16) by the operator
M~~+ =M~~+ (s)+M~~+ (p) and impose the condition

[ J,8"]=0.
Both from the formulae (4.26) and the graphs shown in

Fig. 4, it is easy to discover a close similarity between
cases Ia and IIb (by case Ia we mean the elastic scattering
through a dominantly single-quasiparticle state, etc.). The
parentage coefficient in both cases is mainly determined

by the superconductive factor UJ'"'UP'UJ'~', as the remain-
ing three terms, being proportional to A~, are relatively
small. More explicitly: The transitions from the multi-

plet

to the one-phonon state
~

A, ) are of the same order of
magnitude as the transition from the single-quasiparticle
state

~

A, ) on which is based the multiplet, independently
of the value of the angular momentum J.

Cases Ib and IIa also bear a close resemblance. All the
contributions are of first order in the coupling constant
Ai, in addition, when fuush &26, all the pair creation and
pair destruction factors carry the same sign, while the
scattering form may interfere constructively or destruc-
tively depending on the interplay of the sign of its energy
denominator with the sign of its superconductive vertex
factor. A careful analysis of the individual terms in Eqs.
(4.26b) and (4.26a') might lead to several interesting selec-
tion and intensity rules, similar to those which govern the
electromagnetic processes in a coupled system (see, for ex-
ample, Ref. 19).

B. Numerical calculations

Table II shows the single particle energies ej used in the
calculation. These come from the works of Heyde et al.
and de Toledo et aI. ' The procedure of the calculation
was as follows. First the gap equations were solved, both
for neutrons and for protons, with the gap parameters

b"=1.16 MeV and 6~=0.846 MeV,

taken from experimental odd-even mass differences.
The corresponding pairing strengths and the Fermi ener-
gies were, respectively,

The resulting quasiparticle energies and the occupation
coefficients, shown in Table II, were then used to calculate
the quasiparticle-phonon coupling constants Ai for the
first excited 2+ and 3 states in the Te nucleus, by
means of Eq. (4.13). In this step we have employed har-
monic oscillator wave functions with the length parameter
b =1.0057/I'/ fm, and the experimental values for the
phonon energies, i.e.,

fmq ——0.839 MeV and Aco3 ——2.72 MeV .

Next, with the calculating coupled constants

A2 ——0. 154 MeV fm and A3 ——0.0158 MeV fm

we evaluated the amplitudes a(jij2A) and b(jijiA) and
proceeded with the diagonalization of the Hamiltonian
H~d in the basis

~ j,(N2N3)N, (IiI3)I;JM); N =N2+N3, I = I2+ I3 .

Here, Ni and I i stand, respectively, for the number and
angular momentum of the A,-pole phonon. Furthermore,
the neutron quasiparticle was allowed to stay in one of the

g rbitals lg7/2 2ds/2 3~1/2 lb &&/i, 2d3/2, 2f7/2,
lk9/z, 3@3/2, 3@i/2, I/i3/2, and 2fs/2, aild all collective
states up to three quadrupole phonons (Ni &2) and two
octupole phonons (N3 &2) were considered. Finally, with
the amplitudes CJ&1/, obtained from the diagonalization
procedure, we calculated the parentage coefficients
8(J'NIJ) given by Eq. (4.23).

TABLE II. Single particle energies, quasiparticle energies, and the occupation coefficients used in
the calculation.

2fsn
1&~3m

3p&rz

&P3n
lh9yp

2f7n
2d 3'
1A ~ ]yg

3$ ~y2

2d5/2

1g7/2

1g9g2

2@1/2

&fsn
2p3y2

&f7n

7.06
6.42
8.89
7.61
4.04
4.42

—0.350
—0.485

0.000
—1.90
—2.35
—6.83
—7.10
—8.50
—8.38

—11.6

10.27
9.63

12.10
10.82
7.27
7.64
2.95
2.82
3.28
1.52
1.17
3.45
4.15
5.62
5.41
8.58

0.041
0.044
0.035
0.039
0.058
0.055
0.145
0.152
0.130
0.291
0.395
0.992
0.995
0.997
0.997
0.999

9.30
9.10
8.75
8.50
8.50
7.30
2.90
2.60
2.40
1.10
0.00

—3.83
—4.55
—6.04
—5.83
—9.02

5.85
5.65
5.31
5.07
5.07
3.91
1.40
1.59
1.74
2.85
3.89
7.63
8.34
9.82
9.61

12.78

0.100
0.103
0.110
0.115
0.115
0.150
0.882
0.918
0.934
0.978
0.989
0.997
0.998
0.998
0.998
0.999
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TABLE III. Even parity states. Comparison between experimental and calculated energies for the parent states and between ex-
perimental spectroscopic amplitudes and those obtained from model calculations. Calculated particle vibrator spectroscopic ampli-
tudes [first term in Eq. (4.23)], summed core amplitudes [second term in Eq. (4.23)], and total spectroscopic amplitudes shown
separately. We abbreviate 0{j,IJ) as 0(jI).

J, (MeV) 0(j,0+) OI,
'$

& yp, 2+) 8(d3/2, 2 ) 8(d5/2~2 ) 8(g7/2&2+) +8
Exp

Th
particle-vibration amplitude
core amplitude
Total

0.00
0.00 0.47

0.47

—0.093 0.14
—0.32 0.40
—0.41 0.54

0.47+0.02 —0.30+0.01 0.37+0.08 —0 17—p. p6
+p.p5

—0.02
—0.13
—0.15

0.03
0.19
0.24

0.82

0.25

0.75

Exp

Th
particle-vibration amplitude
core amplitude
Total

0.31
+

0.11

0.39+0.02

0.28

0.28

—0.05 p'p5
+p.p7

0.24
0.35
0.59

0.31+0.01

0.06
0.22
0.28

0.25

0.14

0.51

In order to analyze the sensitivity of the theoretical re-
sults to the model parameters and with the idea of getting
the best possible fit to the experiments, several other cal-
culations were performed, besides the one just mentioned.
This study has revealed that the agreement between the
theoretical and measured energy spectra of the ' 'Te nu-
cleus improves significantly only when the quasiparticle-
phonon scattering vertex is weakened rather drastically.
The results which will be immediately discussed corre-
spond to an effective scattering coupling constant

Ag ——Ax/2. 5 .

Although the only convincing justification for such a pro-
cedure lies in the agreement with the experimental data, it
is worth noting that:

(i) When the above-mentioned QRPA values for A2 and
A3 are used in relation (4.20), with P2

——0. 109 and

P3 ——0.050, we obtain for the macroscopic particle-
vibration coupling strength, respectively, (k ) =70 and 90
MeV; both of these values are significantly larger than
those used in the previous theoretical studies of the odd-
mass nuclei in the A =—130 mass region ' ' ' ' ((k) be-
tween 30 and 50 MeV).

(ii) The QRPA treatment includes only one-phonon

states (or two quasiparticle states), while in the diagonali-
zation of the Hamiltonian H, qq we also included two and
three phonon states which are built up mainly from four
and six quasiparticles. It is a well-known fact that the
main effect the two and three phonons have on the low-
lying states of the coupled system is to increase the
particle-phonon strength. Consequently, the extension of
the collective subspace should be compensated with a di-
minution of the particle-phonon coupling constant.

V. RESULTS AND DISCUSSION

Figure 4 shows the calculated level scheme compared
with the experimental (d,p) work of Jolly and Graue
et al. The work of Jolly at 14.8 MeV had poor energy
resolution (-50 keV), while the work of Ref. 25 with 9
keV resolution at 7.5 MeV was essentially Coulomb strip-
ping with unreliable I values for weak states. Most levels,
calculated and observed, with Sz~ &0.01 are omitted from
the figure. There are large discrepancies between the two
(d,p) experiments as to observed levels, spectroscopic fac-
tors, and excitation energies. Still it is clear that while the
level scheme and spectroscopic factors, which in the QVC
model read'

TABLE IV. Odd parity states. Comparison between experimental and calculated energies for the parent states and between exper-
imental spectroscopic amplitudes and those obtained from model calculations. Core amplitudes are negligible except for the h»&2 or-
bital which has 8„„=—0. 10 on the 2 resonance.

Exp
Th

E
J (MeV) Q(j 0+)

7
21 2.23 0.76+0.02

2.22 0.67

~~p & y2~ 2+)

—0.23 —0.04

8(p3/2, 2+) 8(fgn, 2+)

—0.33+0.01 —0.09+p'p] —0.35+0.02
—0.40 0.04 —0.10

0.82

0.67

8(f7/p 2 ) 8(h9/2 2 ) 8(h))/p, 2+) +8p„

Exp
Th

3
2 ] 2.47 0.32+0.03 —0.18+0.02 —0.03+p p9

1.90 0.11 —0.03 —0.04

—0.23 +0.03 —0.31+0.02
—0.14 —0.20

0.28

0.08

Exp
Th

3
22 2.53 0.53+0.01 —0.30+0.02 —0.30+0.02 —0.08+p'p5

2.33 0.50 —0.15 —0.26 —0.08

—0.47+0.02
—0.53

0.69

0.63

Exp
Th

1

2 2.92 0.63+0.02
2.68 0.40

0.53+0.03 —0.54+0.07
0.52 —0.21

0.96
0.47
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are globally reproduced, there are serious differences
which could not be resolved by any change of parameters
within the framework of the model employed. For exam-

1 +
pie, the calculated» state is too low in energy and has a
spectroscopic factor low by a factor of 2. Increasing the
3s&&2 single particle energy causes the state to rise, but
further reduces the spectroscopic factor.

The 2.28 MeV —, and 2.58 MeV —,
'

levels are well

reproduced in spectroscopic factors, but the calculated
level corresponding to the 2.51 MeV state appears 150

keV low in energy. Increasing ez results in splitting of
the

~
2f7/2, 0+; ,

' —) configuration spectroscopic strength
among a number of states. The 2.51 MeV ( —, ) level has
no clearly identified counterpart among the calculated
states and eve take the lowest energy calculated —,

'
level

for comparison of wave functions. We identify the lowest
calculated —,

' state as corresponding to the 3.00 MeV
( —, ) state in ' Te.

Tables III and IV show the spectroscopic amplitudes
deduced from the experimental data together with those
from the model calculation. Errors are estimated from
the behavior of the partial widths in relation to 7 during
fitting. Uncertainties in single particle widths are not tak-
en into account. Figures 5 and 6 show the fits to the in-
elastic data together with the angular distributions
predicted by the calculation. There is an uncertainty of
perhaps 20%%uo in the predicted cross sections because of
uncertainties in single particle widths and resonance total
widths.

The-experimental and calculated spectroscopic ampli-3+
tudes on the —, resonance are in excellent agreement in

both magnitude and sign. For the —,
' resonance the cal-

culated elastic spectroscopic amplitude is a bit too small.
A reaHy serious discrepancy is found in the amplitude
8(d3/2 2.+;—, ). The measured value for this quantity in-

dicates that either both the particle-phonon and the core
contributions are small or that they interfere destructively
with each other. Theoretically, both amplitudes are large
and add coherently due to the fact that the factor

U(n) U(nl y(n) p-(n)
t/2 3/2 1/2 ~3/2

E —Ed —%cog
(n) (n)
'f/2 3/2

which appears in the first term of Eq. (4.26b) is positive.
Q.10
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s1/280+

d3/2 80+

(c) (d)

FIG. 5. Comparison of experimental and calculated level
schemes. Columns (a) and (b) show energies, spins, and (d,p)
spectroscopic factors of Jolly (Ref. 25) and Graue et al. (Ref.
26), respectively. Column (c) shows calculated energies, spectro-
scopic factors, and spins of levels with Sd~ & 0.01 and column (d)
shows the largest wave function component for the calculated
states.

90
8, ( deg )

l50

FIG. 6. Even parity states. Solid lines indicate fits to inelas-
tic angular distributions. Dotted lines are angular distributions
predicted by the calculation.
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FIG. 7. Odd parity states. Conventions same as for Fig. 6.

In order to invert this situation one of the conditions

U(n) U(n) y(n) y(n)
S I/2 d3/2 S1/2 d3/2

should be fulfilled. However, we have not succeeded in
doing that with any reasonable model parametrization.
The amplitude 0(d5i2, 2+, —,

'
) is quite well reproduced by

the calculation.
For the negative parity states the overall agreement be-

tween measured and calculated spectroscopic amplitudes
is satisfactory; the most pronounced misfit appears in the
2.47 MeV —, level.

The theoretical differential cross sections are shown to-
gether with the experimental results in Figs. 6 and 7.
Most of the calculated curves show shapes comparable to
the experimental ones, particularly, at forward angles. As
was expected, the largest difference appears for the —,

i+
resonance.

VI. SUMMARY

We have performed the analysis of elastic and inelastic
angular distributions of protons from ' Te on isobaric
analog resonances considering at the same time resonant
scattering and nonresonant scattering described by a cou-
pled channel matrix, and good fits were obtained. Furth-
ermore, it was demonstrated that the QRPA, with a mul-
tipole multipole force plus pairing, explains most of ob-
served scattering data. Keeping in view the simplicity of
the force, the agreement between the experiment and the
theory is surprisingly good, particularly for the high lying
resonances. The remaining discrepancies are probably due
to correlations and excitations not included in the ap-
proach employed here.
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