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The complete set of experimental results on correlations in nuclear beta decay is analyzed in
terms of the general Hamiltonian including scalar, vector, axial vector, and tensor interactions with
an arbitrary degree of parity violation. It is concluded that the standard vector minus axial-vector
model with maximal parity violation (left-handed lepton current) is compatible with the data and
rigorous limits are obtained for the values of possible additional coupling constants. In the scalar
and tensor case the new constraints are considerably tighter than those published before: | Cs/Cy |
and |Cs/Cy| <0.2, |(Cs+Cs)/Cy| <0.06; |Cr/C4| and |Cr/C4| <0.09, |(Cr+Cr)/Cy]|
<0.01, all at the 95% confidence level. On the other hand, rather large admixtures of the right-
handed lepton currents (Cy /Cy+1 or Cy /C4+1) are allowed by the data. An analysis of the corre-
lations between various coupling constants implied by the data is also performed.

RADIOACTIVITY Correlations in 8 decay analyzed; limits on unusual cou- ]
plings deduced.

I. INTRODUCTION

The standard vector minus axial-vector (V' —A4) model
of the weak interactions, based on the sound principles of
gauge invariance and renormalizability, is highly success-
ful: it is consistent with the experimental data. However,
one does expect that deviations from this model would be
seen at some level. It is interesting to see to what degree
the “exotic” couplings are excluded by experiments on
low-energy semileptonic strangeness-conserving transi-
tions (traditionally the most accurate type of weak interac-
tion experiments). The most general such investigation to
date was the least-squares adjustment of the beta-decay
coupling constants performed by Paul' in 1970. That ad-
justment allowed substantial deviations from the standard
V —A model; the limits on the allowed levels of scalar and
tensor interactions were particularly poor. Later coupling
constant adjustments were less general, arbitrarily exclud-
ing scalar and tensor interactions?® and sometimes also
assuming maximal parity violation.*>

This paper presents the results of least-squares adjust-
ments similar to the adjustments of Paul’s 1970 paper.!
The emphasis, however, is on a more rigorous investiga-
tion of the limits on the coupling constants implied by the
experimental data; in addition, the inclusion of data ob-
tained since 1970 yields substantially tighter constraints
on the coupling constants.

Only data on nuclear beta decay are considered in the
present fit. No attempt is made to include purely leptonic
processes, such as the muon decay, because there is no
reason to expect that possible deviations from the stan-
dard ¥ —A4 model will be universal. Similarly, the possi-
ble indications for right-handed current effects in AS =1
semileptonic decays® are not considered here.

II. ASSUMPTIONS: BETA DECAY THEORY

We consider only allowed transitions. The weak in-
teraction Hamiltonian may then be written as’
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(The pseudoscalar contribution vanishes to lowest order,
since Op =75 couples large to small components of the
nuclear wave functions and thus ,0p?, is very small.
Following Paul’s lead, we neglect such “higher order”
terms as weak magnetism, and corrections that the use of
exact electron radial wave functions would produce.) In
this paper we restrict ourselves to the case where the cou-
pling constants C; and C; are real: all time-reversal
violating terms can then be neglected.

The following types of experimental measurements were
available for use in the least-squares adjustments: a, the
electron-neutrino angular correlation; b, the Fierz interfer-
ence term; A, the electron angular distribution from polar-
ized nuclei; B, the neutrino angular distribution from po-
larized nuclei; A , the electron-circularly polarized gamma
ray-angular correlation; G, the electron helicity as a frac-
tion of v /c; and ¢, the half-life of the neutron.

Each of these measurable quantities can be expressed as
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a ratio of bilinear functions of the coupling constants (see
the Appendix); except for the half-life of the neutron, they
do not depend on the weak interaction coupling strength
Gw. The formula for the neutron half-life ¢, in terms of
the coupling constants is rendered independent of Gy by
expressing it in terms of the (much more accurately mea-
sured) ft value for Fermi 0T —07" superallowed transi-
tions (extrapolated to Z =0).> For pure Fermi or pure
Gamow-Teller transitions, the formulas are independent
of nuclear matrix elements.

III. LEAST-SQUARES METHOD
AND ERROR HANDLING

Least-squares adjustments were performed for the fol-
lowing set of seven (real) parameters (and several subsets
thereof):

Cy Cs Cr
Pl—‘C—V‘» y ) C—V’ P3=a >
Cy Ca Cs
P4—‘C—V‘, Ps c’ P6=‘C,7 ,
and
p7=% . (3)

If f; is the ith experimental measurement, having uncer-
tainty o;, and ¢;(py, . . ., p,) is the corresponding theoreti-
cal function of the parameters (see the Appendix for defi-
nitions), then chi squared is defined as
(fi—¢:)
)(2_—_ ———— 2¢ e 4)
i=i g;

One wishes to find that set B ©’
minimizes X2. Defining L by

of parameter values which

2 N (fi—d¢;) 0¢;
Ljslaiz—z—f-’—zfl———?— (5)
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and the (symmetric) matrix M by
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(where the second term of M is frequently omitted as be-
ing negligible), the standard method®® for finding the po-
sition P (¥ of the minimum of chi squared (given some in-
itial guess P (V) involves iterating the equation

—ﬁ(n+1) —>(n) L(_ﬁ("))M'_l( (n))’ %))

which is based on a Taylor expansion (to quadratic order)
of X% about P ™. If the quadratic Taylor expansion is not
a good approxunation (over an area including B *), Eq.
(7) may not converge, or M may be singular (to the accu-
racy of its representation in computer memory). To sur-

mount these difficulties, we used the Marquardt method'®:
this involves replacing M ~! in Eq. (7) by M'~!, where

Mj =M +8; A | Mj; | , (8)

where 8 is the Kronecker delta and A is a (small) positive

‘number.

If the quadratic Taylor expansion of chi squared about
the minimum P is good over a large enough region of
parameter space, then M ! (calculated at B *) is the co-
variance matrix of the parameters; one generally uses this
to estimate the errors in the adjustment. For the more
general fits, this approximation turned out to be poor:
M~ gave a very poor estimate of the limits on the pa-
rameters. Also, certain pairs of parameters turned out to
be strongly correlated. To obtain confidence limits on the
parameters, we looked instead at (hyper) surfaces of con-
stant chi squared.

In the limit of a large number N of measurements, the
surface defined by

XUB)=XXP ) +k*=Xx3+k>2 9)

encloses a confidence region in parameter space having
the same confidence level (i.e., probability) as the region
between +k of a unit Gaussian: such a region might be
loosely thought of as a “ko” region. Projections (not
cross-sectional slices) of such surfaces onto two-
dimensional planes in parameter space were obtained for
strongly correlated pairs of parameters; projections onto
each parameter axis gave confidence limits for each pa-
rameter (though these limits are not independent, owing to
correlations between parameters).

Provided that the experimental measurements obey
Gaussian distribution rules, the least-squares method used
here is equivalent to the maximum likelihood method as
recommended by Annis et al.!! The confidence region
given by Eq. (9) defines corresponding confidence regions
of the functions ¢;(p). Unlike the experimental measure-
ments f;, the functions ¢; are, in general, restricted to cer-
tain finite intervals (e.g., helicity is restricted to the inter-
val *1). The confidence regions of the ¢; naturally
respect these intervals. Our method of determining the
boundaries of the confidence regions of the parameters p;
is equivalent to solving for p; at the boundary of the con-
fidence region of ¢; as done, e.g., in Ref. 3.

IV. SELECTION OF EXPERIMENTAL DATA

The experimental data values used in the least-squares
adjustments are given in Table I, with their corresponding
references. Of the 69 data values used by Paul' in his
1970 fits, all but one are included: the excluded measure-
ment'? (of the Fierz term: b=0.0014+0.024) is from the
mixed (mirror) transition ’N-»!3C. In addition we in-
clude 26 more recent measurements on pure Fermi and
pure Gamow-Teller transitions and on neutron decay.
These 92 data values are the ones used to obtain the limits
on the coupling constants presented in Table II: as men-
tioned above, the nuclear matrix elements do not enter
into the formulas for pure transitions, and for neutron de-
cay the matrix elements can be calculated easily and accu-
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TABLE II. Limits on parameter values.
Surface of
constant X2
giving rise to Limits on parameter values
Case parameter limit C,./Cy Cs/Cy Cr/C4 Cy/Cy C,/Cy Cs /Cy Cr/Cy
I Xi=x3+3? —0.962 0.328 0.118 1.674 1.218 0.249 0.106
Xr=x+22 —1.000 0.240 0.093 1.531 1.178 0.190 0.085
Xr=x4+1? —1.051 0.142 0.062 1.377 1.128 0.118 0.057
min 4:  X*=X3 —1.137 —0.006 0.004 0.848 1.055 0.006 —0.005
min B:  X?=X3 —1415 0.008 —0.005 1.179 0.948 —0.007 0.004
Xr=x3+1? —1.579 —0.131 —0.058 0.726 0.886 —0.117 —0.058
X=x3+22 —1.712 —0.228 —0.090 0.653 0.849 —0.190 —0.086
Xr=x3+3? —1.838 —0.312 —0.114 0.597 0.821 —0.249 —0.107
11 30: X2=x3+3? —1.2374 0.0084 0.0021
20: X2=x3+2? —1.2451 0.0054 0.0013
1o: X2=x3+1? —1.2528 0.0025 0.0005
min: X2=x3 —1.2606 —0.0004 —0.0003 1 1 =Cs/Cy =Cr/Cy
lo: X2=x3+1? —1.2685 —0.0034 —0.0011
20 X2=x3+2? —1.2765 —0.0063 —0.0019
30t X2=x3+3? —1.2846 —0.0093 —0.0027
e X2=x3+32 —0.965 1.671 1.213
X2=x3+2? —1.003 1.528 1.172
XP=Xi+1? —1.054 1.374 1.122
mind”:  X*=X3 —1.142 0 0 0.850 1.049 0 0
minB":  X*=X} —1.408 0 0 1.176 0.954 0 0
Xr=x3+12 —1.573 0.728 0.891
Xr=x5+22 —1.707 0.655 0.853
XP=x3+32 —1.833 0.599 0.825
v 30: Xi=x3+3? —1.2375
20: X=x3+22 —1.2451
lo: Xi=x3+1? —1.2529
min: xX2=x3 —1.2607 0 0 1 1 0 0
lo: Xi=x3+1? —1.2686
20: Xi=x3+22 —1.2766
30: X2=x3+32 —1.2847

2An extra decimal place (not really significant) is given here so as not to distort the size of the differences between various limits.

rately (namely | My |?=1, | Mgy |*=3). For mixed tran-
sitions, the formulas for the theoretical functions ¢; do
depend on the ratio of the matrix elements
Ry =Mgr /Mg, or at least on | Ry, |2 For certain su-
perallowed mixed mirror transitions, having | Mg |2=1,
Raman et al.'® give values for | Mgy |2 obtained by com-
paring the ft values of the mirror transitions with the ft
value for Fermi 0t —0" superallowed transitions. How-
ever, the value obtained for | Mgy |? depends on the value
one assumes for the coupling constants, so that for these
transitions R, should really be considered as another free
parameter in the fit, its value being constrained by the
transition’s ft value. For the sake of simplicity, this was
not done; when mixed transitions were used in the fit,
their matrix element ratio was assumed to be fixed. (Be-
cause this procedure is not strictly valid, the limits of
Table II were obtained without use of mixed transitions
other than neutron decay.)

The above mentioned >N measurement is not suffi-
ciently precise to affect the fit; the same is true of the
measurement'* of the beta angular distribution
(4=0.16+0.04) from polarized **Ar, which would also re-
quire knowledge of the sign of R,. Measurements
[4 =—0.033+£0.002 (Ref. 14) and 4 =—0.0391+0.0014
(Ref. 15)] for °Ne are precise; but here there are elec-
tromagnetic corrections'® of the same magnitude as the er-
rors. Therefore, these data were not used in our fit. Fits
were made using a helicity measurement of *H (see Table
I); this tightened the limits on C,/Cy, Cy/Cy, and
C,/C4 by a few percent. Two choices of matrix element
ratios were tried'>: |R, |%2=2.74 and |R, |2=2.92.
Fits were also made using measurements of a for **Ar (see
Table I); this tightened limits on Cs/Cy and Cg/Cy by
less than ten percent. Again, two choices of matrix ele-
ment ratios were tried’>:  |R, |?=0.05 and
| Ry |2=0.08. For both *H and *Ar, the different
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choices of matrix element ratios had little effect on the
limits obtained.

As pointed out by Wilkinson,? the three modern neu-
tron half-life values are not mutually consistent: two are
high!%!” and one is low'® when compared to the half-life
value predicted by the standard value of C,/C),. Wilkin-
son suggests using a weighted average with errors inflated
to render the measurements consistent.” This value was
used for the adjustments presented in this paper, but the
effects of using other half-life values are discussed in Sec.
V.

The minima and single-parameter limits of Tables II
and III were obtained using the 92 measurements on pure
transitions and neutron decay; the two-dimensional projec-
tions of the figures were obtained using 33 weighted aver-
ages (also given in Table I) of the measurements, including
the two mixed decays. It was tested that the averaging
had no significant effect on the limits; nor did use of the
mixed transition data, as mentioned above.

The errors o; used in the adjustments were taken to be
the uncertainties quoted by those who made the measure-
ments. They included both statistical and systematic er-
rors (added in quadrature).

V. RESULTS

Four main types of fits were performed, essentially in
decreasing order of generality; case I (the full seven-
parameter fit), case II (a “left-handed” three-parameter
fit, constrained by the requirement C; =C;), case III (the
general three-parameter fit containing only vector and axi-
al vector couplings, with scalar and tensor couplings con-
strained to be zero), and case IV (the standard V' —A one-

parameter fit with C,/Cy being the only free parameter).
The extreme allowed limits for each parameter (and their
values at the minimum) are given for each of the four
cases in Table II; they were obtained using the mean value
for the neutron lifetime (with its error expanded as per
Wilkinson®). The values X3 of chi squared at the
minimum are given in Table III for the four different pos-
sible choices of neutron lifetime (Wilkinson’s average,’ all
three values,'®~!® high values only,'®!7 or low value
only'®). Also presented in Table III are the corresponding
values and errors obtained for C, /Cy in the fit of case IV
for each choice of neutron lifetime.

In every case, the value X3 of chi squared at the
minimum is not significantly different (at the 90% confi-
dence level) from the number np of degrees of freedom.
Thus, unlike Paul' in 1970, we did not normalize X3 to np:
the limits on the parameters were defined by X?>=X3+k?
not

(np /X3X*=(np/ X35+ K2 .

(If the latter definition had been used, the limits on the
parameter values would have been tightened by less than
ten percent.)

Case I: Full seven-parameter fit. There were two mini-
ma (labeled 4 and B in tables and figures): two different
sets of parameter values yield exactly the same minimum
value for chi squared, owing to the fact that they yield ex-
actly the same theoretical estimates ¢; of the experimental
data values f;. However, the surface X>=X3+1 encloses
both minima as well as the “V —A position”; by looking
at the value of X 5 for case IV, one sees that the “ridge” be-
tween the two minima rises only to about X3 + 0.35.

TABLE III. Chi-square values for various types of fits.

Neutron half-lives used in fits

Weighted
Wilkinson’s All average of
Quantity mean® three high®* Low!
Description quoted .in neutron neutron neutron neutron
Case of fit body of table half-life half-lives half-lives half-life
I full X? at minimum =X} 72.59 86.69 72.53 74.81
seven-parameter degrees of freedom np 85 87 85 85
fit
I left-handed X? at minimum =X} 72.77 86.97 75.03 76.02
three-parameter degrees of freedom np 89 91 89 89
fit
111 no scalar X2 at minimum =X3 72.79 86.90 73.36 75.09
or tensor: degrees of freedom np 89 91 89 89
three-parameter
fit
v V—A X? minimum =X3 72.94 87.13 75.23 76.16
single- degrees of freedom np 91 93 91 91
parameter V —A value of C,/Cy —1.2607 —1.2641 —1.2488 —1.2730
fit error implied in fit +0.0079 +0.0047 +0.0064 +0.0055

2D. H. Wilkinson, Nucl. Phys. A377, 474 (1982).
bC. J. Christensen et al., Phys. Rev. D 5, 1628 (1972).
°J. Byrne et al., Phys. Lett. 92B, 274 (1980).

9L. N. Bondarenko et al., Pis’'ma Zh. Eksp. Teor. Fiz. 28, 328 (1978) [JETP Lett. 28, 303 (1978)].
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Cs and Cg are strongly correlated, as may be seen in
Fig. 1 (note the different scales on the two axes). Figure 2
demonstrates that Cr is even more strongly correlated
with C7. For both scalar and tensor couplings, the sum
C; +C; is much more tightly constrained than the differ-
ence C; —C; , owing to the way these parameters enter into
the formula for b, the Fierz interference term (see the Ap-
pendix). For these parameters, the two minima essentially
coincide, and are not far from the V —A position
CS=C§=CT=C%=O CA/CV and C{//CV are quite
strongly correlated (see Fig. 3), and C; /C, is correlated to
a lesser degree with each of them. For these three param-
eters, the two minima are fairly widely separated. (Case
III, with no scalar or tensor allowed, yields almost identi-
cal results.)

The only significant effect (besides increasing X3 by 14)
of using the three neutron half-lives separately with their
quoted errors is to tighten the limits on Cg and Cg by ap-
proximately 15%. Using only the low neutron half-life!®
increases X2 by 2.3 and increases the height of the ridge
between the minima to X3 + 1.3, while tightening the lim-
its on Cg and Cg by about 30%. Using only the high neu-
tron half-lives'®!” spreads the two minima apart (particu-
larly for Cg and Cg) and increases the height of the ridge
between the minima to X3+ 2.7: the ¥V —A position is
barely within the 90% confidence region of the parame-
ters. The limits on Cg and Cg are then loosened by about
30%.

Our analysis cannot decide which of the two conflicting
neutron lifetimes is more likely to be correct. However,
the mean neutron lifetime, as recommended by Wilkin-
son,” seems to be more consistent with all the other corre-
lation data than either of the measured lifetimes.

Case II: Left-handed three-parameter fit. There is only
a single minimum. There are very tight limits on Cg and
Cr, owing to the Fierz interference term (by definition,
these limits may be obtained by taking the intercepts of

()

-0.5/-04[-03 [02-0.1 AKBol 0.2/ 03 fo4 fO5 .
Cs-Cq

A
: C,

-0.06

-0.09

FIG. 1. Confidence regions for scalar coupling constants
(general fit: case I), expressed in terms of the sum and differ-
ence of Cs/Cy and Cs/Cy. Curves I, II, and III represent
X2=Xx3+12, X?=Xx3+2% and X?>=X3+ 32 respectively. The two
minima of X2 are indicated by points 4 and B. Note the dif-
ferent scales on the two axes.

C+Ch

Ca
0015 I

0.010 I

FIG. 2. Confidence regions for tensor coupling constants
(general fit: case I), expressed in terms of the sum and differ-
ence of Cr/C,4 and Cr/C,. For notation see Fig. 1. Note the
different scales on the two axes.

the contours of Figs. 1 and 2 on their vertical axes, and di-
viding by two). The limit on C, /Cy is also very tight, be-
ing essentially the same as in case IV, the V' —4 fit. Use
of the three separate neutron half-life values tightens the
error on C,/Cy by about 40% and shifts its value some-
what; use of either the high or the low values tightens the
error on C,/Cy by about 25% and shifts its value by
about two standard deviations (see Table III for case IV).
Case III: Three-parameter fit; no scalar or tensor.
There are two minima, as in case I; in fact, the limits on
C,/Cy, Cy/Cy, and C; /C, are essentially the same as in
case I, and Fig. 3 is applicable here too. The different
choices of neutron half-life values have no significant ef-

-1.0f
-1.2f
C,/C,
-4
-6
-18F
| 1 1 1 | 1
0.6 0.8 1.0 12 14 1.6
Cy/Cy
FIG. 3. Confidence regions showing the correlation of

C,/Cy with Cy/Cy (general fit: case I; also applicable for case
III). For notation see Fig. 1. The LHC point indicates the value
and error of C,/Cy for the left-handed fits (cases II and IV,
where C{ =C)).
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fect on the limits.

Case IV: Standard V —A one-parameter fit. The value
and error for C,/Cy obtained here are essentially the
same as those obtained by Wilkinson® in his (restricted)
1982 fit. All comments about C,/Cy in case II apply
here too: see Table III for the effects of various choices of
neutron half-life.

VI. CONCLUSIONS

For the most general seven-parameter fit, the limits on
the parameters are the least stringent, although the limits
on scalar and tensor coupling constants are an order of
magnitude tighter than those obtained by Paul! in 1970.
Looking at Table II and Figs. 1 and 2, one obtains the fol-
lowing 95% confidence limits (CL). For the scalar cou-
pling constants, one finds

Cs Cs .
—1<0.23, |—[<0.19: 95% CL [mostly owing to a(n) and ¢,] , (10
v v
with
Cs+Cs .
Al <0.065: 95% CL (mostly owing to bpermi) - (11)
14
For the tensor coupling constants,
Cr T . 6
——1<0.09, |— |<0.085: 95% CL [mostly owing to a(°He)] , (12)
C4 C4
with
Cr+Cj
CrHCT | 0.01: 95% CL [mostly owing to b(*Na)] . (13)
A

For the other three coupling constants, the limits obtained here are not all that much tighter than the limits obtained in
the restricted fit of van Klinken et al.’ in 1978: our limits are

C
—1.71< C_A < —1.00: 95% CL (many measurements contribute to this limit) , (14)
v
Cy : 26
0.65< <, < 1.53: 95% CL [mostly owing to G (“°Al™)], (15)
v
(16)

Ca : 32 60
0.85< <, <1.18: 95% CL [mostly owing to G(**P and *°Co)] ,

A

where it must be remembered that these latter three pa-
rameters are fairly strongly correlated with each other,
especially C,/Cy with Cy/Cy. These confidence limits,
and the confidence regions shown in the figures, are cer-
tainly consistent with the ¥V —A values for the coupling
constants of

Cy

—=-1.26,

Cy

Cy C,

Cy C4
and

CS=C§=CT=C§'=0 >

Further, the ¥ —A values lie near the center of the above
confidence regions, although the confidence regions are
too irregular to allow one to quote a central value plus or
minus an error. Note that constraining the scalar and ten-
sor coupling constants to vanish has practically no effect
on the other coupling constants.

—
For the case where C; is constrained to be equal to C;

(left-handed fit), the limits are tight, and it is possible to

represent the coupling constants as values with errors:

C
-éi — —1.2607+0.0079 [mostly owing to 4 (n) and £, ] ,
v
(18)
Cs
= —0.0004+0.0029 [mostly owing to gl » (19)
v
Cr : 22
<. = —0.0003+0.0008 [mostly owing to b(“*Na)] .
A
(20)

(The 95% CL’s are of course obtained by doubling the
above error values.) Again, it makes no difference to
C,/Cy if the scalar and tensor coupling constants are
constrained to vanish.

It is desirable to have a reliable value (and error) for the
neutron half-life, which has some effect on the scalar lim-
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its and strongly affects the value and error of C,/Cy in
the standard ¥ —A4 fit (as may be seen from Table III).
Certain proposed highly accurate measurements of ratios
of positron polarizations!'>?° could lead to limits on
Cy /Cy (and probably C, /Cy) comparable to the limits on
C,/C4, although these coupling constants appear only
quadratically in the helicity G. Prospects for tighter lim-
its on Cg, Cg, Cr, and C7 in the general case are not too
hopeful, as they appear only quadratically in the con-
straining measurements (except for the Fierz term b,
which only constrains the sums Cg+Cgs and Cy+Cr).
Use of measurements on mixed mirror transitions (with
the matrix element ratios properly considered as free pa-
rameters constrained by ft values) might help to tighten
some limits.

When more accurate experimental data are available it
will also be necessary to reconsider whether the deviations
from the allowed approximations are indeed negligible (as
we have assumed in this paper).

APPENDIX

The dependence of the measureable parameters a, b, 4,
B, A, G, and ¢, (multiplied by &, where & is defined
i N

172

below) on the coupling constants is given in Egs.
(A3)—(A9) below, in the same notation as that used by
Paul.! The assumptions involved are mentioned in Sec. II.
Note that all the fits performed for this paper assumed
that the coupling constants be real. For conciseness, one
writes

Then (as given by Lundby’) the electron-neutrino angular
correlation is given by
af=7 | Mot | XKrr—Ka4)+ | Mz | (Kyy—Kss) ,  (A3)

the Fierz interference term is given by

bE=+2y(|Mgr |*ReKry+ | Mg |'ReKgy),  (A4)

the electron angular distribution from polarized nuclei is
given by

Ag= [ikJJ' | Mgt | XLyr—L 44) 428, J—_JH MgMgrRe(Lsr—Ly,) /<1+b/W) ) (A5)
the neutrino angular distribution from polarized nuclei is given by
172
BE={ Ay | Mgr|? i(LTT+LAA)+‘2WJ:_RCLTA —28;y J——{-l MgMgr
X |RelLsy+Lys)% L-RelLsy+Lyr) }/(1+b/W), (A6)

the electron circularly polarized gamma-angular correlation (for a gamma transition of pure multipolarity L) is given by

172
Ag= |tpsy |Mor | MLrr—L44)+28;7 J—{-l MgMgrRe(Lsy—Lyy) /[(1+L)(1+b/W)] , (A7)
and the electron helicity (divided by v /c) is given by
GEé=+[|Mgr | XLy —L44)+ | Mg | X Lss—Lyy)1/(14+b/W) . (A8)
I
The neutron half-life is given by Also, in the above equations
(33 §=|Mgr | (Krr+Kaa)+ | Mp | (Kss+Kyy),  (A12)
0—0
tyE=2 I; ] | Mk | Z(KSS+KW) ’ (A9) Y= 1—(aZ)? where a=-1-% is the fine structure con-
stant and Z is the atomic number of the daughter nucleus,
where Wilkinson® gives
(F1)529=3083.1+1.4 sec , 1
= {1
f=1.71465+0.00015 , (A10) A=/ +1)
so that for the purposes of fitting one can take, as a con-
stant, 1 J—=J'=J—1
(FO520 par={—1/J for {JJ'=J
2[ 7 |=3996.2 sec. (1D ~U 42/ +1) T T =T +1
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L is the multipolarity of the gamma ray and W is the elec-
tron (or positron) energy in units of m.c?. The upper
(lower) sign in the above equations refers to electron (posi-
tron) emission, Mg and Mgy are the Fermi and Gamow-
Teller matrix elements, respectively, and J (J') is the initial
(final) spin quantum number of the decaying nucleus.

The terms (14b/W) in the denominators of Egs.
(A5)—(AB) arise from the fact that b is assumed to be zero
when one analyzes experimental data to obtain the correla-
tion parameters: this is discussed at some length by Paul.!
The electron energy values W need not be given very pre-

cisely, since b is always very small and thus a large error
in W still yields only a very small error in the correspond-
ing correlation value. Note that for a pure Fermi or pure
Gamow-Teller transition, the matrix element cancels out
when one divides Egs. (A3)—(A9) by £ [Eq. (A12)] to get
the formulas for the actual measurements.
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