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Status of the standard vector —axial-vector model for nuclear beta decay
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(Received 16 June 1983)

The complete set of experimental results on correlations in nuclear beta decay is analyzed in

terms of the general Hamiltonian including scalar, vector, axial vector, and tensor interactions with
an arbitrary degree of parity violation. It is concluded that the standard vector minus axial-vector
model with maximal parity violation (left-handed lepton current) is compatible with the data and
rigorous limits are obtained for the values of possible additional coupling constants. In the scalar
and tensor case the new constraints are considerably tighter than those published before:

I
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I Cr«~
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and
I
CT«„ I

&OO9 I(CT+CT)«~
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&0.01, all at the 95% confidence level. On the other hand, rather large admixtures of the right-
handed lepton currents (C~/C~&1 or C~ /C~&1) are allowed by the data. An analysis of the corre-
lations between various coupling constants implied by the data is also performed.

RADIOACTIVITY Correlations in P decay analyzed; limits on unusual cou-

plings deduced.

I. INTRODUCTION II. ASSUMPTIONS: BETA DECAY THEORY

The standard vector minus axial-vector (V —A) model
of the weak interactions, based on the sound principles of
gauge invariance and renormalizability, is highly success-
ful: it is consistent with the experimental data. However,
one does expect that deviations from this model would be
seen at some level. It is interesting to see to what degree
the "exotic" couplings are excluded by experiments on
low-energy semileptonic strangeness-conserving transi-
tions (traditionally the most accurate type of weak interac-
tion experiments). The most general such investigation to
date was the least-squares adjustment of the beta-decay
coupling constants performed by Paul' in 1970. That ad-
justment allowed substantial deviations from the standard
V —A model; the limits on the allowed levels of scalar and
tensor interactions were particularly poor. Later coupling
constant adjustments were less general, arbitrarily exclud-
ing scalar and tensor interactions ' and sometimes also
assuming maximal parity violation. '

This paper presents the results of least-squares adjust-
ments similar to the adjustments of Paul's 1970 paper. '

The emphasis, however, is on a more rigorous investiga-
tion of the limits on the coupling constants implied by the
experimental data; in addition, the inclusion of data ob-
tained since 1970 yields substantially tighter constraints
on the coupling constants.

Only data on nuclear beta decay are considered in the
present fit. No attempt is made to include purely leptonic
processes, such as the muon decay, because there is no
reason to expect that possible deviations from the stan-
dard V —A model will be universal. Similarly, the possi-
ble indications for right-handed current effects in b,S =1
semileptonic decays are not considered here.

%e consider only allowed transitions. The weak in-
teraction Hamiltonian may then be written as

g (/@Otal„)[Q, Ot(C;+C y5)f„]+H.c. , (1)2;
wherei =5, V, T, A, and

Os=&

Ov 7p ~

l

2%2

Og ———iypy5 .

(The pseudoscalar contribution vanishes to lowest order,
since Ot ——ys couples large to small components of the
nuclear wave functions and thus Q~Otg„ is very small.
Following Paul's lead, we neglect such "higher order"
terms as weak magnetism, and corrections that the use of
exact electron radial wave functions would produce. ) In
this paper we restrict ourselves to the case where the cou-
pling constants C; and C are real: all time-reversal
violating terms can then be neglected.

The following types of experimental measurements were
available for use in the least-squares adjustments: a, the
electron-neutrino angular correlation; b, the Fierz interfer-
ence term; A, the electron angular distribution from polar-
ized nuclei; 8, the neutrino angular distribution from po-
larized nuclei; A, the electron-circularly polarized gamma
ray-angular correlation; 6, the electron helicity as a frac-
tion of v Ic; and t„, the half-life of the neutron.

Each of these measurable quantities can be expressed as
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a ratio of bilinear functions of the coupling constants (see
the Appendix); except for the half-life of the neutron, they
do not depend on the weak interaction coupling strength

6)) . The formula for the neutron half-life t„ in terms of
the coupling constants is rendered independent of G~ by
expressing it in terms of the (much more accurately mea-
sured) ft value for Fermi 0+~0+ superallowed transi-
tions (extrapolated to Z=0). For pure Fermi or pure
Gamow-Teller transitions, the formulas are independent
of nuclear matrix elements.

III. LEAST-SQUARES METHOD
AND ERROR HANDI ING

Least-squares adjustments were performed for the fol-
lowing set of seven (real) parameters (and several subsets
thereof):

Cs
Pt= ~ P2=

Cy Cp

CT
+3=

Cy
P4=

Cy
p5==

Cg
'

Cg
P6=

Cy

CT
P7=

If f; is the ith experimental measurement, having uncer-
tainty o;, and (I);(p), . . . ,p„) is the corresponding theoreti-
cal function of the parameters (see the Appendix for defi-
nitions), then chi squared is defined as

N (f P.)2.x'= g —'
(4)

and the (symmetric) matrix M by

1 O'X'
Mjk =—

~pk~pj '=' (7' ~pk ~Sj

One wishes to find that set p
' ' of parameter values which

minimizes 7 . Defining L by

(f; P;) &(t;—

mount these difficulties, we used the Marquardt method':
this involves replacing M ' in Eq. (7) by M' ', where

M'k =M k+5jkA,
~

M"
~

where 5jk is the Kronecker delta and A, is a (small) positive
'number.

If the quadratic Taylor expansion of chi squared about
the minimum p

' ' is good over a large enough region of
parameter space, then M ' (calculated at p

' ') is the co-
variance matrix of the parameters; one generally uses this
to estimate the errors in the adjustment. For the more
general fits, this approximation turned out to be poor:
M ' gave a very poor estimate of the limits on the pa-
rameters. Also, certain pairs of parameters turned out to
be strongly correlated. To obtain confidence limits on the
parameters, we looked instead at (hyper) surfaces of con-
stant chi squared.

In the limit of a large number X of measurements, the
surface defined by

X'(p) =X'(p ' ')+k'—=Xo'+k'

encloses a confidence region in parameter space having
the same confidence level (i.e., probability) as the region
between +k of a unit Gaussian: such a region might be
loosely thought of as a "ko" region. Projections (not
cross-secttonal sltces) of sUch sUrfaces onto two-
dimensional planes in parameter space were obtained for
strongly correlated pairs of parameters; projections onto
each parameter axis gave confidence limits for each pa-
rameter (though these limits are not independent, owing to
correlations between parameters).

Provided that the experimental measurements obey
Gaussian distribution rules, the least-squares method used
here is equivalent to the maximum likelihood method as
recommended by Armis et al." The confidence region
given by Eq. (9) defines corresponding confidence regions
of the functions P;(p). Unlike the experimental measure-
ments f;, the functions P; are, in general, restricted to cer-
tain finite intervals (e.g. , helicity is restricted to the inter-
val +1). The confidence regions of the P; naturally
respect these intervals. Our method of determining the
boundaries of the confidence regions of the parameters pj
is equivalent to solving for pJ at the boundary of the con-
fidence region of P; as done, e.g. , in Ref. 3.

IV. SELECTI(ON OF EXPERIMENTAI. DATA

(where the second term of M is frequently omitted as be-

ing negligible), the standard method ' for finding the po-
sition p

' ' of the minimum of chi squared (given some in-

itial guess p
' ') involves iterating the equation

~~(n+))
p

(n) I (~ (n))M —1(p (n))

which is based on a Taylor expansion (to quadratic order)
of X about p '"'. lf the quadratic Taylor expansion is not
a good approximation (over an area including p

' '), Eq.
(7) may not converge, or M may be singular (to the accu-
racy of its representation in computer memory). To sur-

The experimental data values used in the least-squares
adjustments are given in Table I, with their corresponding
references. Of the 69 data values used by Paul' in his
1970 fits, all but one are included: the excluded measure-
ment' {of the Fierz term: b=0.0014+0.024) is from the
mixed (mirror) transition ' N —+' C. In addition we in-
clude 26 more recent measurements on pure Fermi and
pure Gamow-Teller transitions and on neutron decay.
These 92 data values are the ones used to obtain the limits
on the coupling constants presented in Table II: as men-
tioned above, the nuclear matrix elements do not enter
into the formulas for pure transitions, and for neutron de-
cay the matrix elements can be calculated easily and accu-
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TABLE II. Limits on parameter values.

Case

Surface of
constant X

giving rise to
parameter limit Ca /Cv Cs/Cv

Limits on parameter values

CT /Cq Cv /Cv Cq /C Cs/Cv Cr/C~

Ia

min A.
min 8-

X =Xp+3
X —Xp+ 2
X =Xp+ 1

X —Xp
2 2

X —Xp

X —Xp+1
X —Xp+ 2
X =XQ+3

—0.962
—1.000
—1.051
—1.137
—1.415
—1.579
—1.712
—1.838

0.328
0.240
0.142

—0.006
0.008

—0.131
—0.228
—0.312

0.118
0.093
0.062
0.004

—0.005
—0.058
—0.090
—0.114

1.674
1.531
1.377
0.848
1.179
0.726
0.653
0.597

1.218
1.178
1.128
1.055
0.948
0.886
0.849
0.821

0.249
0.190
0.118
0.006

—0.007
—0.117
—0.190
—0.249

0.106
0.085
0.057

—0.005
0.004

—0.058
—0.086
—0.107

30'.
20:
lo'.
min:

20:
3(7:

X —Xp+ 3
X —XQ+ 2
X'=Xp+1'
X —Xp

2 2

X —XQ+ 1

X XQ+2
X =Xp+ 3

—1.2374
—1.2451
—1.2528
—1.2606
—1.2685
—1.2765
—1.2846

0.0084
0.0054
0.0025

—0.0004
—0.0034
—0.0063
—0.0093

0.0021
0.0013
0.0005

—0.0003
—0.0011
—0.0019
—0.0027

Cs/Cv —=CT /C

minA':
minB':

X =XQ+ 3
X2=X +22
X'=Xp+1'
X —XQ

2 2

X —XQ
2 2

X'=Xp+1'
X =Xp+2
X Xp+3

—0.965
—1.003
—1.054
—1.142
—1.408
—1.573
—1.707
—1.833

1.671
1.528
1.374
0.850
1.176
0.728
0.655
0.599

1.213
1.172
1.122
1.049
0.954
0.891
0.853
0.825

IV 3(7:
20'.
10:
min:

20'
3o'

X =Xp+3
X —XQ+ 2

X =Xp+1
X —Xp

2 2

X —XQ+ 1

X =Xp+2
X —XQ+ 3

—1.2375
—1.2451
—1.2529
—1.2607
—1.2686
—1.2766
—1.2847

'An extra decimal place (not really significant) is given here so as not to distort the size of the differences between various limits.

rately (namely
I
MF

I

'=1
I
MGT I'=3) F«mixed «an-

sitions, the formulas for the theoretical functions P; do
depend on the ratio of the matrix elements

RM=MoT/M„, or at least on IRM
I

. For certain su-
perallowed mixed mirror transitions, having IMF I

=1,
Raman et al. ' give values for

I
MoT I

obtained by com-
paring the ft values of the mirror transitions with the ft
value for Fermi 0+~0+ superallowed transitions. How-
ever, the value obtained for

I MGT
I

depends on the value
one assumes for the coupling constants, so that for these
transitions R~ should really be considered as another free
parameter in the fit, its value being constrained by the
transition s ft value. For the sake of simplicity, this was
not done; when mixed transitions were used in the fit,
their matrix element ratio was assumed to be fixed. (Be-
cause this procedure is not strictly valid, the limits of
Table II were obtained without use of mixed transitions
other than neutron decay. )

The above mentioned ' N measurement is not suffi-
ciently precise to affect the fit; the same is true of the
measurement' of the beta angular distribution
(A =0.16+0.04) from polarized Ar, which would also re-
quire knowledge of the sign of R~. Measurements
[A = —0.033+0.002 (Ref. 14) and A = —0.0391+0.0014
(Ref. 15)] for ' Ne are precise; but here there are elec-
tromagnetic corrections' of the same magnitude as the er-
rors. Therefore, these data were not used in our fit. Fits
were made using a helicity measurement of H (see Table
I); this tightened the limits on C„/C~, C~/Cz, and
Cz/C~ by a few percent. Two choices of matrix element
ratios were tried':

I
RM

I
=2.74 and

I
RM

I
=2.92.

Fits were also made using measurements of a for Ar (see
Table I); this tightened limits on Cs/Cz and Cs/Cv by
less than ten percent. Again, two choices of matrix ele-
ment ratios were tried':

I R~ I
=0.05 and

I
RM

I
=0.08. For both H and Ar, the different
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choices of matrix element ratios had little effect on the
limits obtained.

As pointed out by Wilkinson, the three modern neu-
tron half-life values are not mutually consistent: two are
high' ' and one is low' when compared to the half-life
value predicted by the standard value of Cz /Cz. Wilkin-
son suggests using a weighted average with errors inflated
to render the measurements consistent. This value was
used for the adjustments presented in this paper, but the
effects of using other half-life values are discussed in Sec.
V.

The minima and single-parameter limits of Tables II
and III were obtained using the 92 measurements on pure
transitions and neutron decay; the two-dimensional projec-
tions of the figures were obtained using 33 weighted aver-

ages (also given in Table I) of the measurements, including
the two mixed decays. It was tested that the averaging
had no significant effect on the limits; nor did use of the
mixed transition data, as mentioned above.

The errors o.; used in the adjustments were taken to be
the uncertainties quoted by those who made the measure-
ments. They included both statistical and systematic er-
rors (added in quadrature).

V. RESULTS

Four main types of fits were performed, essentially in
decreasing order of generality; case I (the full seven-
parameter fit), case II (a "left-handed" three-parameter
fit, constrained by the requirement C = C;), case III (the
general three-parameter fit containing only vector and axi-
al vector couplings, with scalar and tensor couplings con™
strained to be zero), and case IV (the standard V —A one-

parameter fit with Cq /C~ being the only free parameter).
The extreme allowed limits for each parameter (and their
values at the minimum) are given for each of the four
cases in Table II; they were obtained using the mean value
for the neutron lifetime (with its error expanded as per
Wilkinson ). The values Xo of chi squared at the
minimum are given in Table III for the four different pos-
sible choices of neutron lifetime (Wilkinson's average, all
three values, ' ' high values only, ' ' or low value
only' ). Also presented in Table III are the corresponding
values and errors obtained for Cq /C~ in the fit of case IV
for each choice of neutron lifetime.

In every case, the value Xo of chi squared at the
minimum is not significantly different (at the 90% confi-
dence level) from the number nD of degrees of freedom.
Thus, unlike Paul' in 1970, we did not normalize Xo to na
the limits on the parameters were defined by X =Xo+k
not

(np/Xo)X'= (nD /Xo)Xo+ k

(If the latter definition had been used, the limits on the
parameter values would have been tightened by less than
ten percent. )

Case I: Full seven parame-ter fit There. were two mini-
ma (labeled A and 8 in tables and figures): two different
sets of parameter values yield exactly the same minimum
value for chi squared, owing to the fact that they yield ex-
actly the same theoretical estimates P; of the experimental
data values f;. However, the surface X =Xo+1 encloses
both minima as well as the "V—3 position"; by looking
at the value of Xo for case IV, one sees that the "ridge" be-
tween the two minima rises only to about X~ + 0.35.

TABLE III. Chi-square values for various types of fits.

Neutron half-lives used in fits
Weighted

All average of
Quantity three high"

neutron
half-lives

72.53
85

Wilkinson's
mean

neutron
half-life

at minimum =go
degrees of freedom n&

75.03
89

at minimum =+o
degrees of freedom n~

73.36
89

IV 75.23
91

—1.2488
+0.0064

Description quoted . in neutron
Case of fit body of table half-lives

I full at minimum —=go 72.59 86.69
seven-parameter degrees of freedom na 85 87

fit
II left-handed 72.77 86.97

three-parameter 89 91
fit

no scalar 72.79 86.90
or tensor: 89 91

three-parameter
fit

V —A minimum 72.94 87.13
single- degrees of freedom n~ 91 93

parameter V —A value of Cq/C~ —1.2607 —1.2641
fit error implied in fit +0.0079 +0.0047

'D. H. Wilkinson, Nucl. Phys. A377, 474 (1982).
C. J. Christensen et al. , Phys. Rev. D 5, 1628 (1972).

'J. Byrne et al. , Phys. Lett. 92B, 274 (1980).
sL. N. Bondarenko et al. , Pis'ma Zh. Eksp. Teor. Fiz. 28, 328 (1978) [JETP Lett. 28, 303 (1978)].

Lop
neutron
half-life

74.81
85

76.02
89

75.09
89

76.16
91

—1.2730
+0.0055
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feet on the limits.
Case IV: Standard V —A one-parameter fit. The value

and error for C~/Cr obtained here are essentially the

same as those obtained by Wilkinson in his (restricted)

1982 fit. All comments about Cz/Cz in case II apply
here too: see Table III for the effects of various choices of
neutron half-life.

VI. CONCLUSIONS
F« the most general seven-parameter fit, the limits on

the parameters are the least stringent, although the limits
on scalar and tensor coupling constants are an order of
magnitude tighter than those obtained by Paul' in 1970.
Looking at Table II and Figs. 1 and 2, one obtains the fol-
lowing 95% confidence limits (CL). For the scalar cou-

pling constants, one finds

Cs
& 0.23,

Cs
&0.19: 95% CL [mostly owing to a(n) and t„],

Cv
(10)

with

Cs+ Cs
&0.065: 95%%u% CL (mostly owing to bF,~; ) .

CY

For the tensor coupling constants,

Cz-
& 0.09,

A

CT
&0.085: 95% CL [mostly owing to a( He)],6 (12)

with

Cz. +CT
& 0.01: 95% CL [mostly owing to b ( Na) ] .

A

(13)

For the other three coupling constants, the limits obtained here are not all that much tighter than the limits obtained in

the restricted fit of van Klinken et al. in 1978: our limits are

—1.71 « —1.00: 95% CL (many measurements contribute to this limit), (14)

0.65« 1.53: 95% CL [mostly owing to 6( Al )],Cv 26 m (15)

0.85« 1.18: 95% CL [mostly owing to G( P and Co)],
A

(16)

where it must be remembered that these latter three pa-
rameters are fairly strongly correlated with each other,
especially Cz/Cr with Cf /Cr. These confidence limits,
and the confidence regions shown in the figures, are cer-

tainly consistent with the V —A values for the coupling
constants of

= —1.26,
Cv

For the case where C is constrained to be equal to C;
(left-handed fit), the limits are tight, and it is possible to
represent the coupling constants as values with errors:

= —1.2607+0.0079 [mostly owing to A (n) and t„],

(18)

Cs = —0.0004+0.0029 [mostly owing to bF, ;], (19)

CY CA =1,
Cv CA

(17)

= —0.0003+0.0008 [mostly owing to b (iiNa)] .

Cs=Cs =CT=CT=0 ~

Further, the V —A values lie near the center of the above

confidence regions, although the confidence regions are

too irregular to allow one to quote a central value plus or
minus an error. Note that constraining the scalar and ten-

sor coupling constants to vanish has practically no effect
on the other coupling constants.

(20)

(The 95% CL's are of course obtained by doubling the
above error values. ) Again, it makes no difference to
C„/Cv if the scalar and tensor coupling constants are
constrained to vanish.

It is desirable to have a reliable value (and error) for the
neutron half-life, which has some effect on the scalar lim-
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its and strongly affects the value and error of Cz/Cz in
the standard V —A fit (as may be seen from Table III).
Certain proposed highly accurate measurements of ratios
of positron polarizations' ' could lead to limits on
Cv/Cv (and probably CA /Cv) comparable to the limits on
CA/CA, although these coupling constants appear only
quadratically in the helicity G. Prospects for tighter lim-
its on Cq, Cq, Cy, and Cz. in the general case are not too
hopeful, as they appear only quadratically in the con-
straining measurements (except for the Fierz term b,
which only constrains the sums Cs+Cs and CT+CT).
Use of measurements on mixed mirror transitions (with
the matrix element ratios properly considered as free pa-
rameters constrained by ft values) might help to tighten
some limits.

When more accurate experimental data are available it
will also be necessary to reconsider whether the deviations
from the allowed approximations are indeed negligible (as
we have assumed in this paper).

APPENDIX

K]j C)Cj +Cg Cj C)Cj+C) Cj (Al)

(A2)

Then (as given by Lundby ) the electron-neutrino angular
correlation is given by

&4= 3 IMGT I

'(&TT +AA)+ IMF I
(+vv &ss)—

the Fierz interference term is given by

bg =+2y( IMGT I
'R~TA+ IM„ I

Rmsv), (A4)

below) on the coupling constants is given in Eqs.
(A3)—(A9) below, in the same notation as that used by
Paul. ' The assumptions involved are mentioned in Sec. II.
Note that all the fits performed for this paper assumed
that the coupling constants be real. For conciseness, one
writes

The dependence of the measureable parameters a, b, A,
B, L, G, and t„(multiplied by g, where g is defined

the electron angular distribution from polarized nuclei is
given by

+—4~ IMGT I (LTT LAA)+24—z
2 J

J+1
1/2

MFMGTR ( ST LVA ) (1+b/W), (A5)

the neutrino angular distribution from polarized nuclei is given by
r

i4J'
I
MGT

I
+(LTT+LAA )+ ReLTA 2(~JJ2 2y J

8' J+1
1/2

MFMGT

X Re(LST+LvA )+ Re(LSA+LvT) . (1+6/8'),y
8' (A6)

0 2 J
+P&&'

I
MGT I

(LTT LAA)+2~IJ' J+1 (A7)

the electron circularly polarized gamma-angular correlation (for a gamma transition of pure multipolarity L) is given by
1/2

MFMGTRe(LST LvA ) [(1+—L)(1+b/W) j,
and the electron helicity (divided by U/c) is given by

GO=+I: IMGT
I

(LTT LAA)+ IM—F I
(Lss —Lvv)]/(I+&/~) . (A8)

The neutron half-life is given by

(ft)o ot„g'=2
I
MF

I
(Ess+Evv),

where Wilkinson gives

I

Also, in the above equations

C= IMGT I'«TT++AA)+ IMF I
(&ss+&vv)

y=+I —(aZ), where a= », is the fine structure con-

stant and Z is the atomic number of the daughter nucleus,

(ft)o o
——3083.1+1.4 sec,

f=1.71465+0.00015, (A10)

so that for the purposes of fitting one can take, as a con-

stant,

1

4~ = I/(&+ 1)
—J/(J+1) (A13)

J—+J'=J—1

(f&)o-o
2 =3596.2 sec . (Al 1)

PII = —1/J
—(~+2)/(&+ 1)

for J—+J'=J
J~J'=J+1

L
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L is the multipolarity of the gamma ray and 8'is the elec-
tron (or positron) energy in units of m, c . The upper
(lower) sign in the above equations refers to electron (posi-
tron) emission, MF and MoT are the Fermi and Gamow-
Teller matrix elements, respectively, and J (J ) is the initial
(final) spin quantum number of the decaying nucleus.

The terms (1+b /W) in the denominators of Eqs.
(A5)—(A8) arise from the fact that b is assumed to be zero
when one analyzes experimental data to obtain the correla-
tion parameters: this is discussed at some length by Paul. '

The electron energy values 8' need not be given very pre-

cisely, since b is always very small and thus a large error
in 8' still yields only a very small error in the correspond-
ing correlation value. Note that for a pure Fermi or pure
Gamow-Teller transition, the matrix element cancels out
when one divides Eqs. (A3)—(A9) by g' [Eq. (A12)] to get
the formulas for the actual measurements.
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