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We present an analysis of m
—-"C elastic scattering by using a phenomenological ansatz for the

pure hadronic amplitude; in addition a careful treatment of Coulomb effects has turned out to be
essential. The resulting phase shifts and inelasticity parameters show a smooth behavior in the en-

tire energy region between T =30 and 230 MeV. The rapid increase of the differential cross sec-
tions at backward angles (T =162 MeV) is discussed in terms of a semiclassical theory of the nu-

clear glory effect and is well reproduced by using additional information on analytic structure of the
m-' C elastic scattering amplitude in the complex t plane.

[ NUCLEAR REACTIONS ' C(m
+—

, vr
—

)
' C, E =30—226 MeV. ]

I. INTRODUCTION

There are several good reasons for investigating pion-
nucleus elastic scattering, e.g., to obtain information on
the isospin structure of the nucleus, to learn something
about the off-shell behavior of the hadronic interaction, or
to study the applicability of multiparticle scattering
theories, etc. The immediate causes for our present
analysis of the m

—+-' C scattering system are as follows:
(i) the large amount of recent pion-carbon data;
(ii) the rapid increase of the differential cross section at

backward angles;
(iii) the existence of new measurements in the Coulomb

interference region;
(iv) the presentation of pure hadronic phase shifts and

inelasticity parameters for further applications.
There exist differential cross sections for ~+-' C and

m -' C elastic scattering from 30 to 230 MeV. ' (For an
analysis of existing total cross sections see, e.g., Ref. 9.)
The large number of ~+'C data is -co-mparable only with
the sr—+-' 0 system. ' The phase shift analysis, similar to
the analyses of the m

—+-' 0 system, ' " is then a natural
consequence of the available experimental information.

A very interesting feature in the m
—"-' C data is the ra-

pid increase of the differential cross sections (T =100
and 165 MeV) at very backward angles; it was impossible
until now to give a satisfactory description of this
phenomenon. '

We will give a semiclassical explanation of this data in
Sec. IV, where we also show that a modification of the an-
satz of the hadronic amplitude (used in Refs. 10 and
13—18) leads to a satisfactory description of the ~+--' C
differential cross sections also for the backward angles.

The m+—-' C scattering in the Coulomb interference re-

gion was measured for the first time below the
resonance energy range only very recently. "' For a
theoretical analysis of data (especially in the Coulomb in-
terference region) which have been measured under equal
conditions for m+ and m scattering, a careful treatment
of various Coulomb effects is necessary in order to extract
the maximum of information provided by such measure-
ments.

The importance of such an analysis is increasing, since
it has turned out' that it might be problematic to add a
Coulomb potential to a widely used nonlocal optical po-
tential. In Ref. 19, an attempt has been made to analyze
the n+ ~Ca data at 64.8 MeV by means of an energy-
dependent nonlocal optical model based on the Kisslinger
T matrix. It turned out that it was not possible to
parametrize m+- Ca and m. -" Ca scattering with one set
of parameters for the pure hadronic amplitude. In addi-
tion, the resulting best-fit radii were found to be 0.45 F
larger than the corresponding values obtained in electron
scattering experiments. We have, therefore, investigated
the same scattering system using the methods developed
in Refs. 10 and 11. The resulting differential cross sec-
tions are in good agreement with experimental data and
no indication of isospin violation in the hadronic potential
has been found. It is the goal of this paper to present pure
nuclear phase shifts and inelasticity parameters for the
elastic m -- C scattering by using the techniques men-
tioned above. The calculated phase shifts and inelasticity
parameters can be used conveniently to test ambitious mi-
croscopic theories. In addition, our results can be used in
an investigation of distributions of absorbed doses from

beams, where the Coulomb part is already contained
in the considered code.

In Sec. II, we report the main ingredients of the phase
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FIG. 1. Differential cross sections for m. +—-' C elastic scatter-
ing. The experimental data (4—~ ' C, &&—m+' C) are taken
from Refs. 1—8. The solid (dashed) curves represent m. (m.+)
' C differential cross sections resulting from our phase shift
analysis.

~ ++ + 2'~tot, 1
ftot, t =('9~ t,«

(
2'~scott+'~tott~ , 1)/2,.k (2)

shift analysis; Sec. III is devoted to the discussion of the
results of our analysis. In Sec. IV, we study the compati-
bility of the m-+-' C data at very backward angles with a
semiclassical model of the nuclear glory effect and present
a satisfactory description of the differential cross sections
for all scattering angles. The last section summarizes the
analysis of m. +--' C scattering.

II. FORMALISM

In order to disentangle the contributions to the elastic
differential cross section of m

—-' C scattering

do+-/dQ=
i
f;+„

i

we represent the total amplitude ft«as a sum of three
parts:

ft«=fH+fc+fz . (1)

After the partial wave decomposition, the amplitude f,«
can be expressed in terms of phase shifts 5- and inelastici-
ty parameters g+—,
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FIG. 3. Same as Fig. 1.

which describes the differential cross section in terms of
complex zeros. Here, 8 (real) and t; (complex) are free pa-
rameters,

t = —2k (1—cos0, ),
and f(k, 0) is the forward scattering amplitude. The
number of zeros i is determined by the number of minima
or at least expected minima of the differential cross sec-
tions. The parametrization of the hadronic amplitude is
purely empirical, but it has turned out in many investiga-
tions of vr-nucleus scattering' "' ' to be very success-
ful.

fc is the pure Coulomb amplitude; it can be split into
the part fP"', where n +and ' C —are treated as pointlike
particles, and fc*', which represents the contribution from
the charge extension of ~-+and ' C to the Coulomb ampli-
tude. fc"' is calculated numerically from the Klein-
Gordon equation using the Laguerre polynomial
parametrization of Ref. 21 for the ' C charge form factor
Ii(q ). The pion charge form factor I' (q ) is taken from
Ref. 22 (q:— t) The dif—fere.ntial cross section at very
forward scattering angles is sensitive to relativistic effects

where k is the center-of-mass system momentum. For the
pure hadronic amplitude fit we use a simple complex an-
satz,

fH(k', t) =f (k', 0)e ' g ( I t lt; ), —
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in the point Coulomb amplitude. Therefore, we use the
very accurate formulae given in Refs. 14 and 24:

+ (0) (1) (1)fc,potnt=fc +fc +~fc
where

(4)

(Q)
( 2k 2g /2 )

i i tlin —sin II/2 +2i cro

L L
bfc"= —gfc'I+(2ik) ' g (21+1)(e ~ —e ')PI .

l=0 1=0

ri =+zau), b is the Sommerfeld parameter;

[(i + )2 2 2] i/2

with z =6, a =,37 and 0. is given by:

I (i+1+i'))
I (l+1—iri)

[r—(in) —I]
~+ ' +'~

I (y+ —,
' iri)—

(7)

where I is either ——,
' or l.

The last contribution fR to the total amplitude f;„
represents the so-called Coulomb corrections which take

into account the modification of the pure hadronic force
by the Coulomb interaction. The fact that negative pions
are accelerated towards the nucleus while positive pions
are slowed down changes not only the momentum of the
pions but also their impact parameter.

It has turned out' that a semiclassical Wentzel-
Kramers-Brillouin (WKB) approximation for the
Coulomb corrections' ' is not sufficient to satisfactorily
describe the differential cross sections for ir+-- Ca scatter-
ing, especially at the first minimum. The introduction of
Coulomb corrections based on the Lippmann-Schwinger
formalism has removed these difficulties.

Starting from the two-potential approach of Gell-Mann
and Goldberger, the following approximations are made in
order to derive simple model-independent equations

(i) perturbation theory in first order of the Coulomb pa-
rameter;

(ii) neglect of "inner" Coulomb corrections;
(iii) Taylor expansion of the pure hadronic half off-shell

T matrix around the on-shell value.
The Coulomb corrections are then given in terms of

phase shifts
+ + + + +

(5R, I 5tot, l 5H, I 5c, l i ~R, I ~tot, l ~H, I)

+ ~+
5R, I =a i 5H, I+(sin25H Icosh2coH I )/2k
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FIG. 10. The energy dependence of free parameters t;
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curves are drawn to guide the eye.

cog t =a t k AH ~+(cos25H Isinh2coH )/t2k, (10)+ r +

with the Coulomb factors

+ +2m zak
ai+—= I' dk'

k —k'
1

xPIxF q F q q; 11

m~ is the pion mass, q =k +k' —2kk'x, and x=—coso.

III. PHASE SHIFT ANALYSIS

To determine the pure nuclear phase shifts 5H I and
inelasticity parameters gH t one must fit free parameters
to experimental data. Depending on the energy, i.e., on
the number of minima or at least suspected minima in the
differential cross sections, we have two or three complex
parameters t; corresponding to zeros of ftt [Eq. (3)]. The
slope parameter B must be real to guarantee that the phase
variation of the amplitude fH is given by its nearby zeros.
The factor exp( —Bt) is quite arbitrary and may be re-
placed by any other smoothly decreasing function of t.
This special choice allows one to perform the partial wave

decomposition analytically. In addition, we have treated
the forward scattering amplitude f(k, O) as a complex
free parameter. Although it is possible to determine the
imaginary part off(k,o) from the total cross sections via
the optical theorem, and the real part of f(k,O) by using
a dispersion relation for the forward scattering ampli-
tude, "' we will use this information only as a reference
point for our results to illuminate their quality.

To investigate a broad energy region of the elastic tr+—-
' C scattering, we use experimental data in the range
T =29—226 MeV. Around 30 MeV there exist data
from two different measurements, the ~+-' C data' at
28.4 MeV, and the ~ -' C data at 29 MeV. The lowest
energy at which m+-' C and m - C data have been ob-
tained recently under equivalent experimental conditions
is SO MeV. The Karlsruhe group has presented new m. +—-

' C data at 75.6 MeV, where for the first time the
Coulomb interference region (8'&0, &25') has been in-
vestigated far below the 6 resonance energy. In addition,
at lower energies there exist very recent data on m+-' C at
80 MeV (Ref. 5) and at 100 MeV (Ref. 6). At higher ener-
gies, we have used two data sets from Ref. 7 (148 MeV)
and Ref. 8 (162 and 226 MeV). It is worthwhile to point
out that at 100 and 162 MeV the measurements have been

performed over a broad scattering angle region. At both
energies, a rapid increase of the differential cross section
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around 0, =180' has been observed. Present theoretical
calculations' (162 MeV) disagree drastically with the data
at backward angles. We discuss a semiclassical picture of
backward scattering as well as propose another treatment
of this problem in Sec. IV.

We analyzed six differential cross sections, i.e., ~+-' C
and n. 'C cross sect-ions at three energies, in one g -fit
procedure. The 10% normalization error of experimental
data is included in the analysis. We start the fitting at the
three highest energies (226, 162, and 148 MeV) considered.
In order to test the continuity in the values of the parame-
ters, we next take three energies one step lower, i.e., at
162, 148, and 100 MeV, and so on. We have fitted the 80
MeV data with two and three zeros in f~ to guarantee a
smooth energy behavior of our free parameters also at
lower energies. The parameters B, t;, and f(k, 0) are
mainly determined by different parts of the data; as a
consequence their errors are mostly uncorrelated.

The results of our fits as well as the experimental data
on elastic m

—-' C scattering are shown in Figs. 1—8. The

resulting values of parameters B and t; are displayed in
Figs. 9—15. It is evident from Fig. 9 that we have fitted
the differential cross sections at 80 MeV with three and
two zeros. The difference between the two values of B can
be understood from the simple prescription'

B~B—Re(1/t3 ), (12)

where the imaginary part of t3 is neglected. At r =76
MeV, the differential cross sections have been measured
only for small scattering angles which allow only the
determination of B and not t; Therefo. re, we have fixed ti
and t2 at their expected (interpolated) values.

We would like to note here that, to our knowledge, it
was the first time that a satisfactory description of the
elastic m+-' C scattering was achieved over such a large
energy region as that shown in Figs. 1—8. Apart from the
imaginary part of the second zero t2 at 100 MeV, all other
parameters B and t; show a smooth behavior over the en-
tire energy region. It is not possible to obtain agreement
with the experimental data that is as good as at all other
energies by simply changing the sign of Imt2 (100 MeV).
Because of the broad energy region investigated, we are in
principle able to quite accurately determine the parame-
ters of fez at a prechosen energy (between two neighboring
measurements). We have, therefore, fixed Imt2 (100 MeV)
at 6)&10 (GeV/c); the resulting differential cross sec-
tions are shown in Fig. 16. It is impossible to remove the
discrepancies between the experimental data and our
analysis without destroying the energy behavior of Imt2.

On the basis of statistical errors we obtain an overall

TABLE I. The values of parameters entering into the forward dispersion relation [Eqs. (13)—(15)].

Nucleus A'+' (F) o &(~) (b) B& (MeVb') Bo+' (F') A& (F') co~f,'if ' {MeV)

4He
'I.i
12C

16~

Ca

—0.138+0.04i
—0.183+0.055i
—0.451+0.132i
—0.545+0. 154i
—1.4 +0.38i

0.071
0.100
0.200
0.260
0.64

4.79
7.71

25.7
38.0

103.

—0.18
—0.39
—0.49
—0.67
—1.67

0.42+0.06i
0.67+0.12i
1.54+0.34i
0.72+0.29i
1.12+1.71i

4
—1

22
—37
—51
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X

value of X per data point equal to 3.25 for all differential
cross sections considered. Systematic errors have been in-
cluded in our analysis as fitting parameters and stay be-
tween their values presented in the corresponding experi-
mental papers. As already mentioned above, we have con-
sidered the forward scattering amplitude f(k,O) as an ad-
ditional free complex parameter. To compare the values
of our free parameter f(k,O) with theoretical results, we
briefly recall dispersion relations used to determine
Ref (k,O). In the equations given below, we write F(co)
for f(k,O), to be consistent with the notation of Refs. 9
and 11:

0-2
s I s ~ s s s I 8 5 ~

1 2
Re F(g) (fe)

FIG. 19. Argand diagram of the forward scattering ampli-
tude E(co). The crosses and the circles are results of our phase
shift analysis and the triangles show the values obtained with
the improved hadronic amplitude (see Sec. IV). The solid curve
is taken from Ref. 9 and represents the results of a dispersion re-
lation calculation for ReF (m).

ReF(co)= ReA'+' 2k m cu —cozfefr'

co dco oo co dc'
+2k vr

' P f " 2,2 2

"
ImE,h(co')+P f ImE(co')
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The crosses and the circles are results of our phase shift analysis
and the triangles show the va]ues obtained with the improved
hadronic amplitude (see Sec. IV). The solid curve is taken from
Ref. 9 and represents the results of a dispersion relation calcula-
tion for Rer(co).

where F,z is the threshold expansion of F

F,h Fo+3F), F)————k (A) ' ik )—
Fo ——[I ik(A'+'+k —Bo+')] '(A'+'+k Bo+'),

(14)

cr(co) 10m )=a g(co)+(Bg/~)' '. (16)

The parameters cozf,'fr', A „Bo,and Bz, as well as the
scattering length A'+' and cruz( oo ), are listed in Table I.
For a comparison with other nuclei, we also give the
values for He, Li, and ' 0 from Ref. 9, as well as the
values for Ca determined in Ref. 15. A detailed descrip-

co is the total pion lab energy (co=m +T ). The disper-
sion relation is subtracted at threshold, where I' is given
by the scattering length

A + =(—0.451+iO 132)E;

co„is the neutron emission threshold given by co„=18.3
MeV. Above co=10m~, we have parametrized the total
cross section by
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E/I

TABLE II. Pure hadronic phase shifts 5I obtained from our analysis.

1 2 3 4 5 6 7

30
50
75.6
80.0

100
148
162
226

—14.58
—17.06
—7.37
—7.28
21.80
5S.78
62.35
37.49

6.07
12.70
13.69
16.15
24.19

—62.64
—63.80
—89.24

1.84
6.SO

13.22
15.26
22.20
24.25
as.42

—31.28

0.100
0.72
2.23
2.66
5.30

11.30
7.45

—16.56

0.05
0.24
0.32
0.48
2.59
1.61

—7, 19

0.02
0.03
0.03
0.55
0.36

—2.84

0.10 0.01
0.07 0.01

—1.02 —0.32 —0.09 —0.02

tion of Eqs. (13)—(15) can be found in Refs. 9 and 11.
The imaginary part of F(co), resulting from a fit to the

total cross sections, is shown in Fig. 17. The correspond-
ing real part obtained by means of the dispersion relation
is displayed in Fig. 18. In addition, we present the Ar-
gand diagram of the forward scattering amplitude F(co) in
Fig. 19.

A comparison of these results with the f(k, o) values
found from the analysis of the ~-+-' C differential cross
sections is also shown in Figs. 17—19. Although at higher
energies (148—226 MeV) there are small deviations from
theoretical results, the overall picture in the entire energy
region is satisfactory.

In addition, we want to draw attention to the fact that
we have used the same parameters for parametrization of
m+-' C and m -' C differential cross sections. No as-
sumption about violation of isospin invariance of hadronic
force was needed. It is obvious that the number of partial
waves contributing to the differential cross sections in-
creases with increasing energy. Since our analysis results
in a fairly unique set of partial waves, we present the pure
hadronic phase shifts and inelasticity parameters in Tables
II and III, respectively.

Finally, we make a comment on the differential cross
sections at T = 162 and 100 MeV. %e have already men-
tioned that the experimental data increase rapidly at back-
ward angles. It has been impossible until now' [and also
with the use of our parametrization Eq. (3), see Fig. 7j to
describe this feature satisfactorily. A more ambitious
parametrization of the differential cross sections which
fits even the backward peak accurately is given in the next
section.

IV. IMPROVED PARAMETRIZATION
OF THE PURE HADRONIC AMPLITUDE

fH(B)= g (2l+1)[(e ' —1)I2ik]P~(cos8),
1=0

(17)

Before turning to the improved description of the pure
hadronic amplitude, we first try to answer the following
question: Is there any theoretical model which satisfac-
torily describes the backward peak of the differential cross
section~

In the elastic scattering of a particles by spin zero nu-
clei, a similar enhancement of the differential cross sec-
tions had been observed a long time ago. Bryant and Jar-
mie described this effect, the so-called nuclear glory ef-
fect, within a semiclassical model. They assumed that the
beam particles which graze the surface of the target nuclei
have an appreciable amplitude for being trapped near the
surface, traveling some way along the surface and then
emerging as elastically scattered particles. Assuming uni-
form illumination of the nucleus, all particles which em-
erge at backward angles travel the same distance on the
surface of the target. As a consequence, constructive in-
terference of these scattered particles produces the large
increase of the differential cross sections at backward an-
gles.

The results of Ref. 25 for spin-zero —spin-zero scatter-
ing were already obtained in the review article on semi-
classical scattering. The approximations inherent in the
nuclear glory scattering are extensively discussed there
and will be only listed in the next lines. They start with
the partial wave decomposed hadronic amplitude

TABLE III. Pure hadronic inelasticity parameters gI obtained from our analysis.

0 1 2 3 4 5 6 7 8

30
50
75.6
80.0

100
148
a62
226

0.74
0.65
0.28
0.16
0.20
0.19
0.16
0.12

1.00
0.86
0.70
0.60
0.08
0.03
0.11
0.04

0.99
0.89
0.79
0.73
0.63
0.23
0.09
0.06

1.00
0.98
0.94
0.92
0.81
0.43
0.29
0.21

1.00
0.99
0.99
0.98
0.76
0.67
0.47

1.00
1.00
1.00
0.94
0.90
0.73

0.99
0.98
0.90

1.00
1.00
0.97 0.99 1.00
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where the inelasticity parameter is set equal to one, and
use the following approximations:

(i) the phase shift 5t is replaced by its WKB-
approximate value;

(ii) the Legendre polynomial is replaced by the asymp-
totic expression

Pt(cos8) =cos 8JO[( I + —, )8];
(iii) the summation of partial wave amplitudes in Eq.

(17) is replaced by an integral (g& ~ I dl). As a conse-
quence, the differential cross sections can be parametrized
by the simple formula

U pole physical region

U CUt

FIG. 21. The analytic structure of the ~' C elastic scattering
amplitude in the t plane. The scale corresponds to T =162
MeV: t„,„,= —7. 11 GeV, t„~1,———7.07 GeV, and the physi-
cal region is at —0.27(t(0 GeV; t2 ——0.078 GeV (not
shown) and to ——0. 152 GeV .

=MOJO(u ), (19)

where A is a normalization constant, Jo is the Bessel func-
tion, and

u =kR sin(lr —8) . (20)

Here R is the so-called interaction radius. The approxi-
mations inherent in (19) break down at angles below 155'.
Using Eq. (19), Bryant and Jarmie have parametrized
differential cross sections for a-nuclei scattering quite suc-
cessfully. A similar effect in the high energy pion-
nucleon scattering has been also investigated. In order to
test whether it is possible to describe the m-' C backward
peak in the same manner, we fitted the differential cross
sections at T =162 and 100 MeV using Eq. (19). Since
this equation is derived without inclusion of Coulomb ef-
fects, we sum the m.+ and lr data and divide them by
two. Indeed, we find that one can fit the backward data
(155'&8&180') at 162 MeV quite successfully with the
following values of the parameters: A =0.52 mb/sr and
R =2.9 F. A similar fit to the 100 MeV data is also good.
The problem of the strange location of Imt2 discussed in
Sec. III does not occur in this approach due to the pres-
ence of the free parameter A in Eq. (19).

If surface absorption is low enough in nuclear glory
scattering so that the probability of multiple circumvolu-
tions is non-negligible, one expects periodic resonances in
the strength factor A (Ref. 25) corresponding to the cir-
cumference of the scatterer being an integral number of
wavelengths of the particle in the surface. A detailed ex-

perimental study of the backward region in the forthcom-
ing experiment would be quite desirable.

In the present paper, we are primarily interested in a
global description of lr —+-' C scattering. Therefore, we
will not pursue this semiclassical description of the back-
ward scattering but will return to our formalism.

The parametrization used,

fH(k, t)=f(k, 0)exp(Bt) 1 —— 1 ——1——
t3

2t„~&,——(m —m, l )—
12

m12N+ m 12~ —2m12cT~ .

(21)

does not take into account analytic properties of the
scattering amplitude in the t variable. It is obvious that
the inclusion of the information on the analyticity in the t
plane can only improve the description of the data. In the
t plane, the m' C scattering amplitude has the right-hand
(t channel) cut which begins at t2 ——4m =0.078 GeV
and corresponds to the 2m exchange. Next comes the
anomalous threshold produced by the graph shown in Fig.
20. This threshold is at

2 2 2 2(m llc —m )le —m~)
tp ——4m„—--—

m11C

The nearest left-hand (u channel) singularity is the pole
owing to the process n+ 'C~' N. (-n+' C—+'.B) situat-
ed at

(23)

physica( region

12C

FIG. 20. The graph corresponding to the lowest t-channel
anomalous cut in the reaction m+' C~m+' C. The cut starts
at to ——0.152 GeV .

FIG. 22. The analytic structure of the m' C elastic scattering
amplitude in the z plane. The images of the u-channel singulari-
ties and the cut between t2 and to are not shown. The scale cor-
responds to T =162 MeV; the physical region is at 0 &z & 1.21.
z(to) = —lT /4.
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20 22 24 2G x10 '
(GeV/c)

FIG. 23. Differential cross sections at backward angles. The
experimental data are taken from Refs. 7 and 8. The solid curve
is the result of our phase shift analysis and is equivalent to the
results shown in Fig. 7. The dashed curve is obtained with the
improved hadronic amplitude (see Sec. IV).

This is followed by the u channel cut due to the process
it++' C p+ "C(n +' C n+ "8) starting at

T

+118+11C
tu cast= (Iris III' C)

(24)2 cT

The resulting analyticity structure of the m' C scattering
amplitude in the t plane is shown in Fig. 21. It is evident
from Fig. 21 that one can expect that the contributions
from the left-hand singularities are not important for the
purpose of description of data because they are very far
from the physical region. Thus, we assume that the only
relevant singularity of the m' C scattering amplitude in
the t plane is the right-hand cut. Here we ignore the 2m-

exchange cut which is expected to be weak in comparison
with the nuclear structure singularity.

Now one can recall the idea that the best way of
representing an analytic function with known analytic
properties in the form of a polynomial expansion is to

I

i 11
s a'

I
I

a( I
)(

( )( I
I a r

I

) ( (

s( )(
I

I
)It

I
I

I
/

1
0-I a s ~ I a ~ s I a a ~ I a a a

20 22 24 2G
-t (GeV/c)

FIG. 24. Same as Fig. 23.

X l ——
Zg Z3

choose a variable which places the "data region" and the
cuts on equipotential curves. In our case (only one cut),
this variable corresponds to the mapping of the whole cut
t plane into the inside of a parabola in the z plane with the
focus at the origin

z = [1n(Q t/t, +Q t/t, —+1))' . — (25)

The image of the data region coincides with a part of the
right half of the real axis and the cut with the boundary of
the parabola (Fig. 22).

Now the Laguerre polynomials with an exponential
weight function are suitable for making the expansion

N

fH(k, t) =exp( —Pz) g a„L„(2Pz), (26)
n=0

because the region of convergence of this expansion is a
parabola with origin as focus. The constant P and coef-
ficients a„arefree parameters.

Taking into account the fact that the data at T =162
MeV require only two or three zeros, we keep four terms
in Eq. (24) and rewrite it in the form

fH(k, t) =f(k,0)exp( —pz)

Te
yeeV)

TABLE IV. The best-fit values of parameters P and z; in Eq. (27).

Z2 Z3

148
162
226

1.3000
1.3789
2.0360

0.3118+i0.0458
0.3236+ i 0.0241
0.3622 —i 0.0616

0.7013+i 0.0317
0.7438+ i 0.0422
1.0525 —i 0.0004

1.0678 —i 0.0864
1.1422—i 0.2741
1.3169—i0.0003
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where zi, z2, and z3 are locations of zeros of the differen-
tial cross section in the z plane. The form of Eq. (27) is
similar to the form of Eq. (21). However, because of Eq.
(25), the dependence of do ldQ on t is now different. The
fact that there is a cut in the t plane starting at to is ig-
nored in the parametrization (21) and is built in explicitly
in the parametrization (27). The factor exp( —Pz) falls
slower than exponentially in t allowing in this way for the
last multiplier in Eq. (27) to more easily simulate the in-
crease of the backward cross section.

As is evident in Figs. 23 and 24, the use of Eq. (27) in-
stead of Eq. (21) in Eq. (1) (Table IV) has improved the
description of the differential cross section for m+--' C
elastic backward scattering at T„=162MeV. Here the
quality of the fits at smaller angles has not deteriorated.

As a by-product of this new parametrization, we find
that the real part of the forward scattering amplitude is
now closer to the values predicted by the dispersion rela-
tions. The results for F(co) obtained using Eq. (27) are
marked in Fig. 18 by triangles.

describe m
+—-' C data with one set of parameters of the

hadronic amplitude. The phase shift analysis presented in
Sec. III results in a fairly unique set of partial waves; here
all partial waves show a smooth behavior over the entire
energy region. Owing to the large energy region con-
sidered, we were able to quite accurately determine the pa-
rameters of the hadronic amplitude. The rapid increase of
the differential cross sections at backward angles can be
qualitatively understood in terms of a semiclassical model
of the nuclear glory scattering. We have presented in Sec.
IV an improved parametrization of the hadronic ampli-
tude which takes into account the analytic structure in the
t plane. A good description of experimental data also at
the backward angles has been obtained by means of this
new ansatz. In comparison with the parametrization of
fH used in Sec. III, the analysis by means of the new an-
satz for fH is more time consuming, because, in order to
treat Coulomb corrections, a numerical partial wave
decomposition of fH is unavoidable in contrast to the ana-
lytic decomposition in Sec. III.

V. SUMMARY

%'e have investigated elastic m-' C scattering over a
large energy region by analyzing m+-' C and n'C .dif--

ferential cross sections. Using a phenomenological ansatz
for the pure hadronic amplitude, we find that a careful
treatment of Coulomb effects is needed in order to
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