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Quasi-elastic scattering of polarized electrons on polarized 3He
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Cross sections and asymmetries for quasi-elastic scattering of longitudinally polarized electrons

on polarized 'He are calculated. The model used consists of impulse approximation plus closure ap-
proximation to sum over final states. At the quasi-elastic peak the asymmetry is found to be dom-

inated by scattering from the neutron, and judicious choice of target polarization allows sensitivity

to either the neutron s electric or magnetic form factor to be maximized. Away from the quasi-
elastic peak, the protons contribute to the asymmetry. The protons s contribution is mainly owing

to two partial wave channels, one mixed symmetry S state and one D state which have small total
probability in the He wave function.

I. INTRODUCTION

Quasi-elastic electron scattering has proved to be a
valuable probe of nucleon motion inside a nucleus. ' Up to
now spin-averaged cross sections have been measured and
recently longitudinal and transverse structure functions
have been separated. Such measurements still do not ex-
haust all the information obtainable by quasi-elastic
scattering. Spin-dependent structure functions (measur-
able by polarized electron scattering on a polarized target)
are needed for a complete description. The spin-
dependent structure functions reflect the spin dependence
of the nucleon's momentum distribution and in He they
depend significantly on components in the wave function
other than the dominant spatially symmetric S state. One
of the purposes of the present calculation, therefore, is to
explore how polarized electron scattering can be used to
probe the subdominant components of the He wave func-
tion.

Our second motivation is to study the sensitivity of po-
larized electron- He scattering to the neutron electromag-
netic form factors. Since the He is predominantly a spa-
tially symmetric S state, its two protons are mainly in op-
posite spin states and we expect that in the vicinity of the
quasi-elastic peak spin-dependent effects should be deter-
mined primarily by scattering from the neutron. If polar-
ized electron asymmetries could be measured He could
serve as an effective neutron target.

Our model for electron scattering on He consists of im-
pulse approximation with a closure approximation to
sum over final states. We neglect meson exchange effects
and pion production, Although very simple, this model
provides a very good description of available spin-
averaged cross sections and, we feel, should be a good
starting point for a first calculation of spin-dependent ef-
fects.

Section n contains the derivation of the cross section

for He(e, e')X and of the nuclear structure functions in
terms of the nucleon's momentum distribution. The
spin-averaged results are well known but, as far as we
know, our expressions for the spin-dependent structure
functions are new. A complication of the derivation of
the spin-dependent quantities is the appearance of cross
terms that normally vanish owing to spin averaging.

Using the closure approximation, the structure func-
tions depend only on the nuclear ground state wave func-
tion. For He we adopt the wave function owing to Afnan
and Birrell, " who solved the Faddeev equation for a separ-
able expansion of the Reid soft-core potential. In Sec. III
we discuss the He wave function and, in particular, its
decomposition in an L Scoupling schem-e (owing to Der-
rick and Blatt ) which allows the isolation of the com-
ponent for which the two protons have opposite spin. We
find that, in this scheme, only two small components of
the wave function result in a significant proton contribu-
tion to the polarized electron asymmetry.

Results for the spin-averaged He(e, e')X cross section
are presented in Sec. IV. With one fixed parameter, name-
ly the closure energy (or equivalently the recoil invariant
mass), good agreement is found with experimental mea-
surements in the quasi-elastic peak region for a variety of
energies and angles. We conclude that the model is suffi-
ciently good to allow meaningful statements to be made
about polarization effects.

One of our goals is to see if polarized electron scattering
can be useful for determining the neutron's electromagnet-
ic form factors. For this to be the case requires (a) that
there be a kinematic region in which the proton contribu-
tion to the asymmetry is negligible, and (b) that a way can
be found to isolate separately the neutron electric and
magnetic form factors. We show in Sec. VA how these
conditions can be achieved, first, by using quasi-free
kinematics, and secondly, by judiciously choosing the
direction in which the target is polarized.
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FIG. 1. The scattering plane defined by the ingoing (k) and

outgoing (k ') electron. The target polarization vector S~ is con-
fined to lie within this plane.

In Sec. VB we discuss (e,e') scattering away from the
quasi-elastic peak where scattering from the protons also
contributes to the asymmetry. We find that only two
channels, one S state and one D state which have only
very small probability in the total wave function, play a
significant role in determining the protons's contribution
to the asymmetry. The asymmetry is largest for electrons
of a few hundred MeV and increases as one goes away
from the quasi-elastic peak (unfortunately decreasing the
cross section at the same time). The polarized electron
asymmetry provides a unique probe of the momentum dis-
tribution in channels whose effects are normally obscured
by the dominant partial wave. Conclusions are presented
in Sec. VI.

FKJ. 2. The Born term for electron-nucleus scattering.

states. We are interested in the case where the incoming
electron is longitudinally polarized and the target s polari-
zation is confined to lie within the scattering plane. This
is illustrated in Fig. 1; the scattering angle is 8 and the
target polarization vector Sz makes an angle 13 with

respect to the incoming beam momentum k.
Before presenting the quasi-elastic case, it is useful to

examine (e,e') scattering in general. This will lead us to
express the cross section in terms of the four structure
functions W~, 8'z, Gi, and G2. As usual, we limit our-
selves to just the one-photon-exchange diagram (Born
term). Figure 2 defines the four-momenta, spins, and
masses; subscript A refers to the target nucleus, and the
components of the four-momenta are k = (Ek, k ),
k'=(Ek, k '), Pz (Ez,Pz),——etc. , and q =(co,q).

For inclusive scattering we get'

II. QUASI-ELASTIC SCATTERING

A. Cross section

In this section we present a brief derivation of the in-
clusive quasi-elastic cross section. Although a number of
derivations appear in the literature (see, for example, Refs.
6—8) these do not usually treat the case of polarized initial

l

4a m Ez
d 0= — -L," 8' d k',

q FEk

where

L""=g u(k', s')y"u(k, s)u(k, s)y u(k', s')

is the lepton tensor,

(2.1)

(2.2)

2 3

W„„= g, f J„(o)J„(0)'5(Pf —P;)
final siaies

dP„
(2m)

(2.3)

is the hadron tensor, J& is the hadron current, E= [(k.P& ) —m Mq ]'~, a is the fine structure constant, and Pf (P; ) is
the total final (initial) four-momentum. In Eq. (2.3) the volume normalizations V have been set equal to 1 as they all
cancel in the end. Invariance arguments lead to a representation of the hadronic tensor 8'z by the relation

Ip, QV 62
PV gPV 2 1 + AP 2 CP A V+ 2 9V 2 + PVPCTV A + A 9 c4 A 9 A 3

Q Mg . M~

(2.4)
where Q = —q and the structure functions Wi, W2, Gi, and G2 depend, in general, on two scalars. A similar expres-
sion may be written for the lepton tensor LI"

P, v ~2 t
' '

l qL""= —g""— + ki' ,' q" k" ,
' q—"—+id'—"~— (2.5)

Q 4m . m

Using Eqs. (2.4) and (2.5) in Eq. (2.1) and taking the relativistic limit, we obtain for our choice of beam and target po-
larization the laboratory inclusive cross section

d CT

dEkd 0'
do'

Mott

,8,6) Gg
%2+2 tan —8'i+2 tan — — (EkcosP+Ekcos(8 —P))—2 2 EkEk
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)& (cosP —cos(8 —P) ) (2.6)
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where P) S) M

do a cos (8/2)
4Ek sin (8/2)
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The only important assumption made thus far is the valid-
ity of the Born approximation for (e,e') scattering. Exper-
imental tests of this assumption could be made by plotting
the unpolarized cross section versus tan (8/2) keeping Q
and co fixed. This method has been used in elastic scatter-
ing where only g needs to be fixed. We note that a fur-
ther test may be provided by the spin-dependent part of
the cross section; moreover this could be achieved by vary-
ing P only.

Having established the general form of the (e,e') cross
section, we now choose the quasi-elastic model for the
hadron vertex (see Fig. 3). In this model the exchanged
photon interacts with just one nucleon (of momentum P,
spin S, isospin i, and energy E).

We follow the derivation of Jacob and Mariss for the
case of electron scattering. The cross section is given by

FIG. 3. The quasi-elastic model for He(e, e')X used in our
calculation.

(2.11)

I"~——y~F)(q )+- " F2(q )
2M (2.12)

with internal energy Mq 1, spin Sq 1, and isospin iz
The curious minus sign in Eq. (2.9) arises because for our
target wave function tP~ we use the Jacobi coordinates of
Eq. (3.1). M,N(P, S) is the invariant electron-nucleon elas-
tic scattering amplitude and is given by

2~,N(P, S)=i u(k', s')y u(k, s)u(P't, s~ )I „u(P,S),

nz MMg0=
(2 )

X g 5 (Pf P;) QM—N(PS)gq 'I ~(p)
final states

X d P'1d P~ (2.8)

g„' 'I „(p)=a'' ( —P,s, t
~

(,y. ..s„,,&„,
~ q„) (2.9)

basically describes the probability of finding a nucleon (of
isospin i) with momentum P and spin S, the rest of the
nucleus being in the state

(2.10)

where E and E' are the energies of the interacting nucleon
before and after collision, respectively;

is the usual nucleon electromagnetic vertex function.
The interacting nucleon is in principle off mass shell;

however, practical considerations [e.g. , the form factors
F& and Fz of Eq. (2.12) are not known for off-shell nu-
cleons] lead us to impose the on-shell condition E=~2
(P +M )'~ . Although some correction can be intro-
duced tlyough the use of an effective mass M*
=(Po—P )', as done by Mougey et al. ,

" it turns out
that the on-shell condition is not a bad approximation.

Finally, we note that in Eq. (2.8) the sum over S cannot
be taken outside the modulus squared as is done in the
spin-averaged case. As we shall see, cross terms in S do,
in fact, contribute to the polarized part of the cross sec-
tion.

B. Quasi-elastic structure functions

In this section we calculate the nuclear structure func-
tions in terms of the nuclear wave functions and the in-
teracting nucleon's own structure functions [introduced
shortly, but basically F~(q ) and F2(q )]. Along the way
we introduce the closure approximation used in our calcu-
lations.

Comparing Eq. (2.8) with the general form of Eq. (2.1),
we find for the quasi-elastic hadron vertex

2

W~„——g, 5 (Pf P;) Q u(P), s') )I pu(P, S)—u(P, S')1 ~(P'(,S) )gg 'I g(P)g~ ')'g(P)d P(d Pg (2.13)

It is understood that for breakup states of f~ ~, d Pq ~ should be replaced by d P2d P3 (A =3); however, we also
write Ez ~

——(P»+M„& )' which for continuum states can be thought of as defining Mz &. It is recognized that
the middle term of Eq. (2.13), namely
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W„,' = g u (P1,S1 }I„u(P,S)u (P,S')t,u (P', ,S', ),
Sl

1

(2.14)

is a photon-nucleon vertex tensor and should itself be expressible in the form of Eq. (2.4). Indeed, for the diagonal terms
we have

W„'„'=g u(P'„S', )r„u(P,S)u(P,S)r„u(P'„S', )

S(

P+M 1+Ys P'+M
2M 2 2M

(2.15)

and using Eq. (2.12) this evaluates to

S,S qpq- — I'.q I'-q 8'2 . p .61 . . 62
W1+ P„+ q„P„+ q, +i@„„~ql' S +(P.qS SqP—) (2.16)

8') ——G~w,2

GE+ 6~v.
1+-

(2.17a}

(2.17b)

where the nucleon structure functions 8'&, Wz, G„and
62 are given by

Ap —— —gp„—
qpqV I'.q

Q Q'
8') + I'~+ - -

qp

I

Eq. (2.15) to Eq. (2.16). As expected, we see that the cross
terms contribute only to the asymmetry and not to the

cross section. A similar relation expresses 8'& ' '. Be-
fining

(2.17c)

(2.17d)

(2.17e)

and GE and G~ are the electric and magnetic form factors
of the interacting nucleon, respectively.

The evaluation of the nondiagonal terms of Eq. (2.14) is
not so straightforward, but is facilitated by specifically
choosing the direction of spin S to be along the quantiza-
tion axis of the nuclear spin Sz (the z axis). That is, we
put S=u, where u; (i =x, y, and z) is a four-vector, which
in the nucleon rest frame is the unit vector in the i direc-
tion. The following relations are easily obtained

I'.q~ ~V+
Q M

AIPv l 6'PvPQg A

6) Gg
A; =u1 +(P qu; u; qP )—

for i =x, y, or z, we have
~ Q, Q

~Pv APv+Azyv
—Q, —Q —Ap —A,p
Q, —Q

A„p +)Ay@
—Q, Q

Pv A~Pv IAyPv

and Eq. (2.13) becomes

(2.20a)

(2.20b)

(2.20c)

(2.21a)

(2.2 lb)

(2.21c)

(2.21d)

u(P, u, )u(P, —u, ) = (P+M) Ys&+
(2.18a) 8'„„= g f, 5 (Pf P;)(A„„fp+A„„—„f„+Ay„,fyEE'

u(P, —u, )u(P, u, ) = (++M) Ys&—
(2.18b) +A.„.f.)d'P'1 d'P~ 1—

where u+ —u„+iu, u =u„tu&. Eqllatlo—ll (2.14) tl1ell

becomes (2.22)

P'+M Ysu'+ r P'+M
pv p

G1 Gz=ic„~~1' u + + (P qu + —u+ qP )—I
(2.19)

since this is just a special case of the step that led from

(Q, I) 2 ( —Q, I)fo=
I ga —*'1,

w I
+ I gw —1',a I

(u, )) ( —Q, I)
fx =2 «(g~ -'1,~g~ -1',~

(u, i) ( —u, i )*
fy = —2 ™(g~'1,~g~ - 1',~-

(Q I) 2 ( —ug)f.= I
g~-"1,~ I

'—
I &~ -x",~ I

'.

(2.23a)

(2.23b)

(2.23c)

(2.23d)
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In Eq. (2.22) only the term 2„fo contributes to the non-

spin cross section and fo fo——(P,M& 1) depends only on
the magnitude of P and is recognized as the usual spectral
function. After integration with respect to Pl, Eq. (2.22)
contains the energy 5 function

5(co+M —[(P+q) +M ]' —(P +M

The evaluation of Eq. (2.22) is further simplified by
choosing a coordinate system with the z axis directed
along the momentum transfer q, and by expressing P in
its spherical coordinates (P,g, P). Then P q=Pqcosg and
an integration over g takes care of the remaining energy 5
function. We note, however, that the energy conservation
relation

where we have further changed variables to P= —Pz
In order to simplify the calculation we now make use of
the closure approximation when performing the sum over
t11e flllal s'tates I/Jg 1. Tllls efltalls the asslllllptloll 'that

most of the contribution comes from states gz l that are
clustered in a small energy band around an average value
Mz &. Then replacing Mz & by Mz I in the energy 5
function enables us to use the closure relation

el+M~ —(P + q +2Pq cosg+M2)'~

—(P +My 1)'i =0 (2.25)

has solutions (for g) only for a limited range 8 of values
of P. Denoting the solution of Eq. (2.25) by gz, where
0(f0&m., Eq. (2.22) becomes

when summing the "spectral functions" (2.23) over P~
We thereby eliminate the states gz 1 entirely from the
problem. The closure approximation is deemed reasonable
in view of the two-body nature of the quasi-elastic scatter-
ing process and has previously been used with success.
Moreover, it is in keeping with the exploratory nature of
our investigation.

We denote the "summed spectral functions" with a bar

(2.26)

where P'=(P '+M')' '. We identify Eq. (2.26) with the
general form, Eq. (2.4), and endeavor to obtain expressions
for the hadronic structure functions 8'„W2, G„and G2.
Equating the nonspin parts gives

MPMP ) 2. 2 z

g f;=f;, i=O, yxz. (2.24)
(2.27)

M I'
W2 ——21r f dP

R qpo

g'P"'sin'g, , pP —cosgoco—, fo(P) .
q i

M' (2.28)

Equating the spin parts of Eqs. (2.26) and (2.4) gives

6) 62 2~ M I'
~~M—+( ~'q~~ ~~'qP~) 1= f d& f "P

o X~ f e=S.M. M'
=

~ ' qP'; (2.29)

wheI e
Using

A; are given by Eq. (2.20c) and where we choose Sz ——(O,z) to make the calculation of the f;(P) straightforward.
the explicit boost expressions for u; the A; can be expressed in a more practical form
r r

Gl Gl t , Gl G2'eo +P q P'+e; -+P.q (P +M)+P P' (P'q q'(P +M—)) —' (Po+M),M M' ' M M' M M

(2.30)

where e"„=5„,. Now by contracting both sides of Eq. (2.29) with q we eliminate the G2 term and obtain
r

MgP P costa
Gl 2n f dP — M——f,+ ———QP f( Glpo & po M ~ I ~ C=ko (2.31)

where use was made of Eq. (2.30) and the P integral was trivially done since both f, and P„f„+P»f» do not depend on
P. Finally, taking the zeroth component of Eq. (2.29) gives

M„P t G, Pcosg'o G2
G =2mf dP 0 QPf; ——+ Pf, —-0 QPf;R qpo, - q po+M, M k k

(2.32)
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III. THE 3He WAVE FUNCTION
(3.1b)

P= k~+ kp+ ky, (3.1a)

The He wave function used here is owing to Afnan and
Birrell who solved the Faddeev equations in momentum
space using as input various separable expansions to the
Reid soft-core nucleon-nucleon potential. In particular,
the wave function we use corresponds to their unitary pole
approximation. For the purpose of discussing our quasi-
elastic scattering results, we present a summary of the
partial wave decomposition of the wave function.

Assuming three equal mass nucleons with momenta k~,

k2, and k3, one can define the Jacobi coordinates P, P,
and q as follows:

q: 3 (kp+ky 2k ) (3.1c)

g( p, q ) = ( p q i
QJMJ TMz. &

(J=T= —,', Mr ———, for He, Mr. ————, for H) is ex-
pressed in terms of partial waves in J-J coupling

where (u, P,y) form a cyclic ordering of the particle labels

1, 2, and 3. P is, of course, the momentum of the whole
system (from now on taken to be zero), p~ is the momen-
tum of particle P in the P-y center of mass, and q is the
negative of particle a's momentum in the three-body
center of mass. Then the three-nucleon wave function

p(p, q )= g (l Mt S Ms Ij MJ )(L ML, tr M .I
J MJ. )(j MJ.™J.I

JMJ)(t Mt ™.I
TMr')

N, Mal a

&&I'i.M, (pu)I'L, .l, (e ) ls Ms.aaM .&
1
t W ~ M. &(puca'II~'.

l 0& (3.2)

where o and r refer to the intrinsic spin and isospin of
particle a, l is the relative orbital angular momentum of
the pair (Py), L is the orbital angular momentum of the
(Py) center of mass relative to a, and with the rest of the
quantum numbers being defined by

SN= Hp+ 0'y,

) ~= l ~+S~,

) =L~+o (3.3)

3 =3a+3a ~

and

t ~= rp+ vy,

T= t +v
The radial part of the wave function, (p q;Qz
may be considered to be the overlap of the state

~ g &
=

( QJM& TMz & with
~ p q & and

~
Qtt & where

The separate terms of Eq. (3.2) do not fulfill this ideal.
On the other hand, the partial wave decomposition pro-
posed by Derrick and Blatt admirably suits our purpose.
In their scheme L Scoupling -is utilized (L= 1~+L~,
S=S + o ) and moreover, the isospin-spin states

~
(t r )TMr & I

(S~o )SMs & are linearly combined to
make states of definite symmetry under the interchange of
any two particle labels. This is achieved by identifying
the states

~

(S cr )SMs & [or
~

(t r )TMr &] with basis vec-
tors of irreducible representations of the permutation
group S3. In general, a basis vector is written ~PK&
where I' takes the values 5, A, or Idepending on whether
the state (and therefore the corresponding irreducible rep-
resentation) is of "symmetric, " "antisymmetric, " or
"mixed'* symmetry, and K (=1 or 2) labels each basis vec-
tor within a representation. In the Hilbert space of three
identical particles, one of which is in state c (e.g., spin
down) the other two being in the same state a (e.g., spin
up), the basis states

~

PK & are taken to be

~

S1 &
= (aac+aca+caa ),I

3

I
&x'. & —= 1(4~~»Mr &

I
[(lasa)j ~'(Larva»a]JMJ &

(3.4)
~

Ml & = — (ca+ac)a+~2/3aac,1

6
(3.5)

and N~ represents all the u labeled quantum numbers.
Although the partial wave decomposition of Eq. (3.2) is

the usual one adopted in constructing a three-body wave
function, it does not provide the optimum choice in which
to discuss quasi-elastic scattering. Ideally we would like
to isolate that part of the He wave function which has
the two protons in opposite spin states so that they do not
contribute to the asymmetry. We expect that this com-
ponent will be the dominant one in the He wave function.

~
(s.~.)SM, & =(—1)'

~
p.sc.&, ,

[« I (t.~.)TM~& =(—1)' IP.&.&~,]

(3.6)

where we have further attached subscripts Ms (or Mr) to

~M2&= (ac —ca)a .1

2

Then the connection with the states
~ (S~o~SMs& (or

~
(t ~ )TMr &), enumerated in Table I, is simply
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the states
I
PoKo ) in order to avoid ambiguities.

The partial wave decomposition of Derrick and Blatt
involves states of definite symmetry (S, A, or M) under the
simultaneous interchange of particle labels in both spin
and isospin coordinates. These states, IPK), are con-
structed from the individual

I
P K ) and

I
P,K, ) ac-

cording to

P P P
I(PP )PK)= g IPK, )IP K ),

K E r a
r' o

where the "3-j"coefficients are tabulated in Ref. 5. The
He wave function may now be written as

TABLE I. Spin states of three nucleons considered as basis
vectors (

I
P K &) or irreducible representations of the symmetry

group S3.

I
(S o )SMs&

I
Sl &3/2

I
» & I/2

I
Sl & &/2

S l & —3/2

—
I
Ml &i/2

—IMl) „,
I
M2) ]/2

—M2 &

l((p., q.)=g g ( I)'(LM—,SM,
I
JM)(r.M, L.M, ILM, )~l M, (P".)I; M (&.) I(M,P. )PK)M

aa I.™S
MI, MIa a

p p l~ L~ L
x g K K K g s. ~. s (P.q.;n„"Il(),

o -J ~a r rJa Ja
(3.8)

where ~ = IL,S=P,l g, ,P,KI which we shall refer to
as the P-K channels as opposed to the J-J channels labeled
by N~. Implicit in Eq. (3.8) is a transformation from the
J-J coupling scheme (in which the wave function is initial-
ly given) to the L Scoupling s-cheme. In Table II we list
the possible P-K channels with l +L (4, together with
their percentage probabilities in our He wave function.
The restriction to l~+L~ (4 defines 98.6% of the wave
function, which is totally adequate for our calculations.

We note that the two L =0 channels with the largest
probabilities (channels Nos. 1 and 4) have antisymmetric
spin-isospin states (and therefore symmetric spatial states)
and account for 88.6% [=P(S)]of the wave function. In
these channels the contribution of the protons to the
asymmetry in our model of He(e, e')X is identically zero
since interchanging the two protons cannot affect the iso-
spin part of the wave function and it must be that the spin
part is antisymmetric. Thus, any contribution of the pro-

TABLE II. The partial wave channels of the three-nucleon wave function within the Derrick-Blatt
scheme [Eq. (3.8)].

Channel
number

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5

L P
Probability

C,
'%)

87.44
0.74
0.74
1.20
0.06
0.01
0.01
0.01
0.01
0.01
1.08
2.63
1.05
3.06
0.18
0.37
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tons to asymmetry is owing to the small components of
the He wave function —an observation which forms an
important part of our investigation.

lo

Ek =248.8 MeV-

8= 90

IV. THE He(e, e')X DIFFERENTIAL
CROSS SECTION

Before considering polarization effects we first need to
make sure that the spin-averaged cross sections are ade-
quately described, especially in light of the closure ap-
proximation used. The use of the closure approximation
results in Mz i, the total energy of the spectator nucleons
in the final state, being a parameter of the calculation.
We find that the single choice Mz i

——1876 MeV provides
optimal fits to most of the currently available experimen-
tal cross sections. That this is the case for a variety of
beam energies, energy transfers, and momentum transfers
lends support to the use of the closure approximation.

The input to the calculation are the electric and mag-
netic form factors of the nucleons. For the charge form
factor of the neutron we choose the parametrization of
Galster et al. '

CA

0
0

(b)

b
o

— /

40 80
I I

l 20 l60 200 24C
cu (MeV)

50 60 90 I20 I50

Ek=398.4 MeV—

75

(4.1)
k =500 MeV-

= 60

where II=0.71 (GeV/c), p„ is the neutron magnetic mo-
ment, and r is given by Eq. (2.17e). Present indications
are that 1&q &10; however, the entire range 0&q& oo

cannot really be excluded. For the other nucleon form
factors we use the dipole expressions

GF'. =GM/Vr =GM/V. =(1+Q'/» '. (4.2)

In Fig. 4 we compare our predictions with the data of
McCarthy et al. ' and the lower energy data of Hughes
et al. ' It is seen that our calculation typically overesti-
mates the peaks and underestimates the cross section in
the tails on both sides of the peak. As other calculations
give very similar results, we do not expect this to be owing
to our use of the closure approximation. Indeed, a com-
parison with the predictions of Meier-Hajduk et al. , '5

who explicitly include two-body and three-body breakup,
shows almost identical results. The problem in the high co

tail is mostly understood in terms of meson exchange
currents, ' pion production, and 6 excitations. ' On the
other hand, the reason for the underestimate in the low co

region is not well understood at present and may well be
owing to an inadequacy of describing the He wave func-
tion in terms of nucleons interacting via two-body poten-
tials. ' Indeed, this region has been attractive for studying
the high momentum components of He, since arguments
about scaling and explicit calculations show that the plane
wave impulse approximation is almost exclusively the re-
action mechanism. ' In Sec. VB we shall further investi-
gate this region in terms of the polarization asymmetry.
At this stage we conclude that our formalism is able to
provide a good enough description of the differential cross
sections in order for us to make meaningful statements
about polarization effects.

0
50 IOO

~ ~
~ ~ ~ ~ e

~ ~

l 50 200 250 500

0 I

500 400 500 600 700 800
cu (MeV)

FIG. 4. Differential cross sections for inclusive electron
scattering from 'He. The experimental data at Ek ——248.8 and
398.4 MeV are those of Ref. 14 from which we have chosen only
a representative selection. The data at Ek ——500 MeV and 7.26
GeV are from Ref. 13. The theoretical curves correspond to a
closure energy M& ~

——1876 MeV and we show both the full
cross sections and the small contributions owing to quasi-elastic
scattering from just the neutron.

V. THE 3He( e,e)X ASYMMETRY

In this section we discuss the spin-dependent results of
our calculation. The central quantity to our discussion is
the "longitudinal" asymmetry A defined by
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o(8,P, + ) —o(8,P, —)

rr(8, P, + )+rr(8, P, —)
' (5.1)

I.O

0.6
where o(8,P, + ) is the cross section for longitudinally po-
larized electrons with positive helicity scattering off a tar-
get whose polarization lies in the scattering plane and
makes an angle P with respect to the beam direction.
There are two aspects in which we are particularly in-

terested, namely the sensitivity of the asymmetry to the
neutron electric and magnetic form factors, and its depen-
dence on the high momentum components of the He
wave function. Fortunately they can be studied largely in-

dependently by appropriate choice of kinematics.

A. Sensitivity to GE and G~

0.2

—I.O

0.04
A
-O.04

He (e, e') X

(a)

The fact that the two protons in He are mainly in op-
posite spin states leads to a large cancellation between
their contributions to the asymmetry for the He(e, e')X re-
action. The remaining contributions come from the neu-
tron and from those protons which are described by the
small spatial nonsymmetric components of the wave func-
tion. In the vicinity of the quasi-elastic peak even this
residual contribution from the protons is suppressed, as
here only the S waves of He contribute. We therefore ex-
pect to get maximum sensitivity to the properties of the
neutron in this region. In this section we examine whether
one can take advantage of such an arrangement to help
determine the neutron electric and magnetic form factors.

From the above observations it is clear that the asym-

metry for He(e, e')X at the quasi-elastic peak is basically
the asymmetry for a polarized electron scattering on a sta-
tionary polarized neutron target scaled by the ratio (at the
peak) of the neutron's contribution to the He(e, e')X cross
section to the total He(e, e')X cross section, i.e.,

-O. I 2—
(b)

—O.20
0 50 60 90 l20 I50 180

the asymmetries in Fig. 5 is that there is a small region of
P where the curves crossover, i.e., where the asymmetry
essentially does not depend on GE. The approximate
crossover point is easily found by demanding, for e-n
scattering, that the spin part of the cross section,

FIG. 5. Asymmetries as a function of target polarization an-
gle P for (a) polarized electron-polarized neutron scattering and
(b) inclusive polarized electron scattering from polarized 'He at
the quasi-free peak. In both cases Ek ——1.5 GeV, 9=60', and
the different curves (labeled by values of g) correspond to dif-
ferent choices of the neutron electric form factor [Eq. (4.1)].

A(peak)=A (peak) .'" o., He
(5.2)

do. . Gi
dQ M

(spin)- [Ekcosl3+Ekcos(8 P)]—
is easily calculated using the structure functions

(2.17) for the neutron and a version of Eq. (2.6) that has
an extra recoil factor

2Ek . , 01+ sin—
M 2

2G2

M
EkEk [cosP—cos(8 —P)],

be independent of GE. This gives

Ek (Ek M) Ek (Ek +M )—cos8-
tanP =

E/, (Ek+M)sin8

(5.3)

(5.4)

We shall make use of the approximation (5.2) to interpret
some of our results.

We first test the sensitivity of the asymmetry to the
neutron electric form factor GE by varying the q parame-
ter of Eq. (4.1), while keeping the other form factors at
their values stated in Eq. (4.2). Figure 5 shows the asym-
metries at the quasi-elastic peak for Ek ——1.5 GeV and
8=60', plotted against the target spin-direction angle P.
Both the He(e, e')X and n(e, e)n cases are presented for
comparison. As expected, the asymmetries for the two
processes are very similar except for their overall magni-
tude. In general, the ratio o;„/o. 3H does not rise to more

than ——,
' for most kinematical conditions so the asym-

metries that are to be expected in He(e, e')X cannot be
greater in magnitude than about 0.25. A characteristic of

The results of Fig. 5 are also qualitatively similar to those
found in e- H scattering by Cheung and Woloshyn. As
in Ref. 20, we note that the asymmetry for different
values of GE crosses the A =0 axis at significantly
separated values of P. As a means of determining Gg ex-
perimentally, it may prove to be more useful to determine
this zero crossing rather than measure the difference in
asymmetries at a fixed value of P. The results thus far are
at the co value corresponding to the quasi-elastic peak in
the cross section. To show the effects of moving away
from the peak, Fig. 6 shows the asymmetry as a function
of co with P fixed at 0 and 60. The corresponding dif-
ferential cross section is also shown. Little variation is
seen in the asymmetry except in the extreme tails of the
cross section where the contribution of the protons is sig-
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FIG. 9. Asymmetries as a function of target polarization an-
gle P for (a) polarized electron-polarized neutron scattering and
(b) inclusive polarized electron scattering from polarized 'He at
the quasi-free peak. In both cases Ek ——1.5 GeV, 8=60', and
the different curves (labeled by values of B) correspond to dif-
ferent choices of the neutron magnetic form factor [Eq. (4.2}].

-0.20
I I
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FIG. 10. (a) The differential cross section at Ek ——1.5 GeV
and L9=60 for inclusive electron scattering from He as a func-
tion of energy transfer co. (b) The corresponding longitudinal
asymmetry for two values of the target polarization angle P.
The different curves (labeled by values of B) correspond to dif-
ferent choices of the neutron magnetic form factor [Eq. (4.2)].

aGM +~GEGM
e n Il II

cGM +dGg

and GE is a good deal smaller than G~, any variation in
GM will tend to cancel between the numerator and denom-
inator, leaving A rather insensitive to G~ as seen in

Fig. 9(a). Qn the other hand, A 3- also depends on thee3 He
Il Il ~ ~ ~ ~ n~ratio (cGsI +1GE )/o. 3H which is sensitive to GM because

of the large contribution of the protons to the denomina-
tor. This may be contrasted with the situation when GE is
varied. There, just the opposite is the case—A is sensi-

tive to Gg, while the ratio o,„/o. 3 is not. A feature of
Flg. 9(b) tllRt ls s111111al to w11at wRs seen w11eI1 Gg wRs

varied is that there is a small range of /3 for which the
asymmetry is essentially independent of G~. Again we
can estimate a value of P for which this is so by demand-

ing that the relatively large GM terms in Eq. (S.3) cancel.
This gives
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Comparing Figs. 5(b) and 9(b) shows that one can
choose a value of P which at the same time maximizes
sensitivity to the form factor of interest (Gg or GM) while
minimizing any interference from the other form factor.
In Fig. 10 we show the cross section and asymmetry as a
function of cu, while in Figs. 11 and 12 we present the
variation with respect to 0 and Ek a11 for different choices

FIG. 11. (a) The differential cross section at the quasi-elastic

peak for inclusive scattering from He as a function of scattering

angle 0. The beam energy Ek ——1.5 GeV. (b) The corresponding
longitudinal asymmetry for three values of the target polariza-
tion angle P. The different curves (labeled by values of 8}corre-

spond to different choices of the neutron magnetic form factor
[Eq. (4.2)].
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FIG. 12. (a) The differential cross section at the quasi-elastic
peak for inclusive electron scattering from He as a function of
the beam energy Ek. The scattering angle 0=60'. (b) The corre-
sponding longitudinal asymmetry for three values of the target
polarization angle P. The different curves (labeled by values of
B) correspond to different choices of the neutron magnetic form
factor [Eq. (4.1)].

of the magnetic form factor GM. The same observations
can be made about these results as were made about Figs.
6—8 where sensitivity to GE was investigated. A
compromise between favorable asymmetries and unfavor-
able cross sections seems to be inevitable.

B. Sensitivity to the He wave function

The origin of the quasi-elastic peak in (e,e ) scattering is
well established. The peak corresponds to the knocked
out nucleon having minimum initial momentum zero.
The width of the peak corresponds to the Fermi momen-

turn of the nucleus. In terms of the partial waves in g,H,
the peak corresponds to a scattering from S-wave nu-
cleons, while away from the peak, the D waves are expect-
ed to contribute (the P waves are small and have negligible
effect in any region). It is the S waves that dominate, of
course, with the space-symmetric contribution (shown as
channel 1 in Table II) being by far the largest at 87% of
the wave function. Moreover, as emphasized in Sec. III,
the protons in this dominant channel are in opposite spin
states and will not contribute to the asymmetry. This
elimination of the protons was used in the previous section
to look at the properties of the neutron. In this section we
turn the problem around and look for nonzero contribu-
tions of the protons as a measure of the small spatially
nonsymmetric partial waves of He (all channels bar 1, 4,
and 7 in Table II). Although a nonzero proton contribu-
tion to the asymmetry is expected from channel 2 at the
quasi-elastic peak (it is truly S wave since I =L =L =0)
and perhaps channel 14 which has L =0, the other chan-
nels, especially the D waves, can only show their effect
where the momenta are high —namely at c0 values corre-
sponding to the tails of the quasi-elastic peak.

In order to see the effect of the small partial waves of
He on the asymmetry, we performed the calculation re-

taining only a select number of P Kchanne-ls from Table
II. We note that no restriction is put on the J-J channels
N in Eq. (3.8) other than that imposed naturally by the
limited number of P-E: channels. First we find, as expect-
ed, that retaining only the spatially symmetric S state
(channel 1) already gives almost all the cross section. For
the asymmetry we obtain the interesting result that only
two of the small channels, the S state (L~ =O,l~ =0) chan-
nel 2, and the D state (L~=2,I =0) channel 11, contri-
bute significantly. Figure 13 shows the effect of these two
channels on the separate neutron and proton contributions
to the asymmetry. Channel 1 determines most of the
neutron's contribution, while the antisymmetry of the
wave function guarantees that the contribution of the pro-
tons is identically zero. The effect of channels 2 and 11
on the neutron contribution is minimal. For the protons,
these two channels have significant but opposite effects.
This explains why, in Fig. 10(b), the asymmetry does not
vary a great deal as one moves co away from the peak
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FIG. 13. Contributions of the partial waves of 3He (see Table II) to those components of the asymmetry in 'He(e, e')X that arise
from quasi-elastic scattering off the neutron (n) and proton (p). The kinematics are defined by Ek =1.5 GeV, 8=60', and P=O'. In
(a) only the spatially symmetric S space channel 1 is included, (b) includes channel 1 and the mixed symmetry S state (L =O,I =0)
channel 2, (c) includes channel I and the D state (L~=2,l„=O) channel 11, and (d) includes channels 1, 2, and 11.
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FIG. 14. Same as Fig. 13 except that Ek ——398.4 MeV and 8=75 .

value (although one can see the effect of the D wave in the
low energy transfer tail}.

We find that the proton contribution to the asymmetry
is somewhat larger at lower energies. As an example, Fig.
14 shows results at the energy and angle of the Hughes
et al. ' experiment (Ek=398.4 MeV, 8=75'). The same
trends are seen as in Fig. 13 where Ek ——1.5 GeV but the
asymmetries are, in general, bigger.

Although experimentally what one measures are cross
sections, it is interesting to examine the underlying struc-
ture functions Wi, Wz, Gi, and G2 as they isolate much
of the physics from the kinematics. Their experimental
evaluation may also be possible through a judicious choice
of kinematics. Indeed, the use of small angles has already
enabled a determination of W2 at high Q leading to the
important scaling behavior. ' In Fig. 15 we show the
structure functions that correspond to the cross section of
Fig. 4(b) and asymmetries of Fig. 14 (Ek=398.4 MeV,
8=75'). For Gi and G2 the neutron and proton contribu-
tions are shown separately, while for W, and W2 we show

the neutron contribution and the full result. Although a11

the structure functions reflect the presence of the quasi-
elastic peak, the proton contributions to G I and G2 are the
only ones that do not resemble a Gaussian distribution.
The irregularity of these away from the peak is expected
and leads to the significant proton contributions to the
asymmetry in the tails of the cross section.

It is well known that there is a close relationship be-
tween the quasi-elastic cross section and the momentum
distribution of the nucleons in the wave function. This is
clearly illustrated by the expressions (2.27} and (2.28} for
Wi and W2 when one recognizes that fo(p) is precisely
the momentu~ distribution. Indeed, the fact that the
momentum distribution in a nucleus is largely indepen-
dent of other properties like the binding energy and form
factors, makes quasi-elastic scattering an important tool
for studying the nuclear wave function. In a similar way,
we expect the asymmetry to be closely connected with the
spin-dependent momentum distributions. In their sim-
plest form these distributions are
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FICi. 15. The structure functions W», W2, 6», and 62 for the inclusive scattering of electrons from He at Ek =398.4 MeV and
0=75'. For W» and W2 the contribution of the neutron is shown together with the full result. For 6» and 62 only the separate neu-
tron (n) and proton (p) contributions are shown. These structure functions correspond to the cross section of Fig. 4(b) and the asym-
metries of Fig. 14.
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D(P, )= X Iga —', „(P
~A —1

(5.7)

describing a nucleon with isospin i and whose spin is
parallel to the spin of the nucleus, and

(5.8)

D{fm )

describing the nucleon with spin opposite to the spin of
the nucleus. In practice there are additional cross
terms —see Eqs. (2.23b) and (2.23c). As we have already
seen, an advantage that the asymmetry has over the cross
section is that it is able to say something about the small
components of the He wave function. We aim now to il-
lustrate this point in terms of the spin-dependent momen-
tum distributions predicted by our wave function. A
slight complication arises in that these distributions de-
pend not only on P as in the spin-averaged case, but also
on the azimuthal angle g. We choose /=45' for our illus-
tration as it is a typical case. Figure 16 shows the proton
spin-dependent momentum distributions retaining (a)
channels 1 and 2 of the wave function, (b) channels 1 and
11, and (c) all the channels. We note some expected
trends: (i) the S wave of mixed symmetry, channel 2,
gives the protons of different spin a different distribution
even at zero momentum, (ii) the D wave, channel 11, has
an effect only at large momentum and then in an opposite

way to that of channel 2—an observation already suggest-
ed by the asymmetry, (iii} comparing the distributions us-

ing the full wave function (c) with the partial ones (a) and

(b), we find that from the choice in Table II only channels
2 and 11 contribute to the spin dependence below 1.6
fm ', a result which again has been noticed in the asym-
metry. Above 1.6 fm ' other partial waves contribute to
the distributions, but the high momentum makes them
difficult to see in the asymmetry. Although /=45' is a
typical case, it is worth mentioning what happens at other
values of g. First, we note that the distribution (a) retain-
ing channels 1 and 2 only does not depend on g, so only
the D-state case (b) need be considered. At /=0 the prob-
ability of finding a proton of nonzero momentum with
spin antiparallel to the total spin ( ) is larger than find-

ing one with spin parallel ( ). As g increases the
momentum distributions cross so that at /=90' the proba-
bility for protons is larger than for protons. Thus,
the amount of cancellation between S- and D-wave contri-
butions is controllable to some extent by the kinematics.

For the neutron distribution, Fig. 17, we obtain the ex-
pected result that the probability of a neutron having its
spin along the direction of He's spin is much greater than

the reverse. Indeed, the small amount of the com-

ponent is owing entirely to partial waves other than 1, 2,
or 11 and is not noticeable in our results for the asym-
metry.

To summarize, we have demonstrated that the nature of
the spin-dependent momentum distributions is directly re-

fiected in the asymmetry for He(e, e'}X. We expect that
the asymmetry would provide a strong test of theoretical
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FIG. 16. The proton spin-dependent momentum distributions
in 3He for a fixed azimuthal angle of the momentum /=45'.
The curves correspond to a proton with its spin parallel ( ) or

antiparallel ( ) to the spin of He [see Eqs. (5.7) and (5.8)]. In

(a) only the S state (L =0, I =0) channels 1 and 2 are included

(see Table II). In (b) channel 1 and the D state (L =2,I =0)
channels 11 are included, while in (c) we include all the channels
of Table II.
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FIG. 17. The neutron spin-dependent momentum distribu-
tions in He for a fixed azimuthal angle of the momentum
/=45'. The curves correspond to a neutron with its spin paral-

lel ( ) or antiparallel ( ) to the spin of 'He [see Eqs. (5.7) and

(5.8)]. All the partial wave channels of Table II are included.



552 B. BLANKLEIDER AND R. M. WOLOSHYN 29

wave functions; in particular, of the two small partial
waves. However, before making any final conclusions one
needs to test the practicability of such a scheme by com-
paring predictions of the asymmetry using different
three-nucleon wave functions. The difference in wave
functions would need to lie, of course, in the momentum
distributions. Such a comparison is left for the future.

VI. CONCLUSION

In this paper we studied quasi-elastic scattering of po-
larized electrons on polarized He. Our model consists of
impulse approximation along with closure to sum over fi-
nal states. Using a wave function obtained by solving the
Faddeev equation with the Reid soft-core potential and a
single fixed value for the closure energy, reasonably good
agreement is found for spin-averaged quasi-elastic cross
sections for a variety of incident energies and scattering
angles.

Near the quasi-elastic peak the contribution of the pro-
tons to the asymmetry is very small. Effectively, He
looks like a neutron target except that the asymmetry is
reduced in magnitude owing to the large proton contribu-
tion to the spin-averaged cross section (see Fig. 5). The
asymmetry at the quasi-elastic peak increases slowly as
the incident electron energy is increased from a few hun-

dred MeV to a few GeV (the cross section, however, de-
creases rapidly).

By choosing the direction in which the He target is po-
larized, it is possible to enhance the sensitivity of the
asymmetry at the quasi-elastic peak to either the neutron
electric form factor Gg or the magnetic form factor GM

(compare Figs. 5 and 9). Furthermore, the asymmetry
goes through zero as a function of He polarization direc-
tion precisely in the region where it is least sensitive to un-

certainties in Gst. The zero crossing of the asymmetry de-
pends essentially only on GE, which could provide a new
way of determining this form factor.

As one moves out into the tail of the quasi-elastic peak
the contribution of the protons to the asymmetry in-
creases. This contribution depends on the fact that the
probability of finding a proton of high momentum in He
with spin parallel to the total spin is not equal to the prob-
ability of having a proton with antiparallel spin. We find
that this difference in momentum distributions is deter-
mined by only two small components of the He wave
function, one mixed symmetry S state (La=la=0) and
one D state (L =2,1 =0). The contributions of these two
states to the asymmetry tend to cancel (see Fig. 13). At
lower incident electron energies (a few hundred MeV) and
at low energy transfer (see Fig. 14) the D-state contribu-
tion wins out and the asymmetry approaches 0.3, the larg-
est we have found in any of our calculations. Measure-
ment of the asymmetry in the tail of the quasi-elastic peak
would provide a direct test of the spin dependence of the
momentum distribution at high momentum which is
determined by small components of the wave function
and, by implication, of the spin dependence of the short-
range force acting between the nucleons.
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