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Angular distributions of the cross section for the elastic and inelastic scattering of protons have
been measured at four isobaric analog resonances of the ' Sm+p system and at two off-resonance
energies. Spectroscopic information about the 2, , 2, , T, , and 2, states of the parent nucleus

7 3 1 5

Sm is extracted, with the core ' Sm in the states 0+&, 2&, 3&, 4~, and 2+&. The analysis includes
direct and fluctuating nonresonant processes. The direct scattering amplitude is obtained from a
coupled channel treatment. Different methods for the calculations of the single-particle widths
have been employed. The experimental spectroscopic amplitudes were compared with nuclear struc-
ture calculations based on the particle-vibrator model. Both the liquid drop model and the quasi-
particle random phase approximation were used to describe the vibrator. The calculations based on
the latter model show good agreement with the experimental results.

NUCLEAR REACTIONS ' Sm(p, p'), E=8.5—14 MeV, enriched targets,
measured o.(Ep, O); experimental and theoretical ' Sm spectroscopic amplitudes.

I. INTRODUCTION

Several experimental studies of the isobaric analog reso-
nances in the ' Sm+p system (' Eu) have been report-
ed' so far. In these works information about energies,
widths, spins, and parities of the resonances, associated
with the low-lying states of the parent nucleus ' Sm, were
obtained through the analysis of elastic excitation func-
tions. A few works appear in the literature on inelastic
decays, namely, several highly excited particle-hole states
in ' Sm were studied by Martin et al. , while the decay
to the first excited 2+ states was analyzed by Clement
et al. employing the DWBA prescription to account for
the nonresonant scattering.

In the present work we analyze the elastic and inelastic
decays of the isobaric analog resonances in the ' Sm+p
system associated with four low-lying states of the parent
nucleus ' Sm. We consider the inelastic decays to the 2&+,

3&, 4&+, and 2&+ states of ' Sm, as the experimental data
reported by Martin et al. clearly indicate that all of them
play an important role in building up the wave functions
of the considered parent nucleus states. We make use of
the coupled channel formalism for treating the direct non-
resonant scattering. In addition, we also include the fluc-
tuating nonresonant contributions to the cross section
(Hauser-Feshbach). This effect is usally ignored since the
fluctuating decay occurs preferentially through the open
neutron channel, turning negligible the fluctuating contri-

bution in the proton channel. This, however, is not the
case for the first two isobaric resonances in the ' Sm+p
system, since they lie near the neutron threshold.

The determination of spectroscopic amplitudes involves
theoretical estimates for single-particle resonance ampli-
tudes (g' ), and it was established by Harney and
Weidenmuller that the results may vary appreciably de-
pending on the approach employed in treating the absorp-
tion in the T states. In the present work we calculated
the single particle resonance amplitudes using four dif-
ferent approaches. ' The application of sum rules to
the spectroscopic amplitudes resulting from the various
approaches for g'P provides us a check on the reliability of
the various methods, along with a test of consistency for
the experimental spectroscopic amplitudes.

Theoretical predictions for the spectroscopic amplitudes
are obtained in the framework of the particle-vibrator
model and compared to the experimental values. The vi-
brator is described at first by a liquid drop model and
later treated within the quasiparticle random phase ap-
proximation (QRPA).

II. EXPERIMENT

The experiment was performed at the Universidade de
Sao Paulo Pelletron-8UD accelerator laboratory. Angular
distributions of the elastic and inelastic cross sections of
protons scattered by ' Sm were measured at beam ener-
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TABLE I. Optical model parameters. The real potential depth is given by V = Vo —KE~ MeV, where E„ is the incident particle en-
ergy in the laboratory frame.

Vo

(MeV)

59.60 0.55

Rg
(fm)

6.552

ag
(fm)

0.7113

8's
(MeV)

9.02

Rs
(fm)

6.709

as
(fm)

0.6703

V„
(MeV)

6.2

R„
(fm)

5.766

aso
(fm)

0.7113

Rc
(fm)

6.290

gies of 9.315, 10.205, 10.905, and 10.985 MeV. These
values are equal to or very close to the energies of the first

, and —, analog resonances in the ' Sm+p
system. The —, resonance was located by looking for the
maximum yield of the protons leaving ' Sm in the neu-
tron particle-hole states. The angular distributions were
measured in 10' steps from 6)~,b

——40' to 169'. In order to
obtain information about the nonresonant background, ad-
ditional angular distributions were observed at 8.50 and
14.00 MeV in the intervals O~,b ——30' to 160' and 40 to
169', respectively, in steps of 10'. At these energies contri-
butions from resonant scattering vanish.

The detection system consisted of three surface barrier
detectors, positioned 10' apart, each of which subtended a
solid angle of about 1 msr. The resolution of the detectors

was improved by water cooling them to O'C.
The targets were prepared by vacuum evaporation of

86% enriched ' Sm, from a mixture of Sm203 and La, al-

lowing the simultaneous evaporation of Sm and reduction
of La to La203. The target thicknesses were of nominally
300 and 200 pg/cm . The thicker targets were used for
the measurements at 14.00 MeV, thus maintaining the en-
ergy loss in the target at about 5 keV for all bombarding
energies. The overall energy resolution was about 25 keV.
The absolute cross-section normalization, accurate to
about 5%, was determined from the elastic scattering data
by comparison to optical model cross-section calculations
at forward angles, where the optical model is a small
correction to Rutherford scattering. The error bars on the
data points indicate only statistical errors.

III. ANALYSIS OF THE EXPERIMENTAL DATA

1.0

0.8—

Srn (p, p')

0 MeV

0.6—

0.4—

0.2

1.0

0.9—

0.8—

144 S~ ( p pq )
E

[p b
So5 M eV

4

07—
0.6—
0.5 I I I

0 30' 60' 90 120 150 180'

where f (r,R,a) is the usual Saxon-Woods form. The parametri-
zation corresponding to the fits is presented in Table I.

FIG. 1. Elastic angular distributions at 8.5 and 14.0 MeV.
The form of the optical potential is

U(r)= Vc —Vf(r, R~,a~) iWs f (r,Rs, a—s)—d
dr

2
fi 1 d+ V„(a l ) f(r,R„,a„), ——mcrdr

The analysis consisted of two parts. First the non-
resonant (background) scattering was studied at off-
resonance energies and was then used as a basis to extract
an interpolated background in the analysis of the reso-
nance.

The data at 8.5 and 14.0 MeV allowed the analysis of
the nonresonant scattering. From the elastic scattering we
determined the optical potential parameters and their en-
ergy dependence. These parameters were also tested in the
analysis of the inelastic scattering data. In addition, "best
values" for the deformation parameters involved in the
description of the direct inelastic scattering were obtained
from the literature. Since at 8.5 MeV few neutron chan-
nels are open for the compound nucleus decay, a signif-
icant contribution in the proton channels is present (neu-
tron threshold -7 MeV).

Fits of the elastic angular distributions at 14.0 and 8.5
MeV, using the optical potential parameters listed in
Table I, are shown in Fig. 1. Initial values for the optical
parameters were obtained from Refs. 3 and 11, and the
fits were done using the optical model code MAGALI. '

The measured back-angle cross sections at 8.5 MeV are
somewhat higher than the shape elastic prediction, since
fluctuating processes are contributing. Such processes
should be even more pronounced in the inelastic cross sec-
tions. With the assumption of a linear energy dependence
for the real potential depth V, we obtained the relation

V= —0.55E&+59.6 MeV,

where Ep is the incident particle energy in the laboratory
frame. The surface imaginary potential depth 8'~ was as-
sumed to be independent of the energy.

The inelastic background comes from both direct and
fluctuating processes. The direct inelastic scattering can
be described as resulting from the excitation of the surface
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FIG. 3. Graphical representation of the excitation mecha-
nism for the 22+ and 4~ two-quadrupole phonon states. Within
model I, which does not include the anharmonic effects, the 22+

and 4&+ states are attained only via two-step processes shown in
graph (a). However, when one considers also the contributions
from the second derivative of the optical potential, the term
gives rise to the excitations sketched in graph (b). Diagram (c)
shows the excitation of the two-quadrupole phonon states
through the anharmonic effects induced by the particle-phonon
coupling. This type of excitation of the 22+ and 4&+ states can be
simulated by effective A. =2 and A, =4 vibrational fields as illus-
trated in graphs (d) and (e), respectively.

FIG. 2. Inelastic angular distribution of the cross section for
the 2l+ state at 8.5 and 14.0 MeV. The solid curves correspond
to the total cross section. At 14.0 MeV only direct processes
contribute and the curve corresponds to the coupled channel cal-
culation with 52 ——0.46 fm. At 8.5 MeV the solid curve results
from adding the direct contribution calculated in the same way
(dashed line) to the fitted compound nucleus contribution (0.17
mb/sr).

vibrational modes of the spherical target nucleus ' Sm.
This kind of scattering is essentially characterized by the
deformation lengths

where p& is the deformation parameter for the vibrational
mode A, . For each radius of the optical potential
(Coulomb Rc, real volume Rz, surface imaginar Rs) a
corresponding deformation parameter (pi, pi, i) is de-
fined, such that

=Pi".Rx =Pi.RC =,P'iRs .

The deformation lengths are already available in the
literature from analyses of inelastic angular distributions
at several energies. ' ' For the 2&+ state several 52

values, which differ significantly with each other, have
been reported. Comparison between the experimental in-
elastic angular distribution at 14 MeV and coupled chan-

nels calculations using the EcIS code' showed that the
best agreement is achieved with the 5 value of Larson
et al. (52——0.46 fm). ' The result for this value of 52 is il-
lustrated in Fig. 2.

Figure 2 also shows the 8.5 MeV experimental inelastic
angular distribution compared to that calculated for
52 ——0.46 fm. Here the fluctuation contribution accounts
for most of the cross section. At this energy only the neu-
tron and proton channels are significant for compound
nucleus decay. A Hauser-Feshbach (HF) calculation for
proton decay of the compound nucleus involves the ' Srn
and ' Eu optical potentials and the levels and level densi-
ty parameters of these same nuclei. Level density esti-
mates are always uncertain, and information on the low
lying states of ' Eu, on which a HF calculation critically
depends, is sparse. As a consequence, the predictions of
HF calculations in our work are reliable only in order of
magnitude, and the HF contribution was taken as an addi-
tive isotropic cross section to be treated as a fitting param-
eter in the inelastic scattering analysis. The validity of
this rests on the isotropy of the HF contribution in the
proton channel. For protons the combined centrifugal
and Coulomb barriers drastically inhibit the partial waves
with l&0. Taking cr"=0.17 mb/sr nicely fits the 8.5
MeV inelastic data, as is shown in Fig. 2.

The 4~+ and 22+ states may be interpreted as being built
up from two harmonic quadrupole phonons. This
description is illustrated in Figs. 3(a) and (b), and has been
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Eexc
(MeV) (fm)

TABLE II. Deformation lengths for ' Sm states. The 5~
values are taken from Ref. 16. 25—

20—

""'Sm(I, p )

0 = 170'
b

2+

3]
4+
2+

1.661
1.811
2.191
2.423

0.46
0.87
0.33
0.29 1/2 ANO 5/2 RES REGION

10.6 10.7 10.8 IQ9 11.0 11.1
I I 1

;(p +p, ) g(J„,c)g(J„,c')
S„=S„"—e

l"E Eg+ —IJ—
V Q V

(3.1)

where c =
I i,j,II, with I lj I the orbital and total angular

momenta of the incident proton and I the spin of the tar-
get; J„ is the spin of the vth resonance; P, =g, +(r, +g, ,
where g, is the real optical model phase shift, cr,

" the
Coulomb phase shift, and P,

" the resonance mixing or
asymmetry phase; and EJ and I J are the energy and to-

V V

tal width of the J„resonance, respectively. The resonance
(or escape) amplitudes g (J„,c) are related to the spectro-
scopic amplitudes 8(c,J ) and partial widths I J,
through the relations

and

g(J„,c)
8(c,J,) =

g'~( J„,c)
(3.2)

I J,——~g(J„c)
~

(3.3)

where g')'(J„,c) are the single particle amplitudes in chan-
nel c at the J resonance energy.

The direct amplitude S„"was determined from the
analysis of the off-resonance data presented in the preced-
ing section. The fit of the elastic cross section involves as
parameters only the elastic partial width I'J, the energy

EJ, and total width I q of the resonance. With these pa-

rameters determined from the analysis of elastic scatter-
ing, the remaining parameters in the inelastic angular dis-
tributions fits were the inelastic partial widths. The fluc-

used in a coupled channels calculation (ECIs), with

52 ——0.46 fm, at 30 MeV, since at this energy it is possible
to compare the results with the data of Larson et al. '

The calculated cross sections were about 50 times smaller
than the measured ones. This fact indicates that the
anharmonic effects [shown in Fig. 3(c)], which are not in-
cluded in the coupled channels calculation, should play an
important role. These effects can be taken into account by
introducing new "effective" deformation parameters P4
and f32 and treating the 4)+ and 22+ states as one phonon
excitations, corresponding to the new effective amplitudes
[see Figs. 3(d) and (e)]. Within this approach, which was
adopted throughout this work, the experimental data were
well described. The deformation lengths for all the stud-
ied states are presented in Table II.

Neglecting the fluctuating contribution to the cross sec-
tion, the scattering at the resonances energies is described
through the scattering matrix

Sm (p, p))

= 170'
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tuating contribution to the cross section was obtained as a
fitted additive parameter to the cross section described by
the S matrix.

The fluctuating contributions to the elastic cross section
at the resonance energies were estimated through Hauser-
Feshbach calculations using the code CINDY. We have
used the level density parameters of Gilbert and Came-
ron' and the optical potential of Becchetti and Green-
lees for ' Eu. It turned out that in all cases the elastic
fluctuating cross section was of the same order of magni-
tude as the experimental error, and hence was disregarded.

The elastic scattering at the resonances of interest has
been extensively studied. This fact enabled us to employ
the resonance parameters available in the literature. '

The best choice of resonance parameters EJ, I J and elas-
V V

tic partial widths I J, was determined through the

reanalysis of the 170' elastic excitation function of
Marouchian et al. ' It was also possible to determine the
asymmetry phases during this procedure. The code
ANspEc (Ref. 21) was employed in calculating the excita-
tion function. The resulting fits can be seen in Fig. 4 and
the corresponding final parametrization is presented in
Table III. These same parameters were used to calculate
the elastic angular distributions shown with the measured

FIG. 4. Fits to 170 elastic excitation function over the four
analyzed resonances. The corresponding parametrization is

presented in Table III.
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TABLE III. Resonance parameters and elastic partial widths.

The quantity hE is defined as the difference between the beam
and resonance energies Gaboratory frame). The parameters of
those resonances marked by an asterisk were taken «orn R ~. ~
and Used in background for the other resonancs Csee Fig
The 2 resonance energy (9 251 MeV) is &&ken ~rom
The energies of the—
to 9.251 MeV.

E, (c.m. }

(MeV)

pe- RESONANCE

=go. 9O5 Me@

7
21
3
2 i

21
1

2 1

5
2 1

22

22

22

22

10.135

10.690

10.835

10.904

11.040

].1.120

11.220

11.240

90

36

0.7

0.3

00

P~- REsohlANCE

E, , = 9. 3q5 MeV

cross sections in Fig. S. From these angular distributions
a determination was made of the difference

(3.4)

where E is the beam energy during the experiment. The
value of AE was varied with a 5 keV interval (the uncer-
tainty in localizing the resonances), and the b,E value
which provided the best descriptions of the experimental
angular distributions was the one adopted (see Table III).

The HF calculation of the inelastic fluctuating contri-
bution indicated that this process is relevant only at the
two first resonance energies (

—', i and —,', ). Its omission
results in distortions in the fits, as will be illustrated later
on. As before, these contributions are treated as a free ad-
ditive parameter to the cross section obtained from the
scattering matrix.

The direct amplitude was obtained by the code JUPITOR.

(Ref. 22) employing the parametrization defined in the
analysis of the nonresonant data. Modifications were
made to JUPITOR so that Coulomb excitation could be in-

cluded in the 41+ background amplitude. The optical
phases were calculated with the code ANSPKC.

The angular distributions to the 2+~, 41+, and 22+ states
of ' Sm were fitted at the four resonances. The analysis
of the 3i angular distributions was carried out only at the
first resonance, since at the remaining energies the data
%'crc rnaskcd by contaminants. Besides thc paraInctci 1Q-

troduced to account for the fluctuating contribution, the
only free parameters still undetermined for these fits were
the inelastic partial amplitudes I J,. Initial parameters

were estimated for each of four resonances (calculation I
in Sec. IV). The search for best parameters was made at
each resonance, using a modified JUPITOR code. During

l I l l l

0 30O 60 QO 120 150 180

O .m.
FIG. 5. Resonant elastic angular distributions. The

parametrization corresponding to the fits is presented in Table

this procedure, for a particular resonance the parameters
previously obtained for the remaining resonances were in-
cluded in the calculations. Reiteration through the set of
resonances was continued until the values of the parame-
ters stabi. lized. The resulting values are presented in
Tables IV—VII. The corresponding fits are compared to
the data in Figs. 6—9. The fits are satisfactory at all the
resonances, and it can be seen from these figures that the
experimental data of the —', and —', resonances are fre-
quently better reproduced by indusion of the fluctuating
cross section. In particular, the improvement of the fit
obtained by considering the fluctuating contribution in the
case of the 2i state at the —', i resonance is especially re-
markable. This is consoling since a major fluctuating con-
tr1butlon was cxpcctcd 1n just th1s state.

The determination of the spectroscopic amplitudes
from experimental values of g(J„,c) involves the calcula-
tion of single particle escape amplitudes g'~(J„,c). As was
extensively discussed by Barney and %'eidenmuller, the
different approaches for g'P available in the literature
led to considerably different results. In the present work
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TABLE IV. Partial widths for the 2, resonance. All the widths are given in keV. The values obtained by disregarding the fluc-

tuating contribution are indicated by (I). Those obtained by including this contribution are indicated by (II).

01+

I (s lg2, I„) I (d3/2 I„) I (f7/2, I„)
7.8 +0.8

I (p3n, I„) ~(f5/2 I
ONC

(mb/sr)

2+ 0.58 +0.05
0.13 +0.06

0.40+0.05
0.41+0.04

0.001+0.05
0.003+0.01 0.12 +0.02

0.77+0.05
0.66+0.07

0.05+0.02
0.04+0.01 0.03 +0.01

0.11 +0.02
0.15 +0.01

0.11+0.02
0.03+0.01

0.005+0.02
0.004+0.01

0.002+0.01
0.025+0.002

2+ 0.03 +0.02
0.003+0.01

0.14+0.02
0.04+0.01

0.03 +0.02
0.08 +0.01 0.025+0.007

the single particle escape amplitudes were calculated using
four different methods: that of Thompson, Adams, and
Robson (TAR); that of Zaidi, Darmodjo, and Harney '

(ZDH); that of MacDonald and Mekjian; and that of de
Toledo Piza. ' The results obtained with the two first
methods are shown as a function of the emerging proton
energy in Fig. 10. The method of de Toledo Piza gives re-
sults which are systematically about 10 Jo greater than
those obtained with the ZDH method, while the method
of MacDonald and Mekjian provides g' values which are
always much smaller than those obtained with the TAR
method. It should be pointed out that the differences be-
tween the values furnished by the various methods are ac-
centuated as the energy of the scattered proton increases.
In other words, as the energy approaches that of the elas-
tic scattering at the resonances of interest (- 10 MeV), the
discrepancies increase, and therefore the elastic amplitude
9(jl,I=0,J, ) turns out to be the most affected one.

Tables VIII—XI present the spectroscopic amplitudes
that result from the experimental values of the inelastic
partial widths (both with and without considering fluc-
tuating contributions) and from the values of single parti-
cle escape widths obtained with the TAR and ZDH
methods. In fact, considerable differences arise for

0(tj,O+,J, ) as a consequence of using the approaches of
TAR or ZDH. These differences become less significant
as we consider increasingly excited core states.

The sum rule

+8 (jl,I„,J„)(1 (3.5)

was used as a consistency test for the analysis and for the
calculations of g'I'. Table XII presents the values of
gil I 0 corresponding to the results shown in Tables

VIII—XI. It is observed that, when the single particle es-

cape widths calculated with the TAR method are em-

ployed, condition (3.5) is only fulfilled for the —', state.
The inclusion of the fluctuating contribution reduces the
~alue of gij I 8, but the difficulty still subsists. The sit-

uation is greatly improved when the ZDH method is used;
in this case the sum rule (3.5) is satisfied for all the states.
It should be stressed, however, that the sum rule test can-
not shed light on the necessity of including the fluctuating
contribution. This may be understood by observing that
the reduction of the spectroscopic amplitude for the core
ground state, in general the largest one, is what allows the
sum rule to be observed when employing g'" values ob-

TABLE V. Partial widths for the 2, resonance. A11 the widths are given in keV. The notation is

the same as in Table IV.

0+

I (f7/2, I.) I (p3y2, I„)
22 +2

I (pig2, I„) I (fs/2 I )

0NC

(mb/sr)

2] 2.49 +0.2
2.50 +0.04

0.41 +0.1

0.21 +0.05
0.37+0.1

0.35+0.01
0.07 +0.1

0.07 +0.1 0.027+0.007

0.09 +0.02
0.07 +0.02

0.003 +0.01
0.0008+0.001 0.006+0.004

21 0.003+0.02
0.009+0.01

0.008+0.1

0.24 +0.08
0.37+0.02
0.01+0.01 0.012+0.005
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TABLE VI. Partial widths for the 2, resonance. All the

widths are given in keV. The notation is the same as in Table
IV.

TABLE VII. Partial widths for the ~, resonance. All the
widths are given in keV. The notation is the same as in Table
IV.

0+
2+
4+
2'

I (f7gz, I„)

1.38+0.4

I (p3/p I, )

1.33+0.6

0.36+0.04

r(P I/2, I„)
31.5+4

&(fsrz I.)

3.08+0.8

0.14+0.03

0+
2+
4+
2+

I (f7n, l.)

6.62+0.5
0.20+0.04
0.06+0.02

I (p3/2 I )

0.53 +0.5

0.001+0.001
0.16 +0.04

I (P l/2, I„)

0.41 +0.2

0.000+0.001

1"(fsn I )

4.1+1

0.23+0.05

tained with the ZDH method. Thus the test loses its sen-
sitivity to the small values of spectroscopic amplitudes as-
sociated with the core excited states, and these are the
ones which are affected by the inclusion of fluctuating
contributions.

We should remark that employing the g'" values calcu-
lated through the method of de Toledo Piza, the sum rule
is still obeyed and the resulting values of 8(jl,I„,J„) are
similar to those obtained with the ZDH method.

A. Model I: Particle-vibrator model
with a liquid drop vibrator

The Hamiltonian for the nucleus ' Sm is written

H =H„;b+HsP+H;„, ,

where H„;b describes the liquid drop ' Sm:

H„;,=QAco&[N„+ —,
'

(2A, +1)j,

(4.1)

(4.2)

IV. CALCULATIONS AND DISCUSSION

Theoretical spectroscopic amplitudes were obtained by
describing the nucleus ' Sm in the particle-vibrator
model. The simpler approach of a harmonically vibrating
liquid drop was first adopted for the vibrator (model I).
Subsequently, the quasiparticle random phase approxima-
tion (QRPA) was employed (model II); it is supposed that
the residual interaction consists of a pairing force plus a
separable multipolar interaction.

with Ac@~ and X~ the energy and number of phonons with
multipolarity A, . The single-particle Hamiltonian H,~ in
the occupation representation is given by

(4.3)
jm

where aj (aj ) is the creation (annihilation) operator of a
neutron in the jm orbital, j and m being, respectively, the
angular momentum and its projection in the z axes; and ej
are the eigenvalues of H,~. The interaction H;„, between
the particle and the vibrator is represented by

1/2
A,

[b~ +(—)~+"bz „]g (j ~m) l
i kz(r)Yzq(r) l jzmz)aj', m, ajzmz ~

2 CA. P ~
'

Jlml
J2m2

(4.4)

where C~ is the mass parameter of the vibrator; b~& is the
creation (annihilation) operator of a phonon with multipo-
larity A, ;

ljm ) are the eigenfunctions of H, ~; k (r)
represents the radial dependency of the interaction; and
Yz„&(r ) are spherical harmonics.

The relation between Cz„and the deformation parameter
Pz introduced in the preceding section is given by

1/2

l

E',JM) =gC (j(NzIzN3I3)I;JM)
l
j(NzIzN3I3)I JM)

(4.7)

Icos
Pz= (2A, +I) (4 5) and

l

X3 octupole phonons coupled to I3, where I2 and I3 are
coupled to I. The coefficients of the expansion of the
parent nucleus wave function,

l
E",JM ), in this basis are

just the desired spectroscopic amplitudes

8(jl,I,J, ) =C„(j(NzIz, N3I3)I;JM) . (4.8)
The eigenfunctions of the total Hamiltonian are ob-

tained treating H;„, as a perturbation and adopting the un-
perturbed basis

l
J(NzI2N3I3 )~~ JM

= g (jmIMI
l
JM)

l Jm )
l
NzIzN3I3 IMI ) (4,6)

mar

The vector
l
NzIzN3I3, IMI) represents the state of the

vibrator with F2 quadrupole phonons coupled to I2, and

A calculation (calculation I) within this model was car-
ried out by allowing for the coupled neutron six single
Particle orbitals: 2f7~z, li~3~z, 3P3~z, 3P~~z, 1h9&z, and
2f&&z, whose energies are presented in Table XIII. For the
radial matrix element, the estimation of Booth et aI. was
adopted, viz. ,

(k(r)) =50 MeV .

Core vibrational states with up to three quadrupole pho-
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FIG. 6. Fits to the resonant angular distributions for the 2~+

state. For the T, and T, resonances the dashed (solid) lines7 3

correspond to the fits obtained by disregarding (considering) the
fluctuating contribution.

FIG. 7. Fit to the resonant angular distribution for the 3&

state at the ~, resonance. The dashed (solid) lines correspond

to the fit obtained by disregarding (considering) the fluctuating
contribution.

nons (Nz &3) and up to two octupole phonons (N3 &2)
were considered. The following experimental values of
ficoi, and /3q were employed (see Sec. III),

Acoz ——1.66 MeV, Aco3 ——1.81 MeV,

13p =0.070, f33 ——0. 108 .

All basis vectors with unperturbed energies smaller than
7.0 MeV were considered.

This model provides us with no information about the
microscopic structure of the core (particle-hole excita-
tions). Furthermore, it is implicitly assumed that the 4i+

and 2&+ states correspond to two quadrupole phonon exci-
tations, which is perhaps too strong a supposition. As a
consequence, the corresponding amplitudes in the parent
wave functions are expected to be too small.

B. Model II: Quasiparticle random phase approximation

In this model we start with a microscopic shell model
Hamiltonian,

H HsP +Hles (4.9)

in which the residual interaction H„, involves a short
range component represented by the pairing force and a
long range component represented by multipolar interac-
tions. The QRPA treatment of this problem has been dis-
cussed in detail by Ruiz et al. , and we refer the reader
to this work for a detailed review and notation. Here we
only describe our calculations for ' Sm and ' Sm nuclei.

The multipolar interaction constant X~ is given by the
secular equation
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)(~ ~ )2+ g2)1/2 (4.1 1)

are the independent quasiparticle energies, eF is the chemical potential, and 6 represents the energy gap. The quantity
P(jijiA, ) is defined as

P(jijpA)=(2K+1) (UJ, VJ. +UJ VJ, )(jib~i r I'i~~jg), (4.12)

where UJ and Vz are, respectively, the vacancy and occupation numbers. For a given value of Xi the secular equation
(4.10) presents several roots fico; (assigned by i) corresponding to the same A, and different Ai;, given by

(4.13)

The QRPA formalism allows us to consider the two 2+
core states as corresponding to two distinct one-phonon
excitations (one collective, the other not) with amplitudes
given by the first two roots of the secular equation. The
3& and 4& states were also treated as one-phonon excita-
tions.

Figure 11 shows the behavior of g~ and A~ as a func-

tion of %cog for &=2, 3, and 4. These functions were cal-
culated with the single particle energies for protons and
neutrons taken from Refs. 25—27 and listed in Table XIII.
Harmomc oscillator wave functions wcI'c Used 1Il thc cal-
culation of the radial matrix elements of the interaction.

Solutions of the gap equations for the protons (open
shell), with 6=1.26 MeV, obtained from binding ener-
gies, simultaneously furnished the values for e~ and G:

0.'t5—

5/2 RESONANCE

1/2 RESONANCE

ep ——3.20 MCV,

6=0.132 MeV .

The condition that the solutions of (4.10) correspond to
the experimental energies of the 2&+, 3i, and 4&+ states re-
sult in the values of the multipole interaction constant Xi.
presented in Table XIV. From this value of Xz the second
root, Aco2 2 ——2.62 MeV, was obtained which corresponded
closely to the experimental value 2.42 MeV. Table XIV
also shows the amplitudes represented by A~";. These
quantities can also be estimated from the experimental
values of Pi presented in the preceding section, through
the relation

382- RESONANCE

Ag ——&k & 13'
(4.14)r" (2A, +1)'~

Using (k)=50 MeV and (r ) =[3/(3+A)]R, with

7/2 RESONANCE

7r'2- RE SONANCE r+ X}
E

Q. 2

a a
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150' 180'

FIG. 8. Fits to the resonant angular distribution for the 4+&

state. For the 2, and 2, resonances the dashed (solid) lines

correspond to the fits obtained by disregarding (considering) the
fluctuating contribution.

FIG. 9. Pits to the resonant angular distribution for the 22+

state. For the z, and 2, resonances the dashed (solid) lines

correspond to the fits obtained by disregarding (considering) the
fluctuating contribution.



58 CESCATO, RUIZ, FOSTER, AND KRMPOTIC 29

70—

60—

50—
ED

CL 40—

30—

20—

I

/p
5/2

/
/

/
/

/ /
1/p

/
/

/
/

I
/

/
/

/ /
/~

/ /
5/2

P1/

24—

16—
E

C)
T

8-

1.6

16—
X

12-
o 8-

0.80.0

1/X~
3 4

IO
(f) I

I j I

I

, )

((d) I

1.6
%co~ (MeV)

2.4

2.0 2.4
'hcoz ( MeV)

2.8

I

I

I

I

3.

E

N

E (Mev)

FIG. 10. Single particle escape amplitudes calculated by the
methods of TAR (Ref. 6) {solid lines) and ZDH (Refs. 7 and 8)
(dashed lines) as a function of the emerging proton energy.

0
X
E

C) 16—

0.8

32—

A~ (co)

I l l

1.6
~~, (Mev)

I i) l

I

I

I

I

I

I

11/X~

I

I

I ~) I

2.4 3.2

E

o

r = 1.2A '~3 fm (A is the mass number of the nucleus), rela-
tion (4.l4) provides us with the empirical values of the
amplitudes, A~;, listed in Table XIV. From the table we
note that both estimates give similar values for A3 and A4.
On the other hand, Az"i is considerably greater than Az, ,
while Az"z is significantly smaller than Azz. Thus one
concludes that the QRPA model describes the structure of
the 3i and 4i+ states well but furnishes too much collec-
tivity to the 2i+ state at the expense of the 2z+ state. To
account for this effect we employed the empirical values
of Az i and Az z. Moreover, up to two quadrupole pho-
nons of the first kind were considered, while for the other
vibrational fields only one phonon state was taken into ac-
count. The results obtained within this framework will be
labeled calculation II.

Another calculation (calculation III) was performed
within the QRPA model using the same configuration
space and the same pararnetrization as in the preceding
case, except that here we have employed the empirical
values of the energies ficoz and of the coupling constants
A~. Furthermore, in this case we used the estimate
(k) =50 MeV. In both QRPA calculations the spectro-
scopic amplitudes were evaluated by means of Eq. (4.23)
of Ref. 24.

Figure 12 compares the ' Sm spectrum obtained from
the above-mentioned calculations with the experimental
one. It is observed that the low energy spectrum is al-

FIG. 11. Behavior of the functions Sq(co) and Aq(co) as a
function of the energy Acoq near the first roots of the secular
equation (4.10): %co&——1.66 and 2.67 MeV, Aco3 ——1.81 MeV,
Re@4——2. 19 MeV. The dashed vertical lines indicate the unper-
turbed energies of two quasiparticles.

ways well reproduced, with the exception of the —,
&

state,
which lies too low in energy with the two latter calcula-
tions. The better agreement with the experimental data
achieved with the first calculation is ascribed to the utili-
zation of single-particle energies of Heyde et al. , which
were obtained by fitting the low energy spectrum within
model I.

The calculated spectroscopic amplitudes are presented
in Tables VIII—XI, where they can be compared to their

experimental values. A11 three calculations provided simi-
lar values for the spectroscopic amplitudes associated with
elastic scattering 8(lj,0+,J„)and, in general, a reasonable
agreement with the experimental values was obtained.

The amplitudes associated with the 2&+ state,
8(lj, 2i+,J„),resulting from different calculations are quite
similar, a reflection of the equivalency among the corre-
sponding model descriptions. For J = —,', , —,', , and —,,
levels a satisfactory agreement between theoretical and ex-
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TABLE VIII. Spectroscopic amplitudes for the» state of ' 'Sm. The results obtained from the fits that disregard (consider) the

fluctuating contribution are indicated by TAR (TARCN) when the single particle escape widths are evaluated with the TAR method
(Ref. 6) and by ZDH (ZDHCN) when they are calculated with the ZDH method (Refs. 7 and 8). We have indicated by CI, CII, and
CIII the model calculations I, II, and III, respectively.

TAR
ZDH

7
B(p1/2&In~ 2 1

B(d3/2, In, 2, )
7

8(f7/2, I„,—,)

0.94+0. 10
0.75+0.08

7
B(p3/2 I 21 )

7
B(p1/2~in, 2 8(f5/2 I. i, )

CI
CII
CIII

0+ 0.91
0.85
0.90

TAR
ZDH
TARCN
ZDHCN 21

—0.59+0.05
—0.48+0.04
—0.28 +0.06
—0.23+0.05

—0.20+0.03
—0.16+0.02
—0.20+0.02
—0.17%0.02

0.03+0.2
0.02+0.2
0.05 +0.2
0.04+0. 1

CI
CII
CIII

—0.26
—0.26
—0.25

—0.15
—0.14
—0.14

—0.04
—0.04
—0.04

TAR
ZDH
TARCN
ZDHCN 31

—0.20+0.02
—0.17+0.01
—0.18+0.02
—0.16+0.02

—0.09+0.04
—0.08+0.03
—0.09+0.02
—0.08+0.02

CI
CII
CIII

—0.18
—0.19

—0.11
—0.12

TAR
ZDH
TARCN
ZDHCN 4+

0.36+0.06
0.30+0.05
0.43+0.03
0.35+0.02

0.13+0.02
0.11+0.02
0.07+0.02
0.05+0.02

0.03+0. 1

0.02+0. 1

0.03+0.06
0.02+0.06

0.04+0.2
0.04+0.2

CI
CII
CIII

0.04
0.16
0.08

0.02
0.10
0.05

0.02
0.11
0.05

0.01
0.07
0.03

TAR
ZDH
TARCN
ZDHCN 2'

0.21+0.1

0.17+0.1

—0.02+0.08
—0.02+0.06

—0.17+0.03
—0.14+0.03
—0.09+0.02
—0.07+0.02

0.24+0. 1

0.20+0. 1

0.38+0. 1

0.32+0. 1

CI
CII
CIII

0.003
—0.08
—0.09

—0.04
—0.06
—0.06

0.008
0.02
0.02

perirnental results is obtained. One should note, however,
that although an agreement is observed within the experi-
mental errors for the —,', state, the theory predicts in this
case a major contribution of the component with lj =p3/2
relative to the f7/2 component, while the experimental
results show an inverse behavior. In the case of the —', ,
state the theoretical and experimental values of
8(f7/2, 2i+, —,', ) disagree significantly with each other
when the fluctuating contribution is neglected. Inclusion
of this process affects mostly only the foregoing ampli-
tude, reducing it to half of its previous value. The result-

ing agreement then achieved between theoretical and ex-
perimental values is quite satisfactory.

Within model I it is not possible to account for the in-
elastic scattering to the 3~ state. On the other hand, cal-
culations II and III, performed within the QRPA frame-
work, give rise to quite similar results for the theoretical
amplitudes 8(s&/2, 3&, —', , ) and 8(d3/2 3i,' i ), which

agree with the experimental data.
The description of the 4~+ state is different in each cal-

culation. As was expected, calculation I provides ampli-
tudes which are too small, especially for the —,', and»
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TABLE IX. Spectroscopic amplitudes for the 2, state of '" Sm. The notation is the same as in

Table VIII.

TAR
ZDH

3
@f7/2~in~ 21

3
@p3/2 In

0.81 +0.07
0.61 +0.05

3
0(p&/2, In~ 2,

3@f5/2 I

CI
CII
CIII

0+ 0.71
0.67
0.70

TAR
ZDH
TARCN
ZDHCN 2]

—0.75 +0.06
—0.60 +0.05
—0.75 +0.01
—0.61 +0.01

—0.15 +0.04
—0.12 +0.03
—0.11 +0.03
—0.09 +0.02

—0.14+0.04
—0.12+0.03
—0.14+0.01
—0.11+0.01

—0.13+0.2
—0.11+0.2
—0.1310.2
—0.11+0.2

CI
CII
CIII

—0.61
—0.55
—0.59

—0.18
—0.17
—0.17

—0.13
—0.15
—0.13

—0.08
—0.07
—0.08

TAR
ZDH
TARCN
ZDHCN 4+

0.19 +0.04
0.16 +0.04
0.17 +0.05
0.14 +0.04

0.04+0. 1

0.03+0. 1

0.02+0.02
0.02 %0.02

CI
CII
CIII

0.08
0.23
0.12

0.04
0.16
0.08

TAR
ZDH
TARCN
ZDHCN 2+

—0.04 +0.2
—0.03 +0.2
—0.067+0.07
—0.055+0.06

0.005+0.06
0.004+0.05

—0.15+0.02
—0.12 +0.02

—0.18+0.01
—0.15+0.01
—0.04+0.03
—0.03+0.02

CI
CII
CIII

0.14
—0.13
—0.16

0.05
—0.06
—0.06

0.03
—0.06
—0.05

TABLE X. Spectroscopic amplitudes for the 2, state of ' Sm. The notation is the same as in

Table VIII.

TAR
ZDH

e~f7/„I„, 1

~(p3/2 I 2 i )
1

@Pl/2 I, 2, )

0.91+0.12
0.68+0.09

1

e~f5/2, 1n, 2, i

CI
CII
CIII

0+ 0.78
0.73
0.77

TAR
ZDH

0.23+0.10
0.18+0.08

—0.64+0.02
—0.52+0. 1

CI
CII
CIII

2+ 0.47
0.30
0.35

—0.29
—0.23
—0.26

TAR
ZDH

—0.26+0.08
—0.21 +0.08
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8(f7/2, 1. 2, }

TABLE X. (Continued}

1

8(ps/2, 1, , ) (p&y2 In~ 2, )
1

8(fs12,I„,2, )

CI
CII
CIII

4+ —0.24
—0.46
—0.32

TAR
ZDH

0.14+0.02
0.11+0.01

—0.19+0.04
—0.16+0.03

CI
CII
CIII

—0.11
0.10
0.12

0.06
—0.08
—0.10

states. In addition, not one of the calculations was able to
reproduce the signs of the spectroscopic amplitudes for
the —,

'
&

state, and calculation II systematically furnishes
amplitudes which are twice as large as those of calculation
III. It is this latter calculation which best agrees with ex-
periments. The 8(p3/2 4] 2, ) amplitude agrees with
calculation I when the fluctuating contribution is neglect-
ed. But, when this effect is included, the "experimental
value" of the foregoing amplitude is reduced by a factor
of 2, thus falling into agreement with calculation III.

The 22+ state is very badly described within model I,

since the theoretical amplitudes turn out to be, in most
cases, too small and have the wrong signs in comparison
with the experimental values. It should be stressed that
inclusion of the fluctuating contribution for the core state
is essential for getting an agreement between experimental
and theoretical values. The amplitudes which are mostly
affected (producing even the necessary changes in the
signs) are 8(f7/z, 22+, —', , ) and 8(p3/2 22 2, ). The in-
clusion of the fluctuating process is also responsible for
the reduction of the 8(f7/2, 2z+, —,', ) and 8(p, /z, 22+, —,', )
amplitudes and the increase of the 8(fq/2, 2&+, —,', ) ampli-

TABLE XI. Spectroscopic amplitudes for the 2, state of ' Sm. The notation is the same as in

Table VIII.

TAR
ZDH

8(f7/p, I„,& } 5
(p3/2 I 2, )

5e(p„„I„,24 )
5

8(fs/2 I
0.44+0. 11
0.35+0.09

CI
CII
CIII

0+ 0.37
0.50
0.45

TAR
ZDH

0.87+0.19
0.69+0.15

0.15 +0. 1

0.11 +0. 1

—0.13 +0.06
—0.10 +0.04

—0.17+0.04
—0.14+0.03

CI
CII
CIII

2+ 0.83
0.66
0.76

0.12
0.12
0.11

—0.11
—0.18
—0.14

—0.10
—0.13
—0.11

TAR
ZDH

0.19+0.04
0.08+0.02

0.006+0.01
0.005+0.01

CI
CII
CIII

—0.15
—0.17
—0.09

—0.06
—0.18
—0.08

TAR
ZDH

0.11+0.04
0.09+0.03

—0.09 +0.02
—0.08 +0.02

0.001+0.04
0.001+0.03

CI
CII
CIII

2+ —0.07
0.03
0.03

—0.12
0.03
0.03

0.03
—0.05
—0.05
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TABLE XII. The +~~ & 0 (jI,I„,Jl for each studied state. The notation is the same as in Table VIII.

7
2

1

2
5
2

TAR
ZDH
TARCN
ZDHCN

1.60+0.36
1.05+0.35
1.39+0.27
0.91+0.20

1.35+0.33
0.82+0.32
1.32+0.24
0.81+0.22

1.41+0.30
0.85+0.20

1.08+0.20
0.66+0.07

tude, producing in this way good agreement between
theoretical predictions and experimental values. Finally„
for the —,', state we observe that the theoretical ampli-

tudes 0(lj, 2q+, —,
'

L j are close to the experimental values,

while for the —,, state none of the calculations was able

to correctly reproduce the signs of the experimental am-

plitudes.

V. CONCLUSION

TABLE XIII. Single particle energies for neutrons and pro-
tons. The gaps between the shells were obtained from the differ-
ences Qr„—Q„r or Qr~ —Q„r for the corresponding closed shell

nuclei [Q„» represents the threshold for the (x,yi reaction. ] The
values of e„lj. were taken from Refs. 25—27.

nlj

5/2

3p &/2

3p3/2
1h 9/p

1I 13/2

2 7/2

2d 3/2

1h l l/2
2d 5/p

1g7/2

1g9/2

2p ]/2
2p 3/2

Ifs/2

7/2

e'„~i (neutrons)"'
(MeV)

2.25
1.80
1.21
1.35
1.50
0.00

—3.79
—4.20

4 94
—5.15
—5.94

—10.56
—11.28
—12.57
—12.76
—15.75

e'„~~ (protons)
(MeV)

8.94
10.77
9.49
5.92
8.30
6.30
1.70
1.45
1.30
0.00

—0.70
—5.48
—5.58
—7.48
—7.98

—10.96

From an analysis of proton angular distributions at four
isobaric analog resonances of the ' Sm+p system we
have extracted spectroscopic information about the corre-
sponding low-lying states of the ' Sm nucleus. Among
these results only those relative to the 0&+ and 2&+ core
states have been available in the literature, ' and even
these presented inconsistencies which were attributed to
the adopted description of the background. " The data re-
ported by Martin et al. suggested to us that configura-
tions involving the 3&, 4&+, and 22+ states of ' Sm should
be relevant in building up the parent state wave functions,
and this was confirmed by the corresponding spectroscop-
ic information that was obtained for the first time in the
present work.

2.4—

1/2, 3/'2
5/2, 7/'2

1/2, 3/2
13/2+

5/2, 7/2
5/2, 7/2
9/2+
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FIG. 12. Experimental (Ref. 4) and calculated energy levels
of ' 'Sm. The spectra indicated by (1), (2), and (3) were obtained
by calculations I, II, and III, respectively.

An appreciable effort was invested in order to obtain a
precise description of the background. The direct scatter-
ing was treated within the coupled channel approach,
which was preferable to the usual DWBA representation.
The fluctuating contribution was also taken into account,
and proved to be relevant at the first two resonances, espe-
cially for the scattering to the 2&+ and 22+ states of ' Sm.

The magnitudes of the spectroscopic amplitudes ex-
tracted from the experimental data depend, in addition, on
the method employed in the estimate of the single-particle
escape amplitudes. The analysis performed here suggests
that the method of Zaidi, Damodjo, and Harney ' and
that of de Toledo Piza' could be more realistic than that
of Thompson, Adams, and Robson and of Mac Donald
and Mekjian.

The experimental spectroscopic amplitudes were com-
pared to calculations based on the particle-vibrator model,
with the vibrator approximated at first by a liquid drop,
and then treated within the QRPA. With the last repre-
sentation good agreement was always observed, while for
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TABLE XIV. Calculated values of the coupling constants gq
and theoretical and empirical values for the particle-phonon ver-

tix amplitudes Aq.

R69g ]

(MeV)

1.66
1.81
2.19
2.67

(MeV/fm2~)

1.45 X 10
2.94 X 10-'
0.80' 10-'
1.45 X 10-'

pth
A, ,l

(MeV/fm )

0.074
0.012
0.0012
0.015

AemP
A, ,l

(MeV/fm )

0.053
0.014
0.0011
0.030

the liquid drop vibrator this did not occur, especially for
the 3& and 2&+ core states. This showed the importance of
considering the microscopic structure of the core. The
agreement observed between the experimental and theoret-
ical spectroscopic amplitudes when the fluctuating contri-
bution is taken into account is quite impressive, pointing
out the necessity of including this contribution in the
description of the background for the ' Sm+p system
and giving credence to our procedure. It would be of in-

terest to independently calculate the fluctuation contribu-
tions to the cross sections and so avoid the uncertainties
arising from adjusting their values. However, rigorous
calculations require level information not presently avail-
able, and pose theoretical difficulties because of interac-
tion between the analog resonances and the T state re-
sponsible for the fluctuation cross section.
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