Nuclear moments of the first excited state of ²²Ne from ²²Ne(132 MeV)+²⁰⁸Pb scattering

E. E. Gross, T. P. Cleary, J. L. C. Ford, Jr., D. C. Hensley, and K. S. Toth Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

> F. T. Baker and A. Scott University of Georgia, Athens, Georgia 30602

C. R. Bingham and J. A. Vrba University of Tennessee, Knoxville, Tennessee 37916 (Received 6 September 1983)

Elastic and inelastic cross section data for exciting the ²²Ne 2¹₁ (1.27 MeV) state by 132 MeV ²²Ne scattering from a ²⁰⁸Pb target are presented. The data are analyzed by a rotational model coupledchannels calculation including the 0⁺ ground state and the 2¹₁, and 4¹₁ states of ²²Ne. We extract β_2 and β_4 deformation parameters, as well as $M(E2;0^+-2^+_1)$, $M(E2;2^+_1-2^+_1)$, $M(E4;0^+-4^+_1)$, and $M(E2;2^+_1-4^+_1)$ matrix elements for ²²Ne and compare these quantities to those obtained for ²⁰Ne. The extracted 2¹₁ reorientation matrix element is considerably larger than shell-model predictions. Addition of a negative spin-orbit potential improves the fit to the 2¹₁ differential cross section.

NUCLEAR REACTIONS ²⁰⁸Pb(²²Ne,²²Ne), ²⁰⁸Pb(²²Ne,²²Ne') $E_{lab} = 132$ MeV, measured $\sigma(\theta)$; deduced optical potential, quadrupole and hexadecapole deformation parameters and transition matrix elements of ²²Ne by a coupled-channels analysis. Enriched target.

I. INTRODUCTION

Coupled-channels analyses of heavy-ion inelasticscattering data taken at energies slightly above the Coulomb barrier have proven useful in providing collective nuclear-structure properties. Examples include β_4 deformations,^{1,2} static quadrupole moments of 2^+ states,^{3,4} triaxial shape parameters,^{5,6} and the relative phases of matrix elements.^{4,7} In cases where the collective model was too restrictive, a semimicroscopic approach succeeded in obtaining insight into cluster properties of nuclear wave functions.^{8,9} Analysis of such data has also played a role in determining properties of the ion-ion optical potential. At energies slightly above the Coulomb barrier the elastic scattering is primarily sensitive to the real potential in the neighborhood of the strong absorption radius,¹⁰ but strongly coupled excited states have to be accounted for prior to deducing optical model parameters.¹¹ Inelastic scattering together with transfer reactions has a bearing on the surface transparency of the ion-ion optical potential.¹² The need for a spin-dependent potential has been directly demonstrated by asymmetry measurements of elastically scattered aligned ⁶Li nuclei.¹³ Recently, further evidence for such a term has been suggested by analysis of *m*-substate populations following inelastic scattering¹⁴ and by reaction asymmetries following single nucleon transfer.15

In this paper, we present new elastic and inelastic (22 Ne, 1.27 MeV 2_1^+ state) scattering data for 132-MeV 22 Ne incident on a 208 Pb target. The data are subjected to a rotational-model coupled-channels analysis from which

we extract optical model potential parameters and transition matrix elements. The data and analysis complement those previously reported² for ²⁰Ne scattering from a ²⁰⁸Pb target at the same center of mass energy.

II. EXPERIMENTAL DETAILS AND RESULTS

A 132.2 ± 0.1 MeV 22 Ne⁶⁺ beam was provided by the Oak Ridge isochronous cyclotron. The target consisted of 220 μ g/cm² ²⁰⁸Pb (99.1% enriched) evaporated onto a 40- μ g/cm² carbon foil. The energy at the center of the Pb target was estimated to be 132.0±0.2 MeV. Scattered particles were observed with a position-sensitive solid-state detector located on a movable arm within a 76-cm diameter scattering chamber. A fifteen-element slit in front of the detector defined 0.5° angular apertures centered at 1° intervals. Starting at 20° laboratory, the detector was moved five times in 10° steps, thus overlapping five angles of the previous setting. This procedure results in smooth, well-defined angular distributions. The overall energy resolution was 500 keV, which required careful unfolding of the ²²Ne (1.27 MeV) 2_1^+ state from elastic scattering at the more forward angles. The absolute normalization was obtained by normalizing $\sigma^{0^+} + \sigma^{2^+}$ (²²Ne) + σ^{3^-} (²⁰⁸Pb) to the calculated Rutherford cross section for the Coulomb dominated region, $\theta_{c.m.} \leq 35^\circ$. Further experimental details as well as the method of data acquisition and data reduction may be found in Ref. 16.

Elastic scattering as a ratio to Rutherford scattering is shown as closed circles in Fig. 1. Also shown in Fig. 1 as open circles are the previous data for ²⁰Ne(131

FIG. 1. ²²Ne(132 MeV) + ²⁰⁸Pb elastic scattering relative to Rutherford as solid circles and similar data for ²⁰Ne(131 MeV) + ²⁰⁸Pb as open circles (Ref. 2). The curves are coupledchannels fits including 0⁺, 2_1^+ , and 4_1^+ states. Parameters corresponding to the fits are contained in Tables I–III.

MeV) + ²⁰⁸Pb elastic scattering.² The effect of a larger cross section for the ²⁰Ne 2₁⁺ state relative to that of the ²²Ne 2₁⁺ state (see Fig. 2) in suppressing the elastic scattering peak near 65° c.m. is clearly seen. A similar comparison for the 2₁⁺ state differential cross sections is displayed in Fig. 2 again as closed circles for ²²Ne and open circles for ²⁰Ne. A striking difference is apparent in the behavior of the 2₁⁺ differential cross sections in the neighborhood of $\theta_{c.m.} \approx 65^{\circ}$. In the case of ²⁰Ne this behavior suggested the presence of a large positive hexadecapole moment in the ²⁰Ne ground state wave function.² As is discussed below, the ²²Ne 2₁⁺ cross section is consistent with a small negative β_4 deformation, but the analysis also suggests the need for a spin-orbit term in the ion-ion potential for the ²²Ne + ²⁰⁸Pb system to account for the behavior of $\sigma^{2_1^+}$

III. ANALYSIS

The rotational-model coupled-channels analysis of the present ²²Ne + ²⁰⁸Pb data follows closely that of the prior ²⁰Ne + ²⁰⁸Pb analysis.² Woods-Saxon form factors with β_2 and β_4 deformations were used and all multipole orders in the couplings were included. The calculations were performed using the automatic search program ECIS-79.¹⁷ Most of the calculations included the 0⁺ \leftrightarrow 2⁺₁ \leftrightarrow 4⁺₁ cou-

FIG. 2. Differential cross sections for exciting the ²²Ne 2_1^+ state (1.27 MeV), solid circles, and the ²⁰Ne 2_1^+ state (1.63 MeV), open circles, by scattering from a ²⁰⁸Pb target at 119.5 MeV c.m. The solid and dashed curves are minimum χ^2 coupled-channels fits corresponding to the elastic scattering fits in Fig. 1. The dotted-dashed curve is the best fit obtained for the ²²Ne data without a spin-orbit term in the optical potential. Parameters for these fits are summarized in Tables I–III.

plings shown in Fig. 3. A few calculations were also performed which included the ²²Ne 2₂⁺ state at 4.46 MeV. We allowed the 2₁⁺ \leftrightarrow 2₂⁺ coupling to vary ±50% from the adopted M(E2) value¹⁸ and varied the signs of both $M(E2;0_1^+-2_1^+)$ and $M(E2;2_1^+-2_2^+)$. These calculations did not show enough sensitivity to the 2₁⁺ differential cross section to determine either the magnitude of the matrix elements or to deduce the sign^{4,7} of

$$p_4 = M_{0_1 2_1} M_{0_1 2_2} M_{2_1 2_1} M_{2_1 2_2}$$
 ,

where

$$M_{ij} = -\langle i | |M(E2)| | j \rangle$$

FIG. 3. Rotational-model transitions included in the 0^+ , 2_1^+ , and 4_1^+ coupled-channels calculations. All multipole orders in the couplings were included. Matrix elements were allowed to vary from their rotational-model values to fit the data.

V W V_{LS} a_V a_w r_V r_W (MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) ²⁰Ne 21.50 1.34 0.485 7.81 1.43 0.300 0 ²²Ne 18.91 1.34 0.565 4.58 1.43 0.361 -0.16

TABLE I. Optical model parameters for 0^+ , 2_1^+ , and 4_1^+ coupled-channels fits to ²⁰Ne (131 MeV) and ²²Ne (132 MeV) scattering from ²⁰⁸Pb. The Thomas form spin-orbit potential was taken to have the same geometry parameters as the real potential. The Coulomb radius parameter was $r_c = 1.25$ fm.

Inclusion of the 6^+ state (6.31 MeV) with rotational model couplings was also tried and found to have an insignificant influence on the calculated 2^+_1 cross section.

We started with the optical potential which successfully fitted the previous² 20 Ne + 208 Pb data at 130 MeV; V=21.5 MeV, $r_V=1.34$ fm, $a_V=0.49$ fm, W=7.0 MeV, $r_W = 1.43$ fm, $a_W = 0.30$ fm, $r_C = 1.25$ fm, and no spinorbit term. The initial calculations used electron scattering values¹⁹ for $M(E2;0^+-2^+_1)$, a lifetime measurement²⁰ to obtain $M(E_{2};2_{1}^{+}-4_{1}^{+})$, a Coulomb excitation value²¹ for the reorientation matrix element $M(E_2;2_1^+,2_1^+)$, and a value for $M(E4;0^+-4_1^+)$ taken from proton inelastic scattering.²². All matrix elements were subsequently allowed to vary to obtain a minimum χ^2 fit. The reorientation matrix element for the 4_1^+ state, $M(E_2; 4_1^+, 4_1^+)$, exerted very little influence on the calculated 2_1^+ cross section, and it was therefore fixed at the rotational model value. Nuclear form factors (deformation lengths) were related to the Coulomb parameters using the rolling-model scaling procedure.²³ Decoupling nuclear deformation lengths from the rolling model values resulted in only slightly improved fits.

The above parameters gave a fair representation of the 2_1^+ differential cross section except in the angular region $60^\circ \le \theta_{c.m.} \le 70^\circ$, where deviation of the calculation from the data unduly influenced the search on the real potential. We therefore limited the search on V and a_V to the 0^+ data and fixed their values in all subsequent searches. All other searches included both 0^+ and 2_1^+ data of Figs. 1 and 2. W and a_W are then most sensitive to the exponential falloff of the elastic scattering; $M(E2;0^+-2_1^+)$ is most sensitive to the magnitude of the 2_1^+ cross section in the angular region $\theta_{c.m.} \le 50^\circ$; $M(E2;2_1^+-2_1^+)$ is primarily determined by the behavior of $\sigma^{2_1^+}$ in the region $\theta_{c.m.} \ge 70^\circ$; whereas $M(E2;0^+-4_1^+)$ and $M(E2;2_1^+-4_1^+)$ primarily influence $\sigma^{2_1^+}$ in the problem region of $60^\circ \le \theta_{c.m.} \le 70^\circ$. As is shown in detail in Ref. 2, it is this

TABLE II. Optical model deformation parameters for 0^+ , 2_1^+ , and 4_1^+ coupled-channels fits to ²⁰Ne (131 MeV) and ²²Ne (132 MeV) scattering from ²⁰⁸Pb. Real, imaginary, and spinorbit potentials were taken to have the same deformation parameters.

	β_2^c	β_4^c	β_2^N	β_4^N
²⁰ Ne	0.421	0.25	0.139	0.033
²² Ne	0.440	-0.05	0.132	-0.028

separation of sensitivities, as well as the availability of high quality angular distributions throughout the Coulomb-nuclear interference region, that allows a coupled-channels analysis to determine the parameters in a less ambiguous way.

The best fit to the data is represented by the solid curves in Figs. 1 and 2. Corresponding optical model parameters are shown in Table I, deformation parameters in Table II, and matrix elements in Table III. The errors given on our results for the ²²Ne matrix elements represent subjective judgments as to the limits of an acceptable fit. Included in the optical potential is a small negative spin-orbit term ($V_{LS} = -0.16$ MeV) of the Thomas form and with the same geometry parameters as the real potential. The spin is that of the $^{22}Ne 2_1^+$ state and no spin-orbit term is included in the transition potential. Without this term, the best fit to σ^{21} has a 50% larger χ^2 value and is shown as the dotted-dashed curve in Fig. 2. The extracted matrix elements of Table III are in fair agreement with those obtained by electron scattering,19 lifetime measurements,²⁰ and Coulomb excitation.^{21,24} In particular, the reorientation matrix element $M(E_{2};2_{1}^{+}-2_{1}^{+})$ confirms a large value for this quantity^{21,24} and emphasizes a problem with shell model calculations.²⁵⁻²⁷ which generally predict static quadrupole moments for the 22 Ne 2⁺₁ state that are considerably smaller than experi-

FIG. 4. Nuclear charge shapes for 20 Ne and 22 Ne implied by the parameters of Table II where the charge surface for mass A is given by

$$R_{A}^{c}(\theta) = 1.25A^{1/3}[1 + \beta_{2}^{c}Y_{20}(\theta) + \beta_{4}^{c}Y_{40}(\theta)]$$

TABLE III. Transition matrix elements for 0^+ , 2_1^+ , and 4_1^+ coupled-channels fits to ²²Ne (131 MeV) and ²⁰Ne (132 MeV) scattering from ²⁰⁸Pb. $M(E2;4_1^+-4_1^+)$ was taken to have the rotational model value. Signs correspond to the sign convention employed in the coupled channels program ECIS (Ref. 17).

	$M(E2;0^+-2^+_1)$ (e b)	$M(E4;0^+-4^+_1)$ (e b ²)	$M(E2;2_1^+-2_1^+)$ (e b)	$M(E2;2_1^+-4_1^+)$ (e b)	Reference
²⁰ Ne	-0.180	+ 0.023	+ 0.36	-0.22	2, this work
²² Ne	0.144 ±0.005	-0.0033 ± 0.003	+ 0.38 ±0.07	0.20 ±0.04	this work
	-0.165 ±0.01				19
		+ 0.01			22
				0.239ª ±0.005	20
			$^{+0.24}_{\pm 0.05}$		21
			+0.28 ±0.05		24
			+0.19 ±0.01		25–27 shell model

^aSign not determined in lifetime measurement (Ref. 20).

ment. A similar problem has been noted previously² for 20 Ne.

IV. COMPARISON WITH ²⁰Ne

The apparent need for a spin-orbit term to account for ²²Ne inelastic data prompted a reexamination of the previous analysis² for the system ${}^{20}Ne(131 \text{ MeV}) + {}^{208}Pb$. This reexamination has led to a slightly better fit to the ²⁰Ne data, not by the addition of a spin-orbit potential but by a slightly larger hexadecapole charge deformation ($\beta_4^c = 0.25$ instead of the previous² $\beta_4^c = 0.225$) and by allowing the nuclear quadrupole deformation β_2^N to vary from the rolling-model prescription.²³ The improved fit to the ²⁰Ne data is represented by the dotted curves in Figs. 1 and 2 and the corresponding parameters are presented in Tables I-III. It is worth noting that two extra valence neutrons in ²²Ne relative to ²⁰Ne appear to require a spin-orbit po-tential to account for an inelastic scattering feature. This is reminiscent of ${}^{18}O(120 \text{ MeV}) + {}^{208}Pb$ scattering, 14 where a spin-orbit potential ($V_{LS} = -0.15$ MeV) was introduced to account better for the observed *m*-substate populations for the ¹⁸O 2⁺₁ state. Similarly, ¹⁸O has two valence neutrons outside of a closed ¹⁶O core. An explanation of this effect may be contained in the cluster properties^{9,28} of the involved wave functions.

Finally, we compare the nuclear charge shapes of ²⁰Ne

and ²²Ne implied by the symmetric rotational-model parameters of Tables I and II. The comparison is shown in Fig. 4. The addition of two neutrons to ²⁰Ne apparently eliminates the equatorial hexadecapole bulge.

V. CONCLUSIONS

In summary, we have provided new elastic and inelastic scattering data for the system $^{22}Ne + ^{208}Pb$ at the same c.m. energy (120 MeV) as for a previous study² of the system $^{20}Ne + ^{208}Pb$. Subjecting the new data to a coupled channels analysis suggests the need for a small negative spin-orbit potential to account for the $^{22}Ne 2_1^+$ state cross section near the grazing angle. The extracted matrix elements and deformation parameters for ^{22}Ne are compared to those for ^{20}Ne which were obtained in a completely analogous fashion. Both nuclei appear to have very large static quadrupole moments for their 2_1^+ states, which poses a problem for the shell model. $^{25-27}$ Both nuclei have large prolate deformations. In addition, ^{20}Ne has a large positive hexadecapole for its charge distribution, whereas ^{22}Ne , if it has any, has a small negative hexadecapole deformation.

Oak Ridge National Laboratory is operated by Union Carbide Corporation under Contract No. W-7405-eng-26 with the U.S. Department of Energy.

- ¹D. L. Hillis, E. E. Gross, D. C. Hensley, C. R. Bingham, F. T. Baker, and A. Scott, Phys. Rev. C <u>16</u>, 1467 (1977).
- ³J. X. Saladin, I. Y. Lee, R. C. Haight, and D. Vitoux, Phys. Rev. C <u>14</u>, 992 (1976).
- ²E. E. Gross, T. P. Cleary, J. L. C. Ford, D. C. Hensley, and K. S. Toth, Phys. Rev. C <u>17</u>, 1665 (1978).
- ⁴E. E. Gross and M. P. Fewell, Nucl. Phys. <u>A411</u>, 329 (1983).
- ⁵F. T. Baker, A. Scott, T. P. Cleary, J. L. C. Ford, Jr., E. E.

463

Gross, and D. C. Hensley, Nucl. Phys. A321, 222 (1979).

- ⁶J. Nurzynski, C. H. Atwood, T. R. Ophel, D. F. Hebbard, B. A. Robson, and R. Smith, Nucl. Phys. <u>A399</u>, 259 (1983).
- ⁷F. T. Baker, A. Scott, T. H. Kruse, W. Harting, E. Ventura, and W. Savin, Phys. Rev. Lett. <u>37</u>, 193 (1976).
- ⁸S. Landowne and H. H. Wolter, Phys. Rev. Lett. <u>43</u>, 1233 (1979).
- ⁹H. Nishioka, R. C. Johnson, J. A. Tostevin, and K.-I. Kubo, Phys. Rev. Lett. <u>48</u>, 1795 (1982).
- ¹⁰G. R. Satchler, in *Proceedings of the International Conference on Reactions between Complex Nuclei*, edited by R. L. Robinson, F. K. McGowan, J. B. Ball, and J. H. Hamilton (North-Holland, Amsterdam, 1974), Vol. 2, p. 171.
- ¹¹W. G. Love, T. Terasawa, and G. R. Satchler, Phys. Rev. Lett. <u>39</u>, 6 (1977).
- ¹²A. J. Baltz, P. D. Bond, J. D. Garrett, and S. Kahana, Phys. Rev. C <u>12</u>, 136 (1975).
- ¹³W. Weiss, P. Egelhof, K. D. Hildenbrand, D. Krassen, M. Makowska-Rzeszutko, D. Fick, H. Ebinghaus, E. Steffens, A. Amakawa, and K. I. Kubo, Phys. Lett. <u>61B</u>, 237 (1976).
- ¹⁴E. E. Gross, J. R. Beene, K. A. Erb, M. P. Fewell, D. Shapira, M. J. Rhoades-Brown, G. R. Satchler, and C. E. Thorn, Nucl. Phys. <u>A401</u>, 362 (1983).
- ¹⁵W. von Oertzen, E. R. Flynn, J. C. Peng, J. W. Sunier, and R. E. Brown, Z. Phys. A <u>301</u>, 365 (1981).

- ¹⁶J. B. Ball, C. B. Fulmer, E. E. Gross, M. L. Halbert, D. C. Hensley, C. A. Ludemann, M. J. Saltmarsh, and G. R. Satchler, Nucl. Phys. <u>A252</u>, 208 (1975).
- ¹⁷J. Raynal (private communication).
- ¹⁸P. M. Endt and C. Van der Leun, Nucl. Phys. <u>A310</u>, 1 (1978).
- ¹⁹X. K. Maruyama, F. J. Kline, J. W. Lightbody, S. Penner, W. J. Briscose, M. Lunnon, and H. Grannel, Phys. Rev. C <u>19</u>, 1624 (1979).
- ²⁰L. P. Ekström, D. E. C. Scherpenzeel, G. A. P. Engelbertink, H. J. M. Aarts, and H. H. Eggenhuisen, Nucl. Phys. <u>A295</u>, 525 (1978).
- ²¹D. Schwalm, A. Bamberger, P. G. Bizzeti, B. Povh, G. A. P. Engelbertink, J. W. Olness, and E. K. Warburton, Nucl. Phys. <u>A192</u>, 449 (1972).
- ²²R. de Swiniarski, F. G. Resmini, D. L. Hendrie, and A. D. Bacher, Nucl. Phys. <u>A261</u>, 111 (1976).
- ²³D. L. Hendrie, Phys. Rev. Lett. <u>31</u>, 478 (1973).
- ²⁴K. Nakai, F. S. Stephens, and R. M. Diamond, Nucl. Phys. <u>A150</u>, 114 (1970).
- ²⁵M. R. Gunye, Phys. Lett. <u>37B</u>, 125 (1971).
- ²⁶A. Arima, M. Sakakura, and T. Sebe, Nucl. Phys. <u>A170</u>, 273 (1971).
- ²⁷B. M. Preedom and B. H. Wildenthal, Phys. Rev. C <u>6</u>, 1633 (1972).
- ²⁸P. J. Moffa, Phys. Rev. C <u>16</u>, 1431 (1977).