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Application of a unified theory of rearrangement scattering to (p,d) reactions
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In a recently developed many-body Faddeev theory of rearrangement scattering the transition
matrix elements are given in terms of a distorted wave series. %e discuss the construction of the
distorted waves and evaluate the lowest order contribution to Mg(p, d) Mg at 96 MeV in zero
range. Various approximations are examined and ppssible extensions of the present calculations are
discussed.
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I. INTRODUCTION

Since the first (p,d) experiments at intermediate energy
were performed at Saclay' in 1974, there has been a grow-
ing interest in this reaction at medium energies, both from
the experimental ' and the theoretical side. " ' Al-
though one can use this reaction at intermediate energies
as a conventional nuclear structure tool, e.g., by exploring
deeply bound hole states in the nucleus, the main motiva-
tion for this renewed interest lies in the hope of obtaining
new types of information with this reaction at higher en-
ergies. In particular, one hopes' ' ' ' *"that this reaction
will provide information on the high momentum com-
ponents of the transferred nucleon wave function, which
to some extent will reflect the high momentum distribu-
tion of the nuclear wave function. Unfortunately, very lit-
tle information has been obtained so far about high
momentum components, although there are encouraging
signs that the process is sensitive to such components.
The problem is that at these high momentum transfers re-
scattering terms —which serve to distribute the momen-
tum transfer over various steps and therefore do not excite
high momentum components —become important. These
rescattering terms can show up in various ways, e.g., as
continuum effects which increase in importance with in-
creasing energy, ' ' or as explicit rescattering diagrams
involving two * or more target nucleons or even pion and
isobar degrees of freedom. "' lt should be obvious that
problems of overcounting arise if several mechanisms are
included simultaneously. Hence, in order to obtain quan-
titative information from these transfer experiments one
has to treat the direct and rescattering terms in a unified
way.

In a previous paper ' we developed such a unified
theory which incorporates all conventional nucleonic dia-
grams in a distorted wave series. The theory has a
Faddeev-type structure and exploits standard projection
techniques to eliminate explicit reference to all but the two
asymptotic channels. Two expansions characterize the
distorted wave series: first, a coupled channel expansion

of the full amplitude in terms of the coupling potentials,
and second, an expansion of the coupling potentials them-
selves. Based on previous experience with three-body
model studies, we expect that the first expansion con-
verges rapidly so that the higher-order recoupling terms
can be neglected. The convergence of the expansion of the
coupling potential, which includes rescattering terms and
contributions of various inelastic excitations, is less obvi-
ous. The idea behind a distorted wave series is that the
major contributions from rescattering and inelastic chan-
nels are absorbed into the distorted waves, so that the
remaining transition operator can be approximated by a
few low-order terms. Since the present theory gives a
natural and rigorous definition of the distorted waves,
based on the exact three-cluster equations, we expect that
it gives an optimal reahzation of this intuitive idea so that
the convergence properties are optimized. More specifi-
cally, the higher-order terms in the coupling potentials
have two desirable features: first, they are expressed in
terms of intercluster t matrices which are better behaved
than potentials, and second, they are suppressed by the re-
striction to intermediate Q states (except for one special
rescattering term). Naturally, the ultimate test of the con-
vergence properties should come from explicit calcula-
tions.

The purpose of this paper is to demonstrate the practi-
cality of the present microscopic approach and to assess
the value of the lowest-order approximation. We found in
earlier three-body model studies that the distorted waves
play a very important role in the prediction of the observ-
ables, so that it is natural to first study the effects of the
modifications of the distorted waves as required by the
present theory. In subsequent work we could then exam-
ine the role of the special rescattering term, and draw con-
clusions about the convergence of the series.

The outline of the paper is as follows. In Sec. II we
briefly summarize the unified theory of rearrangement
scattering. In Sec. III we develop approximations for the
distorted waves and in Sec. IV we present our results and
comparison with the standard 0%BA. Finally, in Sec. V
we discuss our results and present our major conclusions.
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II. DESCRIPTION OF (p,d) REACTIONS
IN THE UNIFIED MICROSCOPIC THEORY

In this section we summarize the equations of the uni-
fied theory of rearrangement scattering of Ref. 21 relevant
for the direct (p,d) amplitude (see Fig. 1). The exchange
amplitude can be dealt with in a similar manner; however,
the physical approximations and the required nuclear
structure information are slightly different, as we deal
with different dynamics. For forward (p,d) scattering the
direct amplitude is expected to dominate and we expect to
be able to describe the experimental data reasonably well
with this amplitude alone. We assume that the dynamics
of the system is governed by the nonrelativistic (2 +1)-
body Hamiltonian:

where Qi is the projection operator which excludes the
target state of nucleus A. The channel Hamiltonian H, is
defined by

A A

H, =g T, +g Vj (2.6)
i=0 l &J

i&0

where

A

+ U3Q3(E H3+ie) ' g (vp;+ vi;),
i&2

(2.7)

The microscopic deuteron optical potential operator is
given by

A

U3 =g ( Vp;+ Vi. )
i&2

A A

H=g T, +g v„.
i=0

(2.1) A A

H3 ——$ Tt+Vpi+ $ V~j . (2.8)

Using a Faddeev decomposition of the wave function cor-
responding to the three-body dynamics of the direct pro-
cess, and by projecting out the relevant asymptotic chan-
nels using standard Feshbach projectors, we arrive at the
following expression for the direct scattering amplitude: '

&p~'4k '
I

T"'I '4 k & = &+a'pd&', -„',
I Tii

I
'4& ', +-„' &

(2.2)
Gp (E)=(E Hp+ i e—) (2.9)

The projection operator Q3 excludes states which can be
written as a product of the deuteron and residual nucleus
ground state.

In Eq. (2.3) we also introduce the three-body Green's
function Gp:

(2.3)

where Gp will be defined later. The elastic wave function
is defined by the Schrodinger equation

(E+E, SC, (U,') )X"—'„+'=—0, . (2.4)

with the usual boundary condition for incoming waves.
We denote the threshold energy by E; and the kinetic en-

ergy operator for the relative motion by E;. The optical
potential ( U; ) is the ground-state matrix element of the
Feshbach optical potential operator. For the proton chan-
nel this optical potential operator is given by

A A

Ui ——g Vp;+UiQi(E H, +ie) ' g Vp;, —(2.5)

Channels are labeled by indices i =1,2, 3, where 1 stands
for the proton channel, 3 for the deuteron channel, and 2
for the suppressed neutron channel. The distorted waves

are characterized by a channel index and a wave vector k.
They can be expressed in terms of the elastic wave func-
tions by

Hp= g Ti'+ g V" (2.10)

Tji PJ ( Vj + Uj; )P; —TjrP——; 6; ( V; + U~J. )PJ Gj Tj, , (2.11)

where Pj( Vj+ Uj, )P; is the transition potential. The
Green s function 6; is defined in terms of the distorting
potential U;; (the potential which generates the distorted

A. (+)waves X '. ='):
i, k

6;(E+i 0)=(E H; —( U;; ) +i 0)— (2.12)

is the channel Hamiltonian for the three-body breakup
channel with clusters p, n, and 8. Since Go can connect
two-body cluster wave functions with three-body cluster
wave functions, 2~3 matrix elements of U; are required
in Eq. (2.3). However, we will see in the next section that
we can develop reasonable approximations which only re-
quire the knowledge of the optical potential ( U~~), despite
the presence of Gp.

We now briefly review the expansion of the transition
operators. As shown in Ref. 21, we can expand these
operators in a coupled channel series

(a)

0

1~

/~s
~A

so that 6; has the form of a free propagator in the distort-

ed wave basis 7. . Therefore, it is possible to solve for
i, k;

the subsequent terms in Eq. (2.11) by an iterative set of
coupled channel equations. One can show that ( T,. ) can
be written in closed form as

FIG. 1. Direct and exchange amplitudes for the (p,d) reac-

tion.

'(Tj. )=(vj+Uj;)[——,Z; + —,Z; (1+4Z;)'~ j, (2.13)

where
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(y 1(, X ( —~

I

Z, (DwBA~
I ~ X (+ ) )

y, q, x',=„', I v, Iy„x',+„'& . (2.15)

The expansion of U3( is discussed in Ref. 21. The main
rescattering term has the form

Z;=P;G;(V;+U,J)PJ.G&(VJ+UJ, ), i&j (1 or 3) .

(2.14)

In Ref. 21 we argued that we expect the series (2.11) to
converge rapidly. We will therefore concentrate on the ex-
pansion of the first term: the transition potential.

The transition potential can also be expanded, although
no simple coupled channel series like (2.11) exists. The
first term in the coupling potential ( VJ + UJ, ) is obviously

(VJ), whose matrix element is the microscopic DWBA
amplitude:

FIG. 2. Rescattering mechanism in the (p,d) reaction. %'ig-

gly lines indicate the distortion of the relative wave functions.

amplitude. Other terms in the driving term for U3( in-
volve the excitation of the initial target, the excitation of
two nucleons via the rescattering of the projectile proton,
and target excitation combined with the rescattering pro-
cess in Fig. 2. In the next section we will start the
analysis of the distorted waves and their application to the
first order diagram.

(2.16)

T2 ——Vp+ V2GOT2,

with

(2.17)

This mechanism is portrayed in Fig. 2. In Eq. (2.16) we
introduced the T matrix T2.

III. EVALUATION OF THE DISTORTED %'AVES

The distorted waves X, - are defined in terms of the
i, k;

elastic wave functions X.- through Eqs. (2.3). In order
i, k,.

to determine the required matrix elements (GoU; ), it is
convenient to expand the cluster states Wd or %'z in terms
of eigenstates of the Hamiltonian Ho. In the proton case
we have

V2 ——g Vo;.
i)2

(2.18)
I
'4 &

= JL' d p f„'(p )
I

g~g p ), (3.1)

Both the DWBA diagram and the rescattering graph will
peak for small angles; however, their minima will not be
at the same place, so that this rescattering term will wash
out some of the structure inherent to the single pickup

where r)~z is a complete set of eigenstates of the core. For
the deuteron channel

I
(pz ) =

I rlB ), and 'pd is the internal
deuteron wave function. Consider the result for the pro-
ton case:

(3.2)

Here M( is the relative mass in the proton channel (M( ' =M& '+M& '), p( is the relative mass of the neutron-core sys-

tem ((((, (
' ——M„'+M& '), and eB is the binding energy of the core state p, so that the neutron separation energy is

e,",~=ez —ez. If ez —p /2p( is replaced by a constant, then we can use (3.1) and recover the ordinary optical potential
matrix element of U . A natural choice for

+a p /2p(=~a —C( —p—/2p(2

is e~ + ( V( ), where ( V( ) is the average potential energy of the neutron in the nucleus [notice that the momentum space
representation of V( H( Ho is —use~

———p /2—(M(, according to Eq. (3.1)]. With this closure approximation we can write

M~ ex iko r —r"
&+~r

I
GoU( I

+~ r '&=— I«" (3.3)
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where

k o 2——M i (E+eg + ( Vi ) ) =k +2M, ( V, ) . (3.4)

Although the microscopic optical potential ( U, ) is non-
local, in most applications of multiple scattering theory a
local approximation is made. A local form should be even
more justified in the present case, since U1 represents only
the direct part of the potential and does not include the
knockon term. For a local potential Eq. (3.3) reduces fur-
ther, and using (2.3) we write the wave function as fol-
lows:

ikp~ r —r'j
X, -„(r)=X, -„(r)+ f dr'

fr —r

X Ui ( r ')X, -„(r ') . (3.5)

(3.6)

The nature of the correction to X ( r ) can be illuminated
1, k

by considering the special case ko k(i.e.——, ( Vi ) =0),
which can also be considered as the extreme high-energy
limit. In this case the correction cancels the scattering
wave portion of X -(r), and X (r) becomes an ordi-

1, k '
1, k

nary plane wave. Intuitively, it is not unreasonable that at
very high energies distortion effects become less impor-
tant, and that the emphasis shifts away from distortion ef-

fects to individual direct processes represented in T;J.
The other extreme is that of strong binding and low en-

ergy. If we consider the momentum space verison of Eq.
(3.2), then the relevant quantity to consider is the Green's
function denominator E+eq —k /2Mi+ Vi, where we
have substituted Vi for —e,",

z
—p /2p&. For on-shell mo-

menta [i.e., k =2M&(E+ez)] only Vi survives, and if we
replace this again by a constant ( Vi ) we obtain

The range of k being off shell is basically determined by
the falloff of UB(

~

k —k '
~
). Consequently, Eq. (3.6) can

only be valid if
~
( Vi)

~

is much larger than this spread
in the momenta, i.e., we must satisfy the conditions

1 2m—(V, )»E+..-d -«, )»,
1 rms

(3.7)

where 2n/8. , characterizes the range of Ui (q) in the
momentum transfer q (for a Woods-Saxon potential it
may be better to characterize this range by I/a). Since

( Vi ) and Ui (r) are both negative at small energies, Eq.
(3.6) entails a certain damping of the distorted waves in
the nuclear interior. This could possibly explain the suc-
cess of cutoffs in DWBA calculations at low energies.
Under the conditions of (3.7) one could also expand

X, i, (r) to higher order in U, (r)/( Vi ). The result then
suggests the following Pade approximant:

X, -„( )=[1+U ( )/(V )] 'X, -„( (3.8)

In practice, we find that the approximations leading to
(3.8) are unjustified, although expression (3.8) still has
some value for illustrating the effect of smooth radial cut-
offs in the DWBA integrals.

Although (3.6) and (3.8) are both approximations to
(3.5), they share a property ' with the exact wave function

-(r) which is absent in (3.5), namely, they are phase
1, k

equivalent with X -(r). The correction term in Eq. (3.5)
1, k

Ikpf
contains outgoing waves of the form e ' /r which are
suppressed in approximations (3.6) and (3.8). This
shortcoming of Eq. (3.5) should not concern us too much,
as the (p,d) amplitude is mainly sensitive to the distorted
waves in the nuclear interior and the nuclear surface.

We now discuss the deuteron distorted wave. Instead of
Eq. (3.2), we have

f dp@ (p)g f dr„PI [
2~ ~ll

~(~'pr "
I Ui I ~'~.r '& (3.9)

The average potential energy of the nucleons in the deuteron is rather small (=15 MeV), so that our analysis based on

Eq. (3.5) suggests that X -(r) is intermediate between a plane wave and the normal elastic wave function. We would
3, k

like to exploit our knowledge of the deuteron wave function so as to avoid closure approximation (3.3). Unfortunately,
the deuteron optical potential complicates the analysis, as U3 is not known very well. In first approximation U3 is sim-

ply the sum of the proton and neutron optical potentials, and ( Ui ) is the folding potential. This approximation to U&

enables us to calculate the right-hand side of (3.9) exactly. We will use this approximation in the present study, although
we should bear in mind that it has often been argued that breakup effects—which are neglected in the folding
approximation —are important in deuteron elastic scattering. We obtain

M3
( q d9B r

I
Go U&

I
q aiIB r ' ) = f d p f d q @q(p )'exp I i [2M3(E+eB —p /2@3) ] I

27Tp

Xq'q(p+q/2)[e '' '
U (q)+e '' 'q U„(—q)], (3.10)



APPLICATION OF A UNIFIED THEORY OF REARRANGEMENT. . . 385

where p=
~

r —r '
~

. In deriving (3.10) we assumed that the proton and neutron optical potentials are local. In practice
one takes the nucleon optical potentials at half the deuteron energy. We have not dealt explicitly with the spin depen-
dence of the nucleon and deuteron potentials. Such spin dependence complicates the analysis considerably without pro-
viding much new insight. In the same notation the folded deuteron potential reads

Ui(r)= f dq fdp%d(p)'%d(p+q/2)[Up(q)e '' q+U„( —q)e''"]
=2 qp q 2U qe

where

(3.11)

pe(q)= f dr e''q
~
Vd(r)

~

(3.12)

ls the Fourlci' transform of tl1c deuteloI1 density. In (3.11) we assumed that U (q) —U' (q) —U (q) To facilitate the
analysis of (3.10) we introduce the quantity pl(p, r'), defined by

M3
& 411ar I GCUs

~

q'dllar '& = — exp(I I2MI[E+es —p (p r')]/(2)LII)I )UI (r ') .
2&p

(3.13)

A near constant value of pl(p, r') would justify closure ap-
pl'oxlIIlatloll (3.3), wltll

where ed is the deuteron binding energy.
Vfe have applied the theory to the reaction

Mg(p, d) Mg( —, ) at 96 MeV. This process has recent-
ly been measured' and has attracted a lot of theoretical
interest. ' A large cBsclepancy between standard
0%HA calculations and experiment was observed which
could not be explained by the coupling to the 2+ states in
"Mg, or by the effects of break up. Since a cutoff of

the radial integrals leads to an improved description, it
would seem that our theory, which under approximation
(3.6) suggests a suppression of the nuclear interior, might
provide a better description of the process and give a justi-
fication for the cutoff. In order to obtain the folded
deuteron optical potential we need proton optical poten-
tials off Mg( —,

' ). Lacking such potentials we have used

I

proton optical potentials off Mg at 50 MeV from the
compilation of Percy and Percy, with the following pa-
rameters: V=43.6, r=1.09, and a~ ——0.74, 8'=7.39,
rl ——1.53, and aI ——0.533. The real and imaginary poten-
tials have rms radii of 3.67 and 3.95 fm, respectively. For
the deuteron we use the S state Reid soft core wave func-
tion. In Table I we list p (p, r') for a set of p and r'
values. We see that Re[p (p, r')] is always smaller than
the expectation value of p in the S state. Also, p (p, r')
has a negative imaginary part, which translates into a
(slow) exponential decay of the effective Green's function.

If one wants to use an average value ofp (p, r') in & Vz &

then one probably should use a value near the nuclear sur-
face, since this is the region which is most important for
the (p,d) reaction. An appropriate value is p (p, r')
=(0.230, —0.047) corresponding to r'=4 fm and p=1.4
fm. If one wants to improve beyond this approximation
one should incorporate the p and/or r' behavior in integral
(2.3). In order to do this we consider the large energy ex-
pansion of the modified Green's function in (3.13), which
symbolically can be written as the two-body propagator

TABLE I. Listing of real and imaginary parts of p~(p, r') in fm . The expectation value of the kinetic energy in the relative S
state 18 0.324 fill . Thc flrs't row colltR1118 tllc valllcs p (p) Obtalllcd by dcfllllllg tllc cffcctlvc GI'ccII.s fllllctloI1 [Eq. (3.13)] lll terms
of ( Vdl)8 r

~
Go

~
Vdv) 8 r ' ).

0.246 —0.057 0.226 —0.048 0.211 —0.057 0.179 —0.071 0.138 —0.076

0,4
2.0
3,0
40
5.0
7.0

0.292
0.304
0.297
0.265
0.204
0.089

—0.073
—0.077
—0.070
—0.045
—0.028
—0.040

0.274
0.284
0.277
0.248
0.191
0.082

—0.061
—0.066
—0.059
—0.036
—0.020
—0.034

0.253
0.261
0.255
0.230
0.179
0.073

—0.071
—0.076
—0.070
—0.047
—0.027
—0.036

0.217
0.221
0.216
0.198
0.158
0.055

—0.087
—0.093
—0.087
—0.065
—0.040
—0.036

0.171
0.171
0.167
0, 156
0.130
0.038

—0.094
—0.098
—0.093
—0.074
—0.048
—0.024
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& r '
I G3[E—~d —p'(p ~')/2p3]

I
r '& =

& r
I
G3[E—~d —&p'(p ~') &/2@3] I

r '&

lpga/2M3 p2(p p )+ (p2(p p') &

[E—&p'(p ')&]'" (3.14)

For large p (p=6 fm) one can approximately write

p (p, r')=p (~,r'}+ ~(~')

P
(3.15)

N3 ——1 i [M3/—2[E p( m )—] I a (~') . (3.17)

Naturally, the coefficient X3 can easily be incorporated in
integral (2.3), even if we keep the r' dependence of a (r').

Alternatively, one could try to parametrize the r'
behavior of p (p, r') in Eq. (3.14} and ignore its p depen-
dence. However, the partial wave expansion of
p(r

I
G3

I
r '& is rather more complicated than that of

( r
I G3 I

r '&, so that we have not applied this option. In-
stead, we have considered a fairly large range of values for
(q (p, r') & and N3, so that we expect that the exact results
are covered by our calculations.

IV. RESULTS

In this section we show our results for the calculation of
Mg(p, d) Mg( —,

' ). In Fig. 3 we show the experimental
data' together with the standard zero range and finite
range calculations. %'e used the same optical potentials
and neutron single particle wave functions as in Ref. 24.

If we choose (p (p, r')&=p (oo,r') and ignore the r'
dependence of p ( ao, r'), then we can replace (3.14) by

G3[E eq p—(p,—r')/2@3] =N3G3[E Ed p—( o—o )/2@3],

(3.16)

where

In Fig. 3(a) we also show the plane wave Born approxima-
tion (PWBA) calculation, which is of interest since our
previous analysis showed that the exact results might be
intermediate between the standard and the plane wave re-
sult. Notice that there is very little difference between the
zero range and the finite range results, which include the
effects of the D state. All subsequent calculations are full
finite range calculations. In Fig. 4 we show the standard
results and compare them with our full calculation. Also
shown are the results obtained by using the standard elas-
tic wave function for one channel, in combination with
the microscopic distorted wave in the other channel.
These results were obtained using the expectation values

(V& &= —40 MeV and (V3&= —15.7 MeV. We see that
the replacement of the proton elastic wave function by the
microscopic distorted wave leads to a decrease of the cross
section, although the reduction is nowhere near being suf-
ficient to reproduce the experimental results. The analyz-
ing power is not affected very much. The replacement of
the deuteron elastic wave function by the distorted wave

X - has a much more drastic effect. However, instead of
3, k

the suppression expected from approximations like (3.6) or
(3.8), we find an increase in the cross section. This in-
crease can be traced back to the large size of the correc-
tion term in (2.3) so that the cancellation of this term and
the. elastic wave function is much less effective than is as-
sumed by either (3.6) or (3.8).

In Fig. 5 we show the results for the optimal value of
( V3 & and X3 as determined by Eqs. (3.14)—(3.17). Since
a change in ( V~ & does not have a large effect on the re-
sults, we have kept ( V& & fixed at —40 MeV throughout.

10

Mg (p, d) Mg (~/z+, 2.36 MeV)

T& = 96 MeV

&a&

1,0

101 05-

100E
(

o 0

10

10 2

0
I

10
I I

20 30
t c.m. ~de~)

0 p

I

40 50
-1.0 I

10
I I

20 30

~c.m. (deQ)

I

40

FIG. 3. Comparison of the finite range ( ) and zero range ( ———) DWBA calculations with the experimental data. Also

shown is the PWBA ( —.—~ —) result for the cross section (the analyzing power is zero in this case).
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I I I I

Mg (p, d) Mg (h+, 2.36 MeV)

Tp = 96 MeV

(a)

Ey
I gn

I

&b)
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10
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~c.m. (deg)

I
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-1.0

0
I
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I I
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I
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FIG. 4. Calculations using the modified distorted waves for the proton channel ( - ), the deuteron ( —~ —~ —.), and for both
channels ( ———) are compared with the standard calculation ( ).

Both cross section and polarization improve as a result of
the optimalization of ( V& ) and (N~ ). The case
(Vz) = —2.2 corresponds to a value for (p (p, r')) =0.
This is the value reached by the real part of p (p, r') for
large r' and p (see Table I). Since the PWBA result would
emerge for ( V~) =0, it is not surprising that this case
with small

~
( Vi )

~

already displays some of the charac-
teristic features of the PWBA (relatively large secondary
maximum and small polarization). The variation in the
results under reasonable changes in ( V& ) and Ni is small
compared to the discrepancy with experiment, so that it is
likely that the first-order term cannot resolve the existing
anomaly. We will discuss the implications of this result
further in the next section.

Finally, it may be interesting to note that the use of Eq.
(3.8) leads to a vast improvement in our results, as seen in
Fig. 5. Our results are then even superior to those based
on arbitrary cutoffs of Ref. 24. Although this approxima-
tion cannot be justified by our more exact results, it seems
to provide a useful phenomenological description of the
cutoff in the interior.

V. DISCUSSION

In this paper we presented the first practical results of a
microscopic theory of transfer reactions. The modifica-
tions of the distorted waves, as demanded by theory, have
been implemented and the approximations in obtaining

1P2
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practical results have been studied in some detail. We
find that the (p,d) observables are very sensitive to the
deuteron distorted waves and that the expected suppres-
sion of the nuclear interior is not realized in the exact cal-
culations. The corrections to the elastic wave functions in
the interior and near the nuclear surface are substantial
and do not necessarily suppress ihe elastic wave function
in the interior as was expected from the simple approxi-
mation (3.6) or (3.8).

In order to make further progress in the context of the
present microscopic theory one would have to consider
various refinements and extensions of the present calcula-
tions. The sensitivity to the deuteron optical potential
suggests that we may have to improve its treatment. We
based our analysis of p (p, r') on a folding potential for
the deuteron, whereas the practical calculations were
based on a phenomenological deuteron optical potential.
Different results for p (p, r') would result if we treated the
deuteron optical potential more consistently, and also in-
corporated breakup effects. Although we do not think
that our values for p (p', r) would be very much different,
the use of a more microscopic deuteron optical potential
could have important effects. The deuteron D state may
also play an important role in the optical potential.

An important correction to our results could come from
the higher-order terms in TJ, in particular, the rescatter-
ing term V; 6,Tk, which is not suppressed by Q-space pro-
jection operators. In a previous study we showed that
this terin by itself could explain some of the systematics
of the He(p, d) He reaction; however, a more quantitative
study is necessary. Since we need a fairly strong reduction
of the cross section to get agreement with experiment, one
would need a strong cancellation between this term and
the main DWBA diagram. This implies that an accurate
calculation of the rescatiering diagram is necessary. It
would be preferable if we could demonstrate cancellations
on the more formal level; however, we found that this
could not be done in a convincing way.

Another possible improvement could result from the in-
clusion of the exchange term. Since Pauli effects have

been shown to be small for this (p,d) reaction, we would
not expect that this could explain the discrepancy, al-
though a study of this effect in the new context might be
valuable.

Since these first results suggest that the first-order mi-
croscopic DWBA diagram is not sufficient to explain the
(p,d) process, one might ask whether there exists an alter-
native microscopic theory which would fare better in the
first-order term. The distorted Faddeev equations would
seem an obvious starting point; however, we found that
the elegance of the present theory would be lost if such a
starting point were used. The nonorthogonality terms
arising from these distorted Faddeev equations complicate
the formulation considerably and make it rather unlikely
that one could accomplish the simplification of the calcu-
lation of distorted waves to a simple quadrature, which
was essential for the practicality of the present theory.
Nonetheless, it may be worth pursuing such a scheme fur-
ther, particularly in view of recent advances made by
Birse and Redish.

Rote added in proof: Since submitting this paper some
new conventional analyses ' of the process

Mg(p, d) Mg( —,'+) have come to my attention, indicat-

ing that the discrepancy between theory and experiment is
much less than indicated in the original analysis. Al-
though these findings will not basically change the com-
parison between the conventional and the microscopic cal-
culations, they do imply that it might be premature to
construe the disagreement between our present calculation
and experiment as a failure of the first-order term.
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