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Axial asymmetry and the determination of effective y values
in the interacting boson approximation
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It is shown that the interacting boson approximation naturally incorporates an effective dynamical axial

asymmetry which stems from softness in the corresponding classical potential in the y direction. An expli-

cit relationship is obtained between the effective y deformation variable and the one parameter, X, charac-

terizing interacting boson approximation calculations in an SU(3) O(6) region.

The application of the interacting boson approximation
(IBA) to deformed nuclei has led to active interest in its re-
lation to geometrical models. Several studies' of the clas-
sical limit of the IBA have been carried out to establish the
correspondence with geometrical models in terms of the
familiar (P, y) shape variables, in particular, for the three
limiting IBA symmetries. It has also been shown that the
IBA-1 Hamiltonian in its usual form, with no terms of
higher order than two body, contains no triaxial solutions.
While a mapping is possible, in principle, between any IBA
solution and a geometrical framework, little has been done
in determining this relationship in practical cases away from
the limiting symmetries. Thus, while it is known, in ap-
proximate terms, that the transition between SU(3) and

O(6) involves a gradual reduction in the effective P defor-
mation parameter, it will be shown here that this cannot be
a complete specification and that, in fact, this transition cor-

responds to the gradual introduction of an effective axial

asymmetry resulting from a softening of the potential in the

y degree of freedom, albeit with the minimum remaining at
O'. Indeed, this is plausible since the SU(3) limit corre-

sponds to an axial rotor and the O(6) limit to a y-unstable
rotor, which is approximately simulated by a triaxial confi-
guration with asymmetry parameter y =30'. The results
here will go further than this, however, by deducing an ex-
plicit relation between IBA calculations and values for y, ff.

The essential idea is illustrated schematically in Fig. 1,
where the changing shape of the IBA potential' in the'y
direction is shown as a function of the parameter X which,
as will be seen later, uniquely specifies the transition
between the SU(3) (X = —2.958) and O(6) (X = 0) limits

of the model. While there is a small dependence on the P
variable which has been ignored in Fig. 1, for a given boson
number the shape is principally determined by a term pro-
portional to xcos3y, according to the analysis of Ref. 1. It
is evident that, while the minimum in the potential is always
found at y=0, so that there is no triaxial minimum, its
depth and steepness are finite and gradually decrease as the
O(6) limit approaches until, in this limit, the potential be-
comes totally independent of y. This leads to finite and
gradually increasing excursions in y so that one can speak
of an effective average value of y that increases from = 0'

to = 30' through the transition region. Indeed, this
correspondence between effective y values and the transi-
tion from SU(3) to O(6) is also suggested by the hE =2
matrix elements that mix SU(3) states when this limit is
broken. The resulting K impurities, in turn, generate large
variations in a number of E2 branching ratios as X ap-
proaches 0, whereas, in the pure harmonic axial deformed
geometrical model, these ratios are constants, independent
of P, and are given by squares of Clebsch-Gordan coeffi-
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FIG. 1. Schematic illustration of the gradual softening of the po-
tential (Ref. 1) corresponding to different IBA calculations from

SU(3) to O(6). For clarity the potentials have been set to the same
value at y=0',
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cients. These features are exactly analogous to the conse-
quences of a finite rigid asymmetry y, in the asymmetric ro-
tor model. ' This is not surprising since it is well known7
that the effects of a nonzero rms y value on many nuclear
properties are similar to those resulting from the assumption
of a finite (rigid) asymmetry.

It is the purpose of this Communication to exploit the
analogy with the asymmetric rotor model to test the above
ideas by determining if, despite the fact that no rigid triaxial
minimum exists in IBA-1, it is possible to assign an effec-
tive y value to a given IBA calculation, at least for nuclei in
the SU(3) O(6) region. This will be done by calculating
different observables in the consistent Q formalism" of the
IBA. The extreme simplicity of this formalism, with only
one consequential parameter X, then allows a relation to be
deduced between this parameter and the asymmetry y of
the asymmetric rotor model ' of Davydov and co-workers
by assigning to each X a value for a y, ff that gives the same
result for a specific observable. It will be shown that, in
fact, a consistent picture does emerge since very similar y, ff
values are deduced for different observables. The effects of
the finite boson number on the y, ff X relationship will

also be discussed. The association of y, ff and X values, cou-
pled with the concept of a decreasing P in the
SU(3) O(6) transition, is valuable in providing a first or-
der physica1 image of the nuclear shape for a given IBA cal-
culation, for understanding in a simple way the dependence
of various observables on X, and for providing a benchmark
for analytical models relating the IBA to the classical limit.
Of course, it must not be construed that the resultant asso-
ciated geometrical image of an IBA calculation will yield all
the same predictions as the IBA since some excitations in
the latter (e.g. , P vibrations) are inherently different from
their geometrical namesakes.

In the consistent Q formalism" an IBA Hamiltonian can
be written

H= —KQ Q —K'L L

where L is a boson angular momentum operator and Q is
the quadrupole operator

and

B (E2:3i+ 4i )/B (E2:3i+ 2i+)

which are independent of K and K', were calculated with a
consistent T(E2) transition operator. Using the Davydov
model, the same quantities were calculated as a function of

Examples of the results are compared in Fig. 2. It is im-
mediately evident that the overall behavior of the various
quantities versus X, or versus y, is remarkably similar, even
to the extent that the ratio

B(E2:2~+ 0,+)/B(E2:2i+ Oi+)

maximizes at the same value of =0.07 in the two formal-
isms. There are, of course, evident differences in the de-

tailed shapes of corresponding curves in the two models:
this wi11 be reflected below in the result that while each ob-
servable leads to a well defined y,tf~ X correspondence, it
is nonetheless nonlinear. It is also not immediately clear
that each observable will lead to the same y, ff X

correspondence. As alluded to above, though, a consistent
correspondence does result, within an accuracy of a couple
of degrees, lending credence to the concept of a valid effec-
tive asymmetry for an IBA-1 calculation. The relationship
between y, ff and X is displayed in Fig. 3.

An interesting aspect of this figure is that y, fq does not
0 as X —2.958. This is a finite boson number effect.

For example, the ratio E +/E + is infinite in the Davydov
2 I

model for y=0 and finite for finite y. In the SU(3) limit
of the IBA, it is given by [K(2% —1)/(0.75K K') )+1 in
terms of the coefficients in Eq. (1) and the boson number

Clearly, as N ~ so will this ratio, and the correspond-
ing y, ff value is 0' as expected. For finite N, however, the
SU(3) limit gives a finite ratio and therefore the associated

y, ff will be finite. In any case, for small y, differences of a
few degrees correspond to miniscule wave function differ-
ences. Thus, for example, in the Davydov model, for

y = 10' the E = 2 admixture' in the 2I+ ground band state
is only 0.008. The potential curves in Fig. 1 are for a given
N, and become steeper as N increases, effectively localizing

y near O'. Indeed, in the limit N ~, y,ff=30' only for
X = 0 and drops increasingly rapidly to 0' for finite X.

A further point of interest concerns the deformation vari-

Additional terms in H can always be added to fine tune
specific calculations but will not significantly alter any of the
conclusions below. The term in L can be neglected since it
is diagonal. Then the Hamiltonian contains only one term.
Since K acts only as an energy scale factor, the one parame-
ter of significance is X in the Q operator. It takes on the
values —2.958 and 0 in the SU(3) and O(6) limits, respec-
tively, and the crucial characteristics of the whole range of
spectra from SU(3) through transitional nuclei to O(6) are
generated" simply by allowing X to vary from —2.958 to 0.
The same value of X is used in the E2 transition operator
T(E2) = nQ (X). The IBA calculations were performed
with the codes' PHINT and FBEM. From these calculations
the energy ratio E +/E + was obtained, the coefficients K

2 1

and K' in Eq. (1) being chosen to give the triaxial value of
2.0 for y = 30' when X=0. The E2 branching ratios
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FIG. 2. Energy and 8(E2} ratios in the IBA and the asymmetric

rotor model (Refs. 9—12}.
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FIG. 3. Asymmetry parameter y vs X deduced from several en-

ergy and B(E2) ratios for N =16 at N =12 (dashed line). Insert:
"pie" plot for N = 8, 12, and 16: the schematic dependence on P is

obtained with Eq. (2).

able p of the geometrical framework. As shown by Ginno-
chio and Kirson, ' the p corresponding to a given IBA solu-
tion depends, in general, on all of the parameters in the
ISA Hamiltonian, and cannot therefore be simply related to
X across the full transitional region. Nevertheless, the in-
trinsic state approach, in its simplest form, which assumes
no E mixing and large N values, yields' a relationship
between p and X for the Hamiltonian H = —K0 Q, given
by

piaA= 2 I ( 35 ) X+ (( 35 )X +41 (2)

which gives piaA=v2=1. 414 in SU(3) (X= —2.958). As
X 0, pisA decreases, reaching the value pisA ——1.0 in the
O(6) limit (X = 0). One can regain contact with geometrical
models with the relation' p„, =1.18(2N/A)piaA, where N
is the boson number deduced from the number of valence
nucleons.

The insert to Fig. 3 shows the approximate (p, y) X

correspondence deduced here, for several N values, in
terms of the familiar p —y "pie" plot which here includes
positive X values from 0 to +2.958 corresponding to the
O(6) to oblate SU(3) limit, and therefore to y values from
near 30' to near 60'. In Fig. 2, the results for one of the
B(E2) ratios were shown for several N values and, for
%=12, the y,ff~ X correspondence is shown in Fig. 3 as
deduced from this branching ratio. Clearly, it corresponds
to slightly larger y values. From the W dependence of the

ff~ X relationship, it is clear that, given the near constan-
cy" of X for well deformed nuclei, the IBA will predict a
cup-shaped systematics for y, minimizing at midshell. This
is in agreement with known ' empirical trends and is
another example of an effectively microscopic aspect of the
phenomenological IBA-1.

To summarize, it has been shown that the IBA-1 au-
tomatically contains an effective asymmetry. Values for y, ff
have been deduced in terms of the parameter X characteriz-
ing IBA calculations in the consistent Q formalism. These
results have the practical benefit of providing a prescription
for an IBA treatment of a given nucleus: once a y, ff value
has been deduced, the y, ff X association determines the
required input for an IBA calculation. The strong boson
number dependence of extracted y values was noted. It is
interesting to note that in the IBA-1, the y softness neces-
sarily increases with the mean y, rr (see Fig. 1) so that, for
example, large y, ff values imply large y softness, corre-
sponding to y unstable, rather than triaxial, spectra. The
addition of cubic terms" in the IBA-1 Hamiltonian intro-
duces a component in the potential with a minimum at
y=30' and therefore allows more flexibility both in the
mean y and in the associated y softness. It is an important
open question whether the spectra of asymmetric nuclei will

require that added complexity.
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