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Radiative capture estimates via analytic continuation of elastic-scattering data,
and the solar-neutrino problem
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Measurements of o-~ for He(n, y) Be, central to the solar v problem, disagree. In a direct capture

model, the normalization constants N3~2 and N&g2 of the Py2 and Pl~2 bound state ~ave functions of Be

at large He-o. separations determine 0-y N3/2 and N&~2 are given by (simpler) measurements of o-„at a

higher energy E, or, as here, by analytic continuation of the He-n p3/2 and pl~2 phase shifts, 5(E). The

method has been successfully tested on calculations of Tang et al. Better measurements of 5(E) are called

for.

'NUCLEAR REACTIONS He(o, , y) Be, E &300 keV, He(o. , o.) He, E(4 MeV,
'

effective range function, analytic continuation technique, bound state energies, and
normalization.

and the matrix elements which define o.34(E) reduce to the
one-body form

MB(E) = Ns J Wp, g(2~sR )Rf (R;E)dR

where the He-n separation R ranges from ro to ~. W~ ), is
the Whittaker function with p = —qe = —I/xsa and
A. =L + 2, with L =1. f(R;E) is an /=0 or 1 =2 scatter-

ing wave function which describes the relative motion of the
nuclei. The unknown constants Ny2 and N~~2 are obtained
by matching the data at a higher E, one at which the contri-
butions to o34(E) due to capture into each of the two Be
bound states can be measured. (But at higher E, predictions
of the simple DCM should be less accurate. )

The reliability of the above approach is greatly
strengthened by the microscopic calculations of Tang and
his co-workers. With the two-body nuclear potential V„„,
chosen to reproduce many properties of 'He, "He, and 'Be,
they perform a single-channel (3He+4He) resonating group
calculation. The merit of the approach is that fu11y antisym-
metrized seven-nucleon wave functions are used, that cap-
ture data at higher energies are not required, and that the
inner region contribution is not ignored. Calculations by
Kim, Izumoto, and Nagatani approximate exchange effects
and thereby simplify the analysis. Both Liu et al. ' and Kim
et al. s find the inner region contribution to be small.

Merits of the simple DCM include its simplicity, its appli-
cability at least in principle to systems of any number of
particles, and its model independence with regard to V„„,
and the forms of 'Be bound state wave functions and of
3He-a scattering wave functions at small R. (The micro-
scopic approach must not only specify V„„,but for technical
reasons must choose V„„,—and the 'He and n normalized
ground state wave functions 'Q and @—to be Gaussians,
and must assume neutron and proton masses to be equal,
but these need not normally be serious drawbacks. ) On the
other hand, the simple DCM does not include the (presum-
ably small) inner region contributions.

Current theoretical estimates' of the number of solar neu-
trino units (SNU) differ in the errors assigned; more signifi-
cantly, they differ by about a factor of 3 from the experi-
mental results of Davis. ' The discrepancy, presumably in

the theoretical analysis, may originate in something as pro-
found as neutrino oscillations or may simply reflect errors in

the input data. One of the important pieces of input data is

the cross section cr34(E) fof the He(n, y)'Be reaction, nor-
mally expressed in terms of the (slowly varying) cross sec-
tion factor S34(E) E exp(2n g) o 34(E), where g = Z )Z2
xe /tv = 1/ka is the Sommerfeld parameter, with u the re-
lative velocity and E the kinetic energy in the center of
mass. The SNU estimate varies roughly' as [S34(0)] '.
Measurements by two groups give about the same E depen-
dence for o34(E) but disagree substantially in the overall
normalization. In kerb, the latest Caltech group result for
S3$(0), which seems to have been confirmed, is

0.52+0.03.' (The use of the Miinster group results4 of
0.30+0.03 or 0.38+0.03 would reduce the SNU estimate
by the very significant factors of 1.6 or 1.3, respectively. )

Many estimates of S34(0) are based on a direct capture
model (DCM) in its simplest version: Capture to a given
bound state of 'Be, with an energy Ea= t'x /2sp„, is as-—
sumed to occur at separations large compared to nuclear
dimensions but under the Coulomb barrier. B = —, and

2

~ 5 3 1

distinguish between the two lowest bound states (J =-, ,

L =1 and J= 2, L =1) of 'Be. (Much of the discussion

applies to any bound state of any nucleus. ) In the dipole
approximation, quite good at the low E involved, the in-
cident channels of interest are therefore the s and d waves.
A charged hard core model of radius r0=2.8 fm gives a
good approximation to the experimentally determined
values of the s- and d-wave phase shifts, and that should
be true too for the phase shifts at lo~er E. At the large
separations under consideration the form of the 'Be bound
state wave function 4q is known to within a normalization
constant Nq while the continuum function is known exactly,
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The calculations described above seem eminently reason-
able, but the importance of the problem and the experimen-
tal discrepancy in the estimate of S34(0) warrant further
theoretical study. We suggest the use of the same simple
picture which led to Ms(E), but modified to avoid the use
of higher E gamma capture data —that data could conceiv-
ably be wrong, or the model might be somewhat less accu-
rate at higher E—to determine N~. Rather, N~ is deter-
mined by analytic continuation of the experimentally deter-
mined phase shifts 5(E) for elastic scattering in the incident
channel with the same total and orbital angular momentum
quantum numbers J and L as the bound state 8 to which
capture occurs. Thus, to evaluate capture to the L =1
states of 'Be, we need the s- and d-wave phase shifts to
specify the continuum functions; in addition, we need the
py2 and p~y2 phase shifts, 5(E) for this case, to determine
Ny2 and N~g2 via analytic continuation.

The starting point in the analyticity approach is the con-
struction of an effective range function K (k ) which can be
analytically continued from E & 0, where it can be deter-
mined from a knowledge of the phase shifts, to Ea. (By
convention, the argument of K is k2 rather than E.) For
the technically simpler non-Coulombic one-body problem,
the connection between Na and the 8(E) has been
described in a number of texts, and we give but a brief
description, reserving details for a later publication. The
hardest part of the present problem is the determination of
the appropriate K(k') in the presence of Coulomb fields,
and that has been done. '

Since the scattering channel of present interest and the
bound state have the same J and L, the subscripts J and L
on K(k2), on the nuclear T matrix 1(E) and the nuclear
phase shifts 8(E) in the presence of a Coulomb field, and
on the scattering wave functions 'k, (E) and 4'. +(E) to be
defined, can be omitted. We restrict our discussion to
scattering of a spin one-half system by a spin zero system.
With

exp(2io r. ) = I'(L

+1+iran)/I

(L +1—i q)

P(iq) the digamma function, and H the full Hamiltonian,
we have

K(k') = Xo,k "/ X'(I+P,k"), (4)

where X and X' are sums from 0 to I and from 1 to
I —L —1, and a; and P; are adjustable parameters.

Na is related to the residue 9P of 0(E)T(E) at E =Ea.
0 (E)W, '(E)W,+(E), analytic in E, can be continued from
E & 0 to Ea, and one finds —we have expressed W + (E ) in
terms of the full Green's function —that zt2~/p, is the
E Eg of

0(E)((H-E)q;(E) IC a) (q al[H-E]q.+(E)) .

forming K(k2) in Eq. (1). Left-hand cuts appear due to
various exchange effects. The branch point of K(k') in the
complex k-plane closest to the origin, associated with single
pion exchange, is defined by 2ikbp= —m„c/t. The as-
sociated branch point in the complex E plane is then
Eb„= —m „'c'/8 p, .For 'He-a or H n, -we have
p. = (12/7)Mp„, and Eb~= —1.5 MeV. For the 3He n-case
this may be sufficiently far from the P~g excited state ener-
gy E~g2= —1.16 MeV for the Fade approximant approach
(see below) to be effective, but for the Py2 ground state of
energy E3~2= —1.59 MeV it may be necessary to explicitly
extract the pion exchange cut, whose form is more or less
known, before using a Pade approximant. Since the ratio of
capture to the Py2 and P~g2 states seems to be well known,
it might be sufficient to study only capture to the P~~2 state.
[For 3H(a, y)'Li, a reaction of interest in big bang studies
of E's rather larger than those relevant to solar neutrino
studies but still low, Eb, lies above both the Py2 and P~~2
states. ] There will also be poles in K(k') at zeros of T(E)
(other than the zero at E=0), but the nature of the pt~2
and py2 phase shifts —and numerical studies of K(k')—
give no evidence of any poles near the origin.

For real E & 0, K (k )/[k2~+'II(q) ] becomes

Co (q) cot8+ 2q [Ref(iq) —in']

The experimental values of 8(E) determine the values of
K(k2 & 0), and analytic continuation to K (k ( 0) is trivial
if we can fit K(k'&0) to Pade approximants. For an
elastic-scattering process a. —1/k and K —k2'+2 for large k.
This suggests the form

K(k ) = —0 '(E) T '(E) + Q(E)

0 '(E) = k' e co (7J)11(q) (2)

Rewritten as a surface term, 9t becomes

~= (t 2/2p ) [yNa/~qc]

Q(E) =2&k""11(~)h(l~),
h (ig) = p(ig) + (I/2iq) —in(iq)

T(E) is given by —k expi (2a.r, +8) sin8 for E & 0, or by

T(E) = (2~/t') ([8—E]q, (E) lq '(E))
We have W;(E) ='P @Fr,9'exp(+i or, ), where kRFr.
(R;E) is the standard regular Coulomb function and 8'is
the appropriate angular momentum factor; %'+(E) is the
antisymmetrized partial-wave "outgoing" scattering wave
function with Coulomb and nuclear effects fully accounted
for. The essential point is that K(k~) is real analytic in the
neighborhood of k'=0. The branch cuts of 0, T, and Q
along the positive energy axis cancel, by construction, in

where y=I'(L+1)/I" (I+ I+pa). An application of the
definition of A' to Eq. (1) gives a second form for 8! Com-
parison of the two forms gives

~a I' (L +1+qg)
(L!) d[K(k') —Q(E)1/dk

where the presence of a derivative (to be evaluated at
k =i~~) suggests, unfortunately, that the 5's will have to
be reasonably accurately known.

Since T(Ea) =oo and cot8(Es) =i, Eq. (1) reduces at
E=Ea to K( —Ka) =Q(Ea), a very useful check on the
numerical accuracy of the representation of K(k') given by
Eq. (4). If a check is obtained, the (known) value of Ea
will be treated as input data, along with the phase shifts.

We have tested our method using the model calculations
of Liu etal. of the py2 and p~y2 phase shifts. We find ex-
cellent agreement with the values of Ey2 and Ev2 (values
which their potential parameters were adjusted to repro-
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duce). For the associated normalization constants, we ob-
tain Ny2=4. 59+0.02 and N~y2=3. 93+0.01, in very good
agreement with values extracted from their numerical
results for the relative coordinate wave function. (The ef-
fectiveness of the analytic continuation technique over an
interval of about 2 MeV should be noted. Ordinary effec-
tive range theory would not have been sufficient here. ) Our
associated reduced widths are in agreement with those of
Liu et aI.' but somewhat larger than those found in analyses
of the experimental data, in about the same ratio as the
value of S34 deduced by Liu et al. to the value of S34 de-
duced from the experimental data. By using the Bessel
function expansion of continuum Coulomb functions as
Williams and Koonin" did, we also reproduce the low-

energy expansion of S34 obtained by Liu et al. ' Our calcula-
tions are somewhat simpler than would be the case with the
use of (comparably accurate) experimental phase shifts,
since Gaussian potentials do not generate pion exchange
cuts.

The analytic continuation technique (ACT) might have a
great advantage over the approach in which Xg is deter-
mined by measurement of the radiative capture cross sec-
tion a„at a higher E for reactions such as d (o., y)6Li for
which dipole radiation is forbidden so that the experiment
remains difficult even at higher E. For this case,
p, = (4/3)iM„„and Et„= —1.9 MeV, while the energy of
6Li relative to d+o, is —1.47 MeV. The ACT serves as a
check on the accuracy of scattering data by its estimate of
E~, and can be used to determine resonance parameters
from phase shifts. An alternative to the ACT is a many-
level R-matrix theory. An R-matrix approach was used to
analyze the 8(E) data; however, the one-level approxima-
tion was used, the WKB approximation was invoked, the Eg
was put in by hand. On the basis of our ACT studies, we
believe the one-level approximation to be inadequate.
Furthermore, it is very useful to allow E~ to be an open
parameter, for this provides a strong check on the accuracy
of the data; if the estimate of Es is good, one might wish to
put in the exact value of Eg in estimating the reduced
width. (We note, incidentally, that the R-matrix approach

has the nice feature —not shared by the ACT form we
used-that it builds in a characteristic nuclear dimension. It
is possible to recast the ACT so that the effective range
function is not expressed as a ratio of polynomials but,
building in the Coulomb interaction and the hard core, is
expressed in terms of the analytic Coulomb functions and
the R matrix; in this form, a one- or two-level approxima-
tion to the R matrix might well be adequate. ) We intend
to elaborate on these matters in a future publication, which
~ould also include a discussion of the accuracy required for
experimental 8(E)'s to be amenable to the ACT. As a pre-
liminary comment, we note that the use in the ACT of the
most recent experimental data on 8(E), by Boykin er al. ,
does not give the correct values of the Eg's; if we fix the
E~'s at their correct values, the values of the Wq obtained
from the ACT are about three times smaller than the values
required to obtain, via a direct capture model calculation,
the value of S34(0) generally accepted. We suspect that the
true values of the 8(E)'s lie outside the range suggested,
roughly one degree below the bottom of that range. As
based on our analysis of model calculations, ' the ACT
might well be useful in the analysis of experimental data if
the 8(E)'s can be measured to about one degree down to
perhaps 800 keV. This accuracy may be attainable for the
8(E)'s—and for the s-wave shifts —which are of order a few
degrees at these energies. (The d-wave phase shifts are
very small and can be neglected. See Boykin et al ).
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