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In the first part of the present series of two papers we discussed several nuclear structure models

all working in configuration spaces consisting of spin- and number-projected quasiparticle deter-

minants. In the present paper a particular version of the numerically simplest of these models is

presented. This model approximates the nuclear wave functions by linear combinations of the angu-

lar momentum- and particle number-projected Hartree-Fock-Bogoliubov vacuum and the equally

spin- and number-projected two quasiparticle excitations with respect to it. The model allows the
use of realistic two body interactions and rather large model spaces. It can hence be applied to a
large number of nuclear structure problems in various mass regions. First applications have been

performed for the nuclei Ne, Ne, Ti, and ' Er. In all these cases the results are very encourag-

ing.

NUCLEAR STRUCTURE Ne, Ne, Ti, ' Er; calculated spectra and transi-
tions. Spin- and number-projected Hartree-Fock-Bogoliubov and shell model

methods.

I. INTRODUCTION

In the first part' of the present series of two papers
(hereafter referred to as I) we have given a general survey
about the mathematical formalism, which is necessary to
perform microscopic nuclear structure calculations in con-
figuration spaces consisting of arbitrary angular
momentum- and particle-number-projected Hartree-
Fock-Bogoliubov —type (HFB-type) quasiparticle deter-
minants. On the basis of this formalism we have then dis-
cussed several possible nuclear structure models differing
essentially by the degree of sophistication with which the
configuration spaces and the corresponding mean HFB
fields were optimized.

In the present paper we shall now concentrate on the
simplest version of these models (the "fourth best" ap-
proach to the problem according to I), which uses a spin-
and configuration-space-independent mean field obtained
by a standard HFB calculation as reference to construct
all the quasiparticle determinants to be taken into account.
If we furthermore specialize the configuration spaces to
include only the angular-momentum- and particle-
number-projected HFB vacuum [the "zero-quasiparticle"
(Oqp) determinant] and the equally spin- and number-
projected corresponding two-quasiparticle (2qp) excita-
tions, we obtain the MONSTER approach (model for han-
dling large numbers of number- and spin-projected two
quasiparticle excitations with realistic interactions and
model spaces), which was first presented in some confer-
ences and will be described in detail in the following sec-
tions. First steps in the direction of such a theory had al-
ready been made long ago and have found some new in-
terest in the last couple of years ' before the first general

applications can now be presented.
In Sec. II we shall first discuss the essential additional

approximations which had to be introduced in order to
make the MONSTER a numerically feasible method.
This section will also describe how possible spurious ad-
mixtures due to the center-of-mass motion can be at least
approximately eliminated and will furthermore discuss the
advantages of the MONSTER approach as compared to
some other nuclear structure models. Section III will then
give a brief description of the numerical procedure of a
MONSTER calculation and discuss the possibilities and
limitations of the presently existing computer code. In
Sec. IV then the results of first applications will be
presented. There we shall start with a small basis system
(lsOd shell), in which complete shell model diagonaliza-
tions of given effective many nucleon Hamiltonians can
still be performed. Comparison of the MONSTER results
with such "exact" solutions will provide a crucial test for
the quality of our approximations. As examples here the
cases of Ne and Ne will be considered. We shall then
proceed to a larger basis system (lpOf shell) and study the
nucleus Ti. Since for this nucleus to our knowledge no
complete shell model diagonalization within the full pf
space has been performed, we shall compare our results
here with those of other approximate methods and with
the experimental data. Finally, we shall use an even larger
single particle basis (X =4+Oh9/2+Oh t~/2 for protons;
X =5+ 1g9/p+Ol f3/p for neutrons) to perform calcula-
tions for the nucleus ' "Er. There the spectra as well as
the corresponding 8(E2) values will be compared again
with the experimental data. In Sec. V we shall then sum-
marize our first experiences with the MONSTER and dis-
cuss some further applications and possible improvements.
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II. THE MONSTER APPROXIMATIONS

We start by assuming that the single-particle basis con-
sists of M~ proton and M„neutron eigenstates of some
spherical basis creating potential, for example, a harmonic
oscillator or a Woods-Saxon well. Coulomb, spin-orbit,
and i terms may or may not be included. Denoting the
particle vacuum by

l
0 &, each basis orbit

l
i & and the cor-

responding creation and annihilation operators C; and C;
can then be characterized by the quantum numbers

H= g t(ir)C; C, + —,
' Y v(ikrs)C; CkC, C„,

ikrs

(2)

and that the matrix elements of the one-body term
t(ir)—:(i

l
t

l
r& as well as the antisymmetrized two-body

matrix elements of the effective nucleon-nucleon interac-

tion v (ikrs) = (ik
l

V
l
rs —sr & are all real numbers as can

always be guaranteed provided the phases of the basis or-
bits are suitably chosen.

li &=C; l0&= l~;n;lj;m;&,

where r; gives the isospin projection of the orbit ( ——, or
—,
' for a proton or a neutron orbit, respectively), /; is its or-

bital and j; its total angular momentum, m; measures the
projection of j; along the chosen quantization axis, and n;
distinguishes between the different radial wave functions,
which in general may still depend on the other quantum
numbers. Since for each j; all the 2j;+1 magnetic sub-
states ( —j; (m; (j;) will always be included, M~ and M„
are both positive even integers. We shall furthermore as-
sume that the effective many nucleon Hamiltonian ap-
propriate for the chosen basis system is known, can be
written as a sum of only one- and two-body terms

Within the model space spanned by the basis states (1)
the general HFB transformation then has the form

a (q)—:g IA; (q)C; +B;N(q)C; I, (3)

where the sum runs in principle over all the quantum
numbers of the spherical basis and the index q distin-
guishes as in I between different quasiparticle transforma-
tions of the type (3).

The first essential approximation being introduced now
is the neglect of the parity mixing in the transformation
(3). Consequently, the quasiparticle orbits (3) as well as all
the quasiparticle determinants constructed from them are
then eigenstates of the parity operator. As second approx-
imation we shall assume that (3) does not mix basis states
with different isospin projections. This assumption is
equivalent to the neglect of proton-neutron pairing in the
mean HFB field and seems to be rather well justified at
least as far as neutron excess nuclei are considered. Be-
sides the restriction of the sum in Eq. (3) to either proton
or neutron states this approximation has the additional
advantage that the transformation matrices A (q) and B(q)
can both be chosen real. Finally, as a third approxima-
tion, we shall impose axial symmetry on the transforma-
tion (3). Thus all the quasiparticle states (3) and hence ob-
viously also all the resulting quasiparticle determinants
will be eigenstates of the z component of the total spin
operator acting in the intrinsic space. As we shall see in
the following this last approximation leads to drastic sim-
plifications in the calculation of the angular momentum
projected matrix elements.

With the above assumptions the transformation (3) can
now be written as

and

T 5 m
a~ (q) = +5—(r;,~~)5(( —) ', a~)5(m;, m~) IA;~ (q)C; B, (q)C—;I. .

tntIt J
m;&0

(4)

—m~
a (q)= g 5(w;, w )5(( —)', m )5(m;, m )IA; (q)C; +B, (q. )C;I., (5)

where a bar as usual denotes the time reversed partner of a
particular state using the phase convention

IqIp& =—g a (q)a-(q) 10&
a&0

(9)

n, i,J; m;&—
with ~ being the time reversal operator. Furthermore, in
Eqs. (4) and (5) use has been made of the relations

and

where a&0 restricts the product to the (M&+M„)/2
states with m ~0. Because M~ and M„are both even
and the proton-neutron pairing has been neglected, the
zero-quasiparticle (Oqp) determinant (9) contains only
components corresponding to even proton and neutron
numbers. Furthermore, it has positive parity, total angu-
lar momentum projection K0 ——0 along the intrinsic z axis,
and is even under time reversal. Consequently a general
n-quasiparticle (nqp) excitation with respect to (9)

where m; and m are both supposed to be positive.
The HFB vacuum serving in the following as reference

determinant can then be written as

n

l Iqjp& (10)
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has the parity nq . . . q =qrq m.
q

m.
q

and the total spin

projection
n

Kq, . . .
q

——P mq .
i=i

Depending on whether (10) contains an even or an odd
number of proton (or neutron) quasiparticles it consists
only of even or of odd proton (or neutron) number com-
ponents. In the following we shall restrict ourselves to
doubly even nuclei. This implies that only those n-

quasiparticle states (10) consisting of an even number of
proton quasiparticles (nz ——0,2, . . . ) and an even number
of neutron quasiparticles (n„=0,2, . . . ) will contribute
(n~+n„=n) Ex. tensions of the method to odd or doubly
odd nuclei are easily possible but will not be discussed in
the present paper.

The final approximation made in the MONSTER ap-
proach is now to truncate the complete configuration
space consisting out of the reference determinant (9) and
all the nqp excitations (10) (n = 1, . . . , M&+M„) to only
the Oqp state (9) and the 2qp configurations

qIqlqz&=— q, (q)aq, {q)
l {qlo)

having vq =7q .
Using the well-known number- and spin-projection

operators '

2e A+
Q(N0)—: f dp~xp{i $,[N0 N—] I (12)

A+1/2 A —1/2
with X =N being the neutron and N —=Z being
the proton number operators and

P(IM;K) = i— f d ADA(A, )R(Q, )
8~2 (4~)

(13)

with R(Q) being the rotation operator' and DMz(Q, ) its
representation in angular momentum eigenstates we may
now proceed to restore the required proton and neutron
numbers Z0 and X0 as well as the desired total angular
momentum I and its projection M in the laboratory frame
of reference. Thus we obtain from (9)

l
{qIo'ZoNoI M) =5(qr, +)5((—),+1)P(IM'0)Q(No)Q(Zo)

l {qjo) (14)

while the set of configurations resulting from (11) can be written as

l {q]qiq2 Z0NOI M &
=5(~ ~, —~)5(r„rq, )5(

l m„+m„ I
(I)Q(No)Q(Z0)

X {P(IM;mq +mq )aq (q)aq (q)

I —(m +m )

+m. ( —)
' ' P(IM; —mq —mq )a (q)a- (q) I l {qI0) (15)

if use is made from the time reversal properties of the set of 2qp configurations (11).
Owing to our above assumptions about the HFB transformation the reduced matrix element of a general tensor opera-

tor T& (b.Zo, bNo) changing the nucleon numbers by b,Zo and b,N0, respectively, in between two arbitrary projected
2qp states of the type (15), which in general may even belong to different quasiparticle transformations q and q, gets a
much simpler form than the general expression given in I. Performing two of the three integrations induced by the spin
projector (13) analytically, which is possible since we have imposed axial symmetry on the quasiparticle transformation
(3), and using the time reversal properties of the configurations (15) as well as the fact that they contain only even proton
and neutron number components we obtain

& {qjqiq2'Zo+~Z0N0+~N0If
I l

T (~Z0 ~No)
l I

{q'Iq'iqz'Z0N0I '
&

+L
=5(n;m, ~f)(2I;+1)(2If+1)' g (I;LIf

l mq +mq ppmq +mq )—

I, —(m, +m, )

+~i( —) f dPsinf3dm +m —p; —m, —m, (P)
0

Xt ", , (P)
q&q&, q&q2

(16)
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i[Z0( / )fp+ 0(»$„]~L, P (
(

P
(

P P)
0 & 0

i(Z0(1/2)pp —ND(i/2)(((„] L,&p, ( ~ ( ~ ~)
q&q&', q & q2

Z"~"i', , ( ,'y, ,'—y„,p—)=((q) ~ a,(q)a, (q)&„(~ZD,~ND)
qlq2~q) q2

p[ 'pf~
' ,'p —Z —','p„—N)—a,(q')(i, (q')

~
[q')0) . (18)

~L 1F 0

Strictly speakjng formula (17) holds only if T„(A ZDA N0) is a real operator. However, if &q (~Z0 ~No) is comple" t
mn always b split into a real and an imaginary pa~ which can then be treated according to (17).

According to I the most general wave function constructab]e ln the nonorthogonal configuration space (14),(15) i

given by

~ [q),;;Z,N,I M) =
~ (q),0,Z,N, r M&f, ,;(q)+

qi& iq2
~lq1 l

& lq2l~

~
((q)q(qi,'ZDNDI M)fq q, ;(q), (19)

where
~ qi ~

&
~ q2 ~

refers to a suitable ordering of the
quasiparticle states with m~ &0. The configuration mix-
ing degrees of freedom f (q) are then obtained by the
solution of the matrix equation

[H (q) —E (q)N (q) ]f (q) =0

[f' (q)l N' (q)f' (q}=U

which ensures the orthonormality of the states (19). U is
here the unit matrix. N (q) and H (q} are the overlap
and Hamiltonian matrix within the configuration space
(14),(15). They can be easily calculated from the general
expressions (16)—(18). The rotated matrix elements (18)
for both the overlap as well as the Hamiltonian matrix
have been given in Appendix B of I and will hence not be
rcpcatcd herc.

As in I here me mould also like to stress that it is very
essential to perform the number and spin projections be-
fore the diagonalization of the Hamiltonian (20),(21).
Only such possible spin dependencies of the configuration
mixing can be taken into account and, even more impor-
tant, spurIous admlxturcs duc to thc part1al 11ncar dcpcn-
dence of the intrinsic configurations (9) and (11} with
respect to rotations can be avoided.

The wave functions (19) contain up to 6qp correlations
with respect to the already complicated HFB vacuum (9).
This is due to the fact that the rotation operator applied
on any of the configurations (9) or (11) yields a linear
combination of all the nqp states (10) having the right
number parity (n =0 up to n =M&+M„) while the Ham-
iltonian (2) contains at most four quasiparticle annihila-
tion operators (see Appendix A of I). In the matrix ele-
ment (18) of the Hamiltonian therefore (for q =q') only up

to 6qp configurations can contribute. Furthermore obvi-
ously not all the 4qp and 6qp configurations are included
since the rotation operator creates only particular linear
combinations. Nevertheless, since the projection is done
before the variation, the system has at least some freedom
to choose out of these 4qp and 6qp components those
which are energetically most favored.

This admixture of 4qp and 6qp excitations is also the
reason why in the wave functions (19) the projected Oqp
states (14) do mix with the projected 2qp configurations
(15). Thus, for example, a transition from the favored
yrast configuration of the Oqp structure (14) to a 2qp
structure (15) at certain spins as appears, for example, in
some of the rare-earth nuclei (see, for example, Ref. 12)
can be described here although a fixed mean HFB field is
used for all the spin values. Obviously improvements
could be reached by determining not only the configura-
tion mixing but also the HFB transformation (3) itself
after restoring the broken symmetries. Such even higher-
order correlations with respect to the intrinsic structure of
the 0+ ground state could be accounted for. However, out
of numerical reasons, this is not done in the present ver-
sion of the MONSTER approach.

Lastly, the restriction to at most 6qp excitations eath
respect to the intrinsic vacuum (9) has the consequence
that states with a more complicated structure cannot be
described vathin the MONSTER approximation. Thus,
for example, states with a predominant 8qp structure (in
the limit of vanishing pairing these would be 4p4h states
with respect to the corresponding Hartree-Fock vacuum)
are cleary outside the MONSTER configuration space.

It is worthwhile to mention that the wave functions (19)
account for IC mixing in the intrinsic configuration space.
Consequently the intrinsic structures corresponding to the
laboratory wave functions (19) can have rather general de-
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formations. Thus, for example, not only axially deformed
nuclei but also nonaxial ones can be described within the
present scheme.

Finally, we would like to point out that in the limit of
vanishing pairing correlations the MONSTER wave func-
tions (19) are identical to those of the projected particle-
hole model on Hartree-Fock basis (PHM), which has been
proposed a couple of years ago' and since been applied
with some success to both the low excited as well as the
giant multipole resonance states in some light doubly even
self-conjugate nuclei. "' ' The MONSTER can there-
fore be understood as a straightforward extension of the
PHM approach accounting, unlike the latter, also for pair-
ing correlations, which as we know are rather important
at least as far as neutron excess nuclei are considered.

Unfortunately, in general the diagonalization (20),(21)
of the effective Hamiltonian (2) in the configuration space
(14),(15) is not yet sufficient to obtain reasonable wave
functions (19). This is due to the fact that as soon as
more than one major oscillator shell is included in the
single-particle basis, the resulting many nucleon configu-
rations usually contain admixtures due to center-of-mass
excitations which have to be considered as spurious' '
and hence, at least approximately, to be eliminated. In the
MONSTER approach this is achieved with the help of a
method, which has been proposed by Giraud' and has
also been applied in the PHM calculations"' ' men-
tioned above. The procedure can be summarized as fol-
lows.

Instead of solving (20),(21) directly, the equivalent set of
equations for the center of mass Hamiltonian H,
which has a similar structure as the effective Hamiltonian
(2), is solved first. If the configuration space (14),(15)
would be complete with respect to center-of-mass excita-

tions, most of the eigenvalues e, (q) resulting from the
solution of

[H, (q) —e, (q)N (q)]S (q) =0 (22)

under the constraint

[S (q)] N (q)S (q) = U (23)

H =P,HP,

and solving the problem

(25)

[H (q) —E (q)N (q)]f (q) =0 (26)

would be degenerate with the corresponding eigenstates of
the form (19) describing the center of mass in its ground
state. All the other solutions of (22),(23) [with eigenvalues

e, (q) being by lfuu, 2fico, . . . , larger than the ground-
state value] are then the spurious center-of-mass excita-
tions ~s) (s =1, . . . , n, ) With the. use of the projection
operator

n

(24)
s=1

to modify the original Hamiltonian (2) into

with

[f (q)] N (q)f (q)=U (27)

instead of (20),(21), then yields the n, spurious states at
energy E (q)=0 while all the other solutions are free
from admixtures due to the center-of-mass motion. Obvi-
ously in practical calculations the configuration space will

usually not be complete with respect to H, . However,

even then the eigenvalues e, (q) will still be clustered
around the exact values. "' ' At least the predominantly
spurious states can therefore still be eliminated using the
above procedure, which is very essential especially if low
excited negative parity states are to be considered.

With the use of the obtained MONSTER wave func-
tions (19) now with the help of the general expressions
(16)—(18) all the physical quantities, which may be of in-
terest for the particular problem under consideration, for
example, electromagnetic moments and transitions as well
as the corresponding transition densities can be calculated.
This is one of the main advantages of the MONSTER
method with respect to, for example, the self-consistent
HFB cranking approach, ' which up to now has been
the only microscopic model available for the description
of high-spin states in the rare-earth region. Though simu-
lating an approximate projection before the variation of
the mean-field parameters, which is not done in the
MONSTER approximation, the HFB cranking approach
does not produce quantum-mechanical many body wave
functions with the required symmetry properties. Instead
the cranking wave functions usually contain large angular
momentum fluctuations, ' which, especially in band cross-
ing regions, lead to serious complications. Improvements
can be reached if higher-order terms are introduced.
However, this helps only for expectation values like the
energy or magnetic moments. Transitions between states,
on the other hand, can hardly be obtained within the
cranking approach.

III. THE NUMERICAL PROCEDURE

During the last three years a computer code has been
developed, which allows the application of the MON-
STER approach discussed in the last section to a huge
amount of nuclear structure problems in various mass re-
gions. This code was designed for the 1100/80 Univac
computer at the University of Tubingen. The same ver-
sion has also been installed on the IBM facilities at the
Kernforschungsanlage Julich. In the present paper we
shall not describe this code in detail. Instead we shall
briefiy summarize how in practice a MONSTER calcula-
tion is done and discuss the possibilities and limitations
along the way.

First, a single particle basis is chosen. In its present
version the code can handle systems like Os-2s ldOg for
light nuclei or the Kumar-Baranger basis (N=4, 5 for
protons, N =5,6 for neutrons). Larger basis spaces cannot
be used on the Tubingen Univac out of storage reasons.
On larger computers, however, like the Jiilich IBM, an ex-
tension to larger basis systems is straightforward.

Second, an effective Hamiltonian for this basis system
is chosen. Here any arbitrary interaction, which can be
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represented by coupled two-body matrix elements, can be
taken. Furthermore, it is possible to use different sets of
coupled two-body matrix elements for proton-proton,
neutron-neutron, and proton-neutron interactions. Besides
the restriction to two-body forces no further approxima-
tion is needed. The one-body term may also be arbitrarily
chosen.

Third, the two-body matrix elements are decoupled and
suitably stored for later use.

Fourth, a standard HFB calculation is performed for
the nucleus under consideration. Here the numerical
method proposed by Mang et a/. is used. Initial values
for the iteration are provided by a Nilsson plus BCS cal-
culation. Restrictions here are the neglect of parity mix-
ing and of the proton-neutron pairing as well as the re-
quirement of axial symmetry for the quasiparticle
transformation (3).

Fifth, the chosen effective Hamiltonian (2), the center-
of-mass Hamiltonian H, , and the number operators Z
and X are transformed into the quasiparticle representa-
tion (see Appendix A of I) and suitably stored.

Sixth, all the spin- and number-rotated matrices of Ap-
pendix 8 of I, except the interaction term, are calculated.
For this purpose suitable points for the later integration
have to be chosen. For the angular momentum projection
usually a Gaussian integration with up to 20 points from
0 to m/2 is performed. This limits the validity of the re-
sults to about spin I =26. An extension to larger spins
would require an increase of the number of angles to be
used. Such an extension is easily possible; however, it in-
creases the computer time linearly. For the number pro-
jection the integral operators (12) are discretized. Instead
of the integrals in Eq. (17) one uses the sums

L —1L„—1

r ", , (P)—: g g Re ~ exp i Xp (2k„+1)+Zp (2k~+1)
41.„ 4I.p

+Re exp i Zp (2k~+I) —Np (2k +1)p 4L Pl

y TL ", , - (2k +1),— (2k„+1),P
4L, ~ ' 41.„

L

(28)

which hold for L~,L„both larger than or equal to 1. It is
easy to show that besides the desired particle numbers
Zp, Np, (28) contams only admixtures from Zp+4L&v
(v=1,2, . . . .) and Xp+4L„v (v=1,2, . . . ). In practical
calculations usually Lz ——I.„=3 is sufficient. The quality
of this approximation is checked by calculating the parti-
cle number expectation values in the final wave functions
(19). In principle, the code could handle L~=L„&16.
However, this leads to a drastic (more than linear) increase
in the computer tilne.

Seventh, a configuration space is chosen. Here either
all 2qp configurations, or only those up to a certain E
value, or only those up to a certain unperturbed intrinsic
excitation energy, or a particular number of arbitrarily
chosen ones can be used. After calculating the interaction
terms then the matrices (18) of the Hamiltonian, the over-

lap, the center-of-mass Hamiltonian, and the number
operators are set up and number projected according to
Eq. (28). Here separate steps are used for the positive and
the negative parity states. Because of storage restrictions
on the IJnivac the present MONSTER version can only
handle up to 440 2qp configurations in these steps. On
larger machines an extension is easily possible.

Eighth, the number projected matrices (28) are spin pro-
jected according to Eq. (16).

Ninth, alternately to steps 7 and 8, the corresponding
number and spin projected matrices within the lqp states
to be constructed from (9) can also be calculated. This al-
lows an approximate description of the low-energy spectra
of the odd-A nuclei around the considered doubly even nu-
cleus, similarly as has been done in Ref. 4. Here all the
1qp states are always taken into account.

Tenth, the matrix equations (22),(23) and (26),(27) are
solved. This is done using standard methods discussed by
Wilkinson. The resulting energies and wave functions
are stored. Due to the storage shortage on the Univac in
this step of the program only up to 235 0&235 matrices can
be handled. On a larger computer, however, this number
can be easily increased.

Eleventh, electromagnetic transitions of arbitrary L
can be calculated. Each multipolarity requires a different
run. The procedure is similar to the energy calculation:
First, the rotated matrices are calculated, then the number
and spin projections performed, and finally the transition
amplitudes in between the wave functions (19) calculated.

Twelfth, for particular states the electromagnetic transi-
tions may be analyzed in terms of spectroscopic ampli-
tudes [C;Ci]„ for the spherical basis states. Thus, forL 7T

example, occupation numbers or general transition densi-
ties may be obtained. The latter may then for example be
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6
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(PHv) see

0
1 {T(;=+)

FIG. I. Lowest isoscalar (T =0) states for the nucleus Ne as
obtained in an 1s Qd basis using single-particle energies and a
MSDI from the literature (Ref. 26) as effective Hamiltonian. In
this case we obtain no pairing. Therefore the HFB solution (14)
is identical to the HF approach and the MONSTER reduces to
the PHM approximation (Refs. 11 and 14}. Both spectra are
compared to the results of a complete shell model diagonaliza-
tion (SCM).

as effective Hamiltonian (2). The parameters of this in-
teraction (Ao ——0.77 MeV, A& ——0.95 MeV, Bo———2.51
MeV, and Bi ——0.37 MeV) as well as the single-particle en-

ergies [e(d&i2)= —4.49 MeV, e(s&iz)= —3.16 MeV, and

e(d 3iq ) = 1.05 MeV] have been taken from the literature. ~6

The SCM calculations have been performed partly with
the Glasgow and partly with the Oak
Ridge —Rochester shell model computer codes.

For Ne the standard HFB procedure yields an un-

paired intrinsic prolate solution which coincides with the
Hartree-Fock (HF) solution already discussed in Ref. 14.
Angular momentum projection of the HP reference deter-
minant leads then to the yrast spectrum labeled by HF on
the left side of Fig. 1. Because of the lack of pairing the
intrinsic 2qp configurations (11) are then all one-
particle —one-hole (lplh) excitations with respect to the
HF vacuum. Using all these lplh configurations (alto-
gether 20 in the considered example) plus the HF vacuum
as configuration space for the MONSTER calculation one
obtains the states labeled by MONSTER (PHM) displayed
in the middle of Fig. 1. This is exactly the same spectrum
as obtained using the PHM approach in Ref. 14. Finally,
on the right side of Fig. 1, the results of the complete shell
model diagonalization (SCM) are given. As for the MON-
STER spectrum also here for simplicity only the lowest
isoscalar (T =0) states have been plotted.

It is evident from the figure that the inclusion of corre-
lations via the projected 1plh configurations yields a con-
siderable improvement for the Ne yrast levels. So, for
example the 0+ ground state is lowered by almost 400 keV
and the energy gain for the 8+ level even exceeds 1500
keV. The resulting MONSTER-(PHM) spectrum is in
rather good agreement with the exact shell model results.
This holds not only for the yrast levels but also for most
of the excited states except the three 0+ excitations and
the bands being based on them. However, these states are
known to be of predominant 4p4h structure with respect
to the deformed HF vacuum and hence cannot be expect-

used as input for distorted-wave Born approximation
(DWBA) calculations in order to analyze inelastic proton
scattering or similar processes. ' This step of the code is
by far the most time consuming.

Actual computer times for MONSTER calculations
will be given at the end of the next section.

TABLE I. Selected g(E2) values for Ne as obtained by ei-

ther the MONSTER (here identical to the PHM) or the SCM
calculations. In both cases effective charges of 1.5e for protons
and Q. 5e for neutrons have been used.

I; '/A If /fi MONSTER-8(E2)/e fm" SCM-8 (E2)/e fm

In order to check the quality of the MONSTER ap-
proximations discussed in Sec. II of the present paper we
have first studied some problems for which complete shell
model diagonalizations ' (SCM) are numerically still
possible. As examples for such problems we shall discuss
here calculations for the two nuclei Ne and Ne using
only the 1sOd-oscillator orbits as single-particle basis and
choosing spherical single particle energies plus the modi-
fied surface delta interaction (MSDI)

VMsDt(1 2) = 4vrAT5(fll2)5(ri R)5(r2 —R)+B—T

(29)

Q+

4+

2 I

2+
23+

4+
22'
0+
3+
4+
23'
22+

q+
4+
6+
23'
8+

289.1

0.1

1.4
120.9

4.2
1.3
0.2
8.2
0.1

0.1

5.6
4.9

75.0
1.0

40.2

282. 1

0.2
0.8

119.2
6.0
2.5'

0.1

8.7
0.0
0.0
5.8
5.4

72.7
1.4

34.8
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ed to be reproduced within the MONSTER configuration
space, which as has been discussed in Sec. II takes into ac-
count only up to 6qp correlations (i.e., 3p3h configura-
tions in the limit of vanishing pairing).

The good agreement with the SCM results is not re-
stricted to the excitation energies but holds also for quan-
tities being much more sensitive to details of the nuclear
wave functions than the latter. As an example we com-
pare in Table I a couple of selected 8(E2) values as ob-
tained with either the MONSTER or the SCM approach.
In both calculations effective charges of 1.5e for the pro-
tons and 0.5e for the neutrons have been used. Again the
agreement of the approximate MONSTER with the exact
SCM results is rather striking.

I.et us now turn our attention to the nucleus Ne. Here
an intrinsic prolate HFB solution is obtained which is
again unpaired as far as the protons are considered, but
now contains correlations from neutron-neutron pairing.
Consequently now the projected HF-yrast band displayed
in the first column of Fig. 2 differs from the HFB ground
band (14) shown in the second column. Owing to the neu-
tron pairing correlations energy gains of about 750, 450,
and 100 keV are obtained for the 0+, 2+, and 4+ members
of the yrast band and such, as expected, the effective mo-
ment of inertia is decreased. Owing to the breakdown of
the pairing correlations with increasing spin, however, at
higher spin values the projected HF states are expected to
be energetically favored. This is clearly seen for the 6+
and 8+ members of the ground band.

Using the intrinsic HF solution as reference and includ-
ing all the possible lplh excitations with respect to it (al-
together 26) in the configuration space one obtains now
the PHM spectrum shown in the third column of Fig. 2
while the MONSTER calculation being based on the HFB
reference determinant and including all the 46 possible
2qp configurations yields the spectrum displayed in
column four. Finally, in the last column of Fig. 2, the re-
sults of the complete SCM calculation are given. Again
the agreement between the MONSTER and the SCM re-
sults is surprisingly good especially if the MONSTER
ground-state energy being about 300 keV above the SCM
result is renormalized to the latter and only relative excita-
tion energies are compared. Again the excited 0+ states
are the levels which are worst reproduced by the MON-
STER approach though here in Ne due to the partial
blocking of 4p4h excitations by the two extra neutrons the
agreement is even somewhat better than in the Ne case
discussed above. It is furthermore interesting to note that
as far as the higher spin states are considered, the PHM
results are not far away from those of the MONSTER
calculation. For the lower spin states, however, especially
the 0+ and 2+ levels, the MONSTER approach is obvi-
ously far superior such showing the importance of pairing
correlations even in light deformed neutron excess nuclei.

In Table II selected 8 (E2) values are obtained with the
PHM, the MONSTER, and the SCM approach for the
nucleus Ne. Again an effective extra charge of 0.5e for
both protons and neutrons has been used in all the calcula-
tions. As in Ne also here the MONSTER reproduces
the exact SCM results with a rather satisfying accuracy.

The results discussed so far show that, except for those

22
Ne, T=l

—78

6—6

40

0

—2

0

4—2

PHM N3NSTER 5CM 1 (II=+)

FIG. 2. Lowest 7 =1 states for the nucleus Ne obtained
with the same basis and effective Hamiltonian as the Ne re-
sults in Fig. l. Here neutron pairing does contribute. Therefore
the HFB result (14}differs from the HF approach arid also the
MONSTER is not identical to the PHM limit. Again the results
are compared with those obtained by a complete shell model di-
agonalization (SCM}.

states which because of their predominant 8qp or even
more complicated structure are not accounted for in our
configuration space, the MONSTER approximations seem
to be indeed rather well justified. This gives us some con-
fidence that the MONSTER may be considered as a
reasonable approximation to the exact SCM wave func-
tions also in such model spaces, in which the latter are nu-
merically unaccessible.

As a first step in this direction we have considered the
nucleus Ti in a single-particle basis including all the
1pOf orbits. As an effective two-body interaction here the
matrix elements of Kuo and Brown ' with the modifica-
tions introduced by McCirory have been used. The
single-particle energies have been taken from Ref. 33. The
intrinsic HFB calculation for Ti using the defined effec-
tive Hamiltonian (2) yields a prolate reference determinant
which is paired not only on the neutron but also on the
proton side. In the chosen single-particle basis therefore
altogether 200 2qp configurations of the type (11) exist.
However, many of those correspond to the creation of ei-
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TABLE II. Selected 8(E2) values for Ne. The results of the PHM, the MQNSTER, and the SCM
calculations are compared. The same effective charges as in Ne have been taken.

8 (E2) /e fm"

MONSTER

0+ 21
2+
23'
22'
4+
2+
4+
3]
4+
23+

4+
3+
2+
6+
8+

10,+

283.4
5.1

22.4
0.6

139.2
0.9
0.4
2.3
7.2
0.3

47.3
143.3

0.8
103.9
56.1

15.1

287.0
3.3

19.3
7.9

128.7
0.9
1.1
1.0
0.4
3.6

10.0
130.1

5.6
100.1
56.5
14.9

279.1

4.9
16.3
6.8

124.5
1.2
4. 1

1.5
1.4

11.7
11.9
97.0
3.7

95.3
44.4

8.7

ther two particles in completely empty orbits or of two
holes in completely occupied orbits and hence do not con-
tribute to the wave functions for the nucleus under con-
sideration. %"c have therefore included in our calculations
only those 2qp excitations (11), for which u~ u~ +u~ u~ is

larger or equal to 0.09 where u~ (i = 1,2) is the occupation

number of the orbit q; and u~ = 1 —
U~ . Doing so the con-

figuration space consists finally only of 139 2qp configu-
rations besides the reference determinant (9). Of those 79
are neutron cxcitations while in 60 conf1gurations the two
quasiparticlcs are in proton orbits.

Since to our knowledge there exists no complete SCM
calculation for Ti using the full lpOf shell as single-
particle basis, unfortunately here the MONSTER results
can only be compared to those of other approximate cal-
culations. Several such results can be found in the litera-
ture. So, for example, Kutschera, Brown, and Ogawa'
calculated the Ti spectrum within the (f7&z)" model us-

ing the so-called Sc interaction the matrix elements of
which have been phenomenologically derived from the

Sc spectrum. Their results will be referred to as KBO in
the following. Furthermore, a calculation using exactly
the same single-particle basis and effective Hamiltonian as
we do has been published by Muthcr et a/. They used a
generator coordinate superposition of HFB solutions cor-
1cspond1Ilg to dlffc1"cnt 1ntrlns1c quadI'upQlc dcforIDat1ons
and on top of these solutions a couple of time reversal in-
variant .K =-0 2qp states to describe the Ti wave func-
tions. This calculation will be referred to as GCM+ QP
below. Another calculation for the "Ti has been per-
formed by Skouras who used a kind of angular-
momentum-projected many determinant approach allow-
ing even for particular 2p2h cxcitations of thc Ca. core.
These results will be labelled by SK in the following. Fi-
nally wc shall compare the MONSTER. results with the
projected HFB spectrum (14) referred to as HFB and, last-
ly, with the experimental data (EXPT).

~~Ti~, GRDLIND&AND

e 8
X

lQ

CC
Ltj

LLI

g 8

UJ

1Q lP

l2

lP

2 2

2O ~2

&0

FIG. 3. Ti ground bands as obtained by various methods
are compared to the experimental data (Ref. 40). The HFB, the
GCM + QP (Ref. 33), and the MONSTER results have been ob-
tained using a full 1@ofbasis and as effective Hamiltonian the
matrix elements by Kuo (Ref. 31) with the modifications of
McGrory (Ref. 32). On an absolute scale the GCM+ QP
ground state would be about 500 keV above the MONSTER re-
sult (Ref. 42). KBO refers to the (f7~2)" model with the 'Sc in-

teraction (Ref. 34) and SK to the calculation by Skouras {Ref.
35) which includes particular excitations of the Ca core.
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TABLE III. Spectroscopic quadrupole moments Q(I) and g factors g(I) for the yrast and some
selected nonyrast states in Ti. In the (f7qz)" model with the Sc interaction (KBO) (Ref. 34) an effec-
tive extra charge of 0.9e for both protons and neutrons has been used. In the present calculation
(MONSTER) this value was reduced to 0.7e. For the calculation of the g factors in both calculations
the bare single nucleon g factors have been used. The rotational limit for the g(I) is g~ ——Z/A =0.48.
Experimentally only the quadrupole moment of the first 2+ state is known (Ref. 41): Q (2~+)= —28+14
efm.

2+
4+
6j+
8+
10j+
12j+

14j+

16j+
22'
4+
6+
8+
7+
9+
11,

KBO

0.52
0.09
0.34
0.25
0.63
0.53
0.40

0.31
—0.41

0.82
0.68
0.18
0.62
0.53

g (I)/p~
MONSTER

0.34
0.35
0.63
0.60
0.61
0.48
0.40

—0.38
0.84
0.02
0.2a
0.14
0.41
0.41
0.48

KBO

13.19
11.44

—2.16
3.42

—25.63
—22.48
—23.63

—1.35
—16.75
—17.37
—15.72

1.29
—12.53
—21.85

Q(I)le fm
MONSTER

—16.53
—25.13
—25.69
—29.24
—35.59
—27.65
—30.67
—25.31

$0.54
0.83

—8.63
—10.80
—11.14
—16,35
—26.98

Figure 3 shows the ground bands of Ti as obtained
with these different methods and compares them to the
experimental data. Since most of the theoretical results
have been obtained using different Hamiltonians, unfor-
tunately only the relative energies can be compared.
Therefore, all the spectra except for the HFB result which
has been plotted at its proper energy relative to the MON-

STER spectrum have been renormalized to the experimen-
tal ground-state energy. The GCM+ QP band, which
was obtained with exactly the same Hamiltonian as the
MONSTER spectr'um, yields an absolute 0+ energy being
about 500 keV less bound than the MONSTER ground
state. 4'

Comparing the relative excitation energies in the

TABLE IV. Selected 8{E2)transitions in Ti. In the (f7&&)" model with the Sc interaction {KBO)
(Ref. 34) an effective extra charge of 0.9e for both protons and neutrons has been used. In the present
calculation (MONSTER) this value was reduced to 0.7e. The experimental values are from Refs.
36—40.

2+
4+
6+
8+
10j+
12+
14+
16+
2+
2+
12+
11+
8+

6+

5+

0+
2j+
4+
6+
8+
10j+
12+
14j+
0+
2+
11+
10j+
8+
6+
6+
4+
6j+
6+
6+
4+

(KBO)

116
128
110
123
69
42
29

2
38
25

5
33
0

49
4

55
0
1

13

0(E2;I; ~If)/e fm
MONSTER

138
186
189
172
119
51
49

0
4

92

7

0
93

18
1

33
6

EXPT

215+20
206+39
147+29
108+20
118+29
29+3
49+20

2
157

& 157
(50[9+—~8(+]
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ground band with the experimental data one has to con-
clude that all the calculations do rather well. So, for ex-

ample, the average deviation from the experimental exci-
tation energies up to the 10+ yrast state are only 110
(MONSTER), 150 (KBO), 190 (GCM+ QP), and 210
(HFB) keV (Skouras gives only results for I &6+) and
even if the recently measured 12+ and 14+ states are in-

cluded the average deviations of the MONSTER and

KBO energies being 180 and 200 keV, respectively, are
still rather small. On the other hand, the HFB spectrum
cannot reproduce these high spin states and yields now an

average deviation of about 600 keV.
Far worse is the agreement between the different

methods if the excited states are considered, selected ones
of which are displayed in Fig. 4. Here the MONSTER
reproduces the experimental data much better than
the other methods. The GCM+ QP method, which by
the way yields only even spin states since it was restricted
to time reversal invariant configurations, yields systemati-
cally higher, and the KBO approach systematically lower
excitation energies than the MONSTER. This becomes
especially evident if one considers, for example, the lowest
I =5+, 7+, and 11+ states as well as the lowest nonyrast
2+ and 6+ levels. On the other hand, the lowest excited

0+ state is only reproduced by Skouras's calculation. This
state seems to be of predominant 8p2h structure with

respect to the Ca core and lies therefore outside the
MONSTER model space which was restricted to the Ip Of
orbits.

Further support for the MONSTER approach especial-

ly with respect to the KBO model comes from the g fac-
tors g (I) and the spectroscopic quadrupole moments Q (I)
displayed in Table III as well as from the 8(E2) values

given in Table IV. So, for example, the KBO calculation
yields an oblate shape for the 2+ member of the yrast
band [Q(2+)=13 e fm ], while the MONSTER giving
Q(2+)= —17 e fm reproduces the experimentally estab-

lished prolate deformation of Q (2+ ) = —28+ 14 e fm
(Ref. 41) rather nicely. Drastic discrepancies between the
KBO method and the MONSTER approach are also ob-

tained for the spectroscopic quadrupole moments and g
factors of the other yrast and nonyrast states listed in

Table III for which, unfortunately, no experimental data
are available. Especially in the yrast band the small model

space used in the (f7/g)" model leads to strongly varying

g(I) and Q(I) values while the MONSTER approach
yields a more stable structure for these states. The advan-

Ti — SELECTED EXCITED STATES 12
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FIG. 4. Selected excited states for Ti. Methods and forces
are the same as in Fig. 3. Note that the CiCM+ QP approach
(Ref. 33) yields only even spin values since it was restricted to
time-reversal invariant K =0 configurations.

FIG. 5. Ground band and selected excited states of Ti as
obtained by the MONSTER are compared to the experimental
data (Ref. 40). In addition to the energies here also the B(E2)
values are given. Their units are e fm . Furthermore also the
spectroscopic quadrupole moment Qq of the lowest 2+ state is
given. The experimental data have been taken from Refs.
36—41, An asterisk indicates that a pure E2 decay has been as-
surned.



NUCLEAR STRUCTURE THEORY IN SPIN- AND NUMBER-. . . 319

tage of the larger model space is also reflected in the ap-
pearance of an I =16+ state (about 150 keV above the
14+ yrast level) while the maximum spin possible in the
KBO basis system is I =14+. Unfortunately, this 16+
level has only extremely small y-transition probabilities to
any of the lower excited states and therefore decays most
probably by particle emission. Hence it could not be ob-
served in the recent experiments establishing the ground
band up to the 14+ level. "

The superiority of the MONSTER approach is also evi-
dent from the B(E2) values listed in Table IV. Here the
MONSTER also reproduces the experimental data
much better than the KBO method. Using different effec-
tive charges for the various single-particle matrix elements
of the E2 operator, as should in principle be done, obvi-
ously even further improvements should be reached here.

Finally, in Fig. 5, we compare the MONSTER predic-
tions for the yrast and a few nonyrast states with the ex-
perimental level scheme proposed in Ref. 40. In addition
to the excitation energies here also the 8 (E2) values (in
units of e' fm ) and the spectroscopic quadrupole moment
of the lowest 2+ state (in units of e fm ) are displayed. As
can be easily seen the overall agreement of the two level
schemes is rather striking. The only open problems are
obviously the three side states at 4524, 5024, and 6201
keV for which no clear spin assignment but only some
suggestions have been given in Ref. 40. For the 6201-keV
level the authors of Ref. 40 suggested a spin value of
I~=9+ essentially because no y transition from this state
to the 6+ yrast level was observed and furthermore since
the KBO calculation predicts a 9+ level at about 6.5 MeV
(see Fig. 4). In the MONSTER calculation, however, no
9+ state below 7.2 MeV excitation energy is obtained. In-
stead the only level in the right energy region which shows
a considerable transition probability to the 8+ yrast level
and which has the experimentally observed property not
to decay to the 6+ member of the yrast band is the second
8+ state (see also Table IV). Thus we would propose spin
8+ for the 6201-keV level. Similar arguments hold for the
4524-keV level. Here our candidate would be the second
6+ state, which like the corresponding experimental level
does also not decay to the 4+ yrast state (see also Table
IV). For the middle state at 5024 keV, however, we have
a problem. Here the most suitable theoretical candidate
would be the second 5+ level. Unfortunately, as can be
seen from Table IV, this state does decay to the 4+ yrast
level in contradiction to the experimental findings. There-
fore, this state is given with a big question mark in Fig. 5.
Another open question is definitely why the large B(E2)
value obtained theoretically between the second 8+ and 6+
states is not observed experimentally. Thus also our sug-
gestions for the three side levels have to be considered
only as preliminary and some more experimental data and
perhaps also theoretical calculations are needed before the
assignment problem for these three side levels can be
solved satisfactorily. Nevertheless, we may conclude that
for the Ti case the MONSTER works rather well. It
may therefore be worthwhile to study also some neighbor-
ing nuclei with this method. Such calculations are in
preparation.

As the last test to be discussed in the present paper, we

have applied the MONSTER to the nucleus ' Er. For
this calculation a single-particle basis consisting of the
N =4 plus the Oh»&2 and Oh9/2 oscillator orbits for the
protons and out of the %=5 plus the Oi&3/2 and 1g9/2
states for the neutrons has been used. The same basis sys-
tem has been widely in use by the Munich group. ' ' As
single-particle energies those of Baranger and Kumar
have been taken and the effective interaction was an
ad hoc chosen pairing plus quadrupole pairing plus
quadrupole-quadrupole force with monopole and quadru-
pole pairing strengths of G~(I =0)=Gz (I =2)=31/A
MeV for the proton-proton and of G„(I=0)
=G„(I=2)=24/2 MeV for the neutron-neutron matrix
element and with quadrupole-quadrupole strength param-
eters of X~~ =X„'„=73M ' MeV and g~„=1003
MeV. Obviously all the exchange terms of this interaction
are accounted for in the calculations. Furthermore in the
calculations a constant effective moment of inertia for the
case of 8, /fi =5.8 MeV ' has been introduced, and as
configuration space only the 65 determinants (9),(11) with
the lowest unperturbed intrinsic excitation energies have
been taken.

Figure 6 shows the obtained yrast and yrare bands and
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FIG. 6. MONSTER results for the ground and the s band of
Er are compared to the experimental data (EXPT) (Refs. 44

and 45). In addition the HFB spectrum (14) is displayed. As
single-particle basis for the protons the N =4 shell plus the
Oh(1/2 and Oh9/2 orbits and for the neutrons the N =5 shell plus
the Oi13/2 and 1g9/2 orbits have been used. The single-particle
energies have been taken from Kumar and Baranger (Ref. 23)
and as effective interaction a pairing plus quadrupole pairing
plus quadrupole-quadrupole force was used. The parameters of
this force are given in the text. Furthermore a constant moment
of inertia of the core 0, /A'=5. 8 MeV ' has been introduced.
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FIG. 7. Backbending plot for the yrast band displayed in Fig.
6. For the calculation of the rotational frequency A'co and the ef-

fective moment of inertia 0/fi the convention of Ref. 12 has

been used. The experimental data are again from Ref. 45.

compares them with the HFB result (14) as well as with
the experimental data. ' It is clearly seen that while the
HFB result starts to deviate from the experimental spec-
trum already at low spins, the MONSTER yields a rather
good description of the experimental excitation energies.
This is also reflected in the so-called "backbending plot"
[twice the moment of inertia versus the square of the rota-
tional frequency with 20/fi and (fico) defined as in Ref.
12] for the yrast spectrum, which is presented in Fig. 7.
The backbending is reproduced at exactly the right spin
value and the overall shape of the experimental curve is
also rather well described. As compared to the HFB
cranking approach' up to now the only microscopic
model which could be successfully applied to the back-
bending in rare-earth nuclei, the MONSTER method
yields obviously a more quantitative description (see, for
example, the cranking result for ' Er in Ref. 20). This is
especially true in the band-crossing region where the
cranking approach because of the large and strongly vary-

ing angular momentum fluctuations contained in its wave
functions runs into serious trouble. '

Another advantage of the MONSTER approach using
quantum-mechanical many-body states having the proper
symmetries as configuration space is that the resulting
wave functions can be directly used to calculate also non-
diagonal quantities like electromagnetic transition proba-
bilities. As an example the calculated 8(E2) values in
and in between the yras and the yrare band are displayed
in Fig. 8 and compared to the experimental data. In
the MONSTER calculation here the Kumar-Baranger

2 I 4 I 6 I 8 I &01 12 I 14 I 16 I 1SI 20I 22 I

I /

FIG. 8. Quadrupole !ransition probabilities 8 (E2;I~I —2)
inside and in between the yrast and the yrare bands of ' Er are
displayed. For the MONSTER calculation the Kumar-Baranger
(Ref. 23) effective charges of ez ——1.622e and e„=0.622e have
been used. The experimental data have been taken from the
compilation in Ref. 45. Open squares refer to lifetime measure-

ments by a microwave technique (Ref. 46), open triang/es to the
Doppler-broadened line-shape measurements of Ref. 47. The
open circles label also Doppler-broadened line-shape measure-

ments but now from Ref. 45 and the black squares have been ex-

tracted from multiple Coulomb excitation measurements (Ref.
45). For comparison also the rigid rotor prediction (dashed line

in the upper half of the figure) is given. More detailed informa-

tion about the MONSTER results may be found in Tables IV
and V.

values for the effective charge ' (e~=1.622e, e„=0.622e
have been taken. The agreement with the experimental
data is rather satisfactory and could be even further im-
proved if, as could be easily justified because of our small-
er single-particle basis, slightly larger effective charges
would be used. Further information about the E2 proper-
ties of the yrast and yrare bands can be found in Table V,
where the usual rotational limit has been used to extract
from the calculated spectroscopic quadrupole moments
and 8(E2) values the static and dynamic intrinsic quad-
rupole moments Qo(I) and QI.I" 2, respectively.

Obviously, the MONSTER does not only yield the yrast
and yrare levels but produces a lot of other excited states,
too. As an example the calculated y band is compared
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yrare~
yrastyrast yrare

TABLE V. Dynamic quadrupole moments QPI" 2 as calculated from the B(E2;I~I —2) values and
spectroscopic quadrupole moments Qp(I) in ' ~Er. In the rotational limit both these quantities should
be constant with I. Columns labeled with "yrast" refer to the yrast, those with "yrare" to the yrare
band. For the dynamical moments also the cross terms "yrast yrare" and "yrare yrast" are given. As
effective charges the Kumar-Baranger (Ref. 23) values e~ = 1.622e and e„=0.622e have been taken.

QI I —2I e fm Qp(I)/e fm
yrast~

yrare yrast

4
6
8

10
12
14
16
18
20
22

712
713
714
718
720
719
701
525
665
689
690

582
651
499
671
705
706

79
165
464
194
53
21

55
164
489
224

75
39

711
707
700
696
688
684
684
669
659
656

672
655
642
652
661
660

with the experimental one in Fig. 9. In addition to the
excitation energies here also the B(E2) values (in units of
e fm") are displayed. It is easily seen that though the
overall qualitative features of the experimental y band can
be reproduced, the quantitative description of the spec-
trum is far less accurate than in the case of the yrast and
yrare bands especially for the higher spin states. Further-
more, , in order to reproduce the experimental 2+ bandhead
energy the theoretical spectrum had to be shifted down by
640 keV. Thus obviously the present MONSTER calcula-
tions for ' Er should still be improved. ,

There are several possibilities to achieve this. For ex-
ample, in future calculations the full Kumar-Baranger
basis (X =4, 5 for protons, X =5,6 for neutrons) should be
taken. Furthermore, it is intended to enlarge the number
of configurations and such to improve the description
especially of the side bands. In addition it is by no means
obvious that the effective interaction should have the sim-
ple structure assumed here. More realistic effective forces
may be necessary. Lastly, in order to find a reasonable
parametrization of such interactions and also to get some
experience about how many 2qp excitations should be in-
cluded in the configuration space, definitely a systematic
study of several nuclei in the rare-earth region will be una-
voidable. Such a systematic investigation will be done in
the near future.

Nevertheless, we think already that the present calcula-
tions for Er prove the ability of the MONSTER ap-
proach to describe not only light and medium heavy nu-
clei but also the backbending effect and the related phe-
nomena observed in the rare-earth region.

Finally, before closing this section, we would like to
mention that the MQNSTER code though doing a tremen-
dous job is far less time consuming than one would expect.
So, for example, the calculation of all the energies and
wave functions in the Ne and Ne cases took 1.5 and 2.5
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FIG. 9. y band of ' Er is displayed. The experimental data
have again been taken from Ref. 45. The MONSTER results
have been renormalized to the experimental band head energy
{downshift of 640 keV). In addition various B(E2) values, all in
units of e fm, are given.
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min CPU time, respectively. The Ti was the most time
consuming example. Here 2 h of CPU time were needed.
The ' Er calculation, on the other hand, was done in only
about 1.5 h CPU. All these times are measured on the
Tiibingen Univac 1100/80. On the Jiilich IBM the code
runs by a factor of more than 4 faster.

V. CONCLUSIONS

The MONSTER approach discussed in the present pa-
per approximates the nuclear wave functions by linear
combinations of the angular momentum and number pro-
jected HFB vacuum and the corresponding equally spin
and number projected 2qp excitations with the configura-
tion mixing degrees of freedom to be determined after the
required symmetry properties of the quasiparticle deter-
minants have been restored. Thus the model accounts for
possible spin dependencies of the configuration mixing
and simultaneously avoids all the difficulties due to rota-
tional spurious admixtures which would occur if the
chosen Hamiltonian would be diagonalized in spin-
nonconserving configuration spaces. The MONSTER can
be considered as a straightforward extension of the spin
projected particle hole model (PHM) on HF basis, which
has been used during the last couple of years with some
success for the description of giant multipole resonances
as well as of low excited states in self-conjugate light dou-
bly even nuclei. "' ' Hence it contains all the advan-
tages of the latter. However, accounting in addition for
the rather important proton-proton and neutron-neutron
pairing correlations by taking an HFB instead of an HF
reference potential, the MONSTER can be applied to a
much larger variety of nuclear structure problems than
the simpler PHM approximation.

The MONSTER computer code developed during the last
three years allows for rather general applications. So, for
example, large single-particle and configuration spaces can
be used as well as arbitrary two-body forces. Unlike a
similar method recently presented by Hara, who neither
allows for general two-body forces nor projects on the
proper particle numbers, the MONSTER is not restricted
to rather special nuclear structure problems but can be ap-
plied almost anywhere in the mass table. Furthermore,
besides the low excited states in not too heavy nuclei also
higher excitations like the giant multipole resonances are
numerically accessible. Lastly, besides the energies and
wave functions the MONSTER code allows also the calcula-
tion of electromagnetic transitions and transition probabil-
ities of various multipolarities (I. & 10-) and hence a very
detailed analysis of the wave functions.

In the present paper several applications of the MON-
STER have been discussed. First, it has been shown that
in small model spaces the MONSTER wave functions are
a rather good approximation to those resulting from a
complete shell model diagonalization (SCM). As exam-
ples spectra and B(E2) values for the two nuclei Ne and

Ne obtained in a 1sod shell basis have been presented.
Second, using the full lp Of basis the nucleus " Ti has been
studied. Here the MONSTER turned out to be superior
to a couple of other microscopic approaches and a rather
satisfying agreement with the experimental data could be
achieved. Finally, the MONSTER has been applied to the
nucleus ' Er. Though only a rather simple ad hoc chosen
interaction was used, here the agreement with the experi-
mental data is rather encouraging. So, for example, the
excitation energies of both the ground as well as the S-
band levels could be very well reproduced and also for the
8 (E2) values the agreement with the experimental data is
rather satisfying. Problems do still exist with the descrip-
tion of some side bands like the y band. However, here
the use of a more realistic interaction and a larger basis
and configuration space is likely to improve the results
considerably.

We believe that the results presented here provide con-
vincing evidence for the applicability of the MONSTER
in various mass regions. Obviously there is still a lot to be
done. Many systematic studies will be needed to find out
how the effective interactions to be used in different
model spaces and mass regions should look like and what
particular configuration spaces have to be used. Further-
more, in the long run it would obviously be desirable to
improve the basic MONSTER assumptions in the direc-
tion of the more sophisticated models discussed in paper I
of the present series of papers. One large step in this
direction would be the use of a spin-dependent HFB
transformation as reference for the MONSTER approach,
another the inclusion of proton neutron pairing. Both
steps would help to account for even more correlations in
the nuclear wave functions than the present approach.
Since they do not require any essentially new techniques
besides those already used in the present MONSTER code,
the numerical realization of these two steps seems to be
possible within the next few years.

Thus at present we are at the beginning of a long road.
Only the first steps have been taken. However, we are
quite confident that the MONSTER may develop during
the next few years into a rather useful tool for microscop-
ic nuclear structure investigations in various mass regions,
including light as well as intermediate and heavy nuclei.
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