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In the present paper a general survey of the mathematical formalism for microscopic nuclear
structure calculations in configuration spaces consisting of arbitrary spin- and number-projected
Hartree-Fock-Bogoliubov —type quasiparticle determinants is given. On the basis of this formalism,
various levels of approximation are then discussed. These lead to a number of microscopic nuclear
structure models in between the standard Hartree-Fock-Bogoliubov theory and the complete diago-
nalization of a given effective many nucleon Hamiltonian. For all these models variational equa-
tions are derived and possibilities for their numerical application are estimated. The second part of
the present series of two papers will then present initial results of the applications of the simplest of
these models to several nuclei in various mass regions.

I. INTRODUCTION

Microscopic nuclear. structure theory usually assumes
that the eigenstates of the considered A-nucleon system
can be reasonably well approximated within a suitably
chosen finite model space spanned by a number of ortho-
normal single nucleon basis states. Assuming furthermore
that the effective many nucleon Hamiltonian appropriate
for this model space is known, then obviously the best one
can do is to diagonalize this Hamiltonian in the space of
all the 3-nucleon Slater determinants which can be con-
structed by distributing the A nucleons over the M orbitals
of the single-particle basis system. Such complete shell
model configuration mixing (SCM) calculations have been
performed for many nuclei during the last two decades
and yielded extremely valuable contributions to the micro-
scopic understanding of nuclear structure properties as
well as of effective nuclear interactions. '

However, because of the very large dimensions of the
matrices to be diagonalized the SCM approach is unfor-
tunately. restricted to rather small model spaces like the
lsOd shell or comparable basis systems. Consequently
even with the best computers available up to now most of
the heavier nuclei as, for example, those of the rare-earth
region cannot be studied using this procedure. Equally
not accessible to SCM calculations are furthermore, with
only a few exceptions, all those problems for which
a priori the use of several major shells as single-particle
basis is required as, for example, the description of nega-
tive parity states in doubly even open shell nuclei or the
investigation of the structure of the highly excited giant
multipole resonances (GMR's). Hence here as well as for
many other problems suitable approximations to the nu-
merically inaccessible SCM solutions have to be found.

Faced with the problem of how to truncate the com-
plete set of Slater determinants to a numerically manage-
able number of configurations, it is obviously desirable to

transform the single nucleon basis states in such a way
that the residual interaction between the resulting A-
nucleon configurations becomes small, i.e., to find such a
representation of the model space in which as few config-
urations as possible account for as many of the correla-
tions as possible in the nuclear states under consideration.

The probably best known approach along these lines is
the Hartree-Fock (HF) theory, which provides us with a
prescription of how to extract directly from the chosen
many nucleon Hamiltonian the optimal average potential
each of the nucleons feels due to its interactions with all
the others. The ground-state wave function of the con-
sidered nucleus in the HF approximation is then given by
a single Slater determinant in which the A energetically
lowest orbits of this optimal "self-consistent" potential are
occupied. A refined description of the nucleus may then
be obtained by expanding the ground-state correlations as
well as the excited states of the considered system in terms
of n-particle —n-hole (np-nh; n =1,2, . . . , A) excitations
from the filled into the empty orbits of this reference
determinant and by diagonalizing the residual interaction
in the resulting configuration space. Defined with respect
to the optimal single-particle potential this expansion
should converge much faster than the SCM expansion and
hence its truncation can be more easily justified than that
of the original SCM configuration space.

In doubly closed shell nuclei the HF potential is spheri-
cal. Therefore, here the lplh excitations as well as the
2p2h ones can be easily coupled to the desired spin quan-
tum numbers. Hence, for example, for the description of
the GMR's in spherical nuclei the usual techniques like
the Tamm-Dancoff (TDA) or random-phase (RPA) ap-
proximations can be easily applied and even refinements
like the "spreading" of the GMR's due to the coupling of
their lplh gross structure to the 2p2h excitations can be
taken into account. Indeed such calculations have been
performed with great success during the last decade
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yielding very essential contributions to our knowledge
about the structure of the GMR's in spherical nuclei.

In open shell nuclei, however, the price to be paid for
the attempt to account for as many correlations as possi-
ble by a single Slater determinant is higher: Here the HF
transformation usually breaks the required rotational sym-
metry. Consequently the resulting configurations cannot
be viewed as physical states but only as some "intrinsic"
structures from which the physical solutions of the con-
sidered problem have still to be obtained by angular
momentum projection techniques. Furthermore, since
the symmetry breaking configurations are at least partly
linearly dependent with respect to rotations it is essential
to perform the projection on the desired angular momen-
tum quantum numbers before the diagonalization of the
residual interaction. Only in this way can problems with
rotational spurious admixtures be avoided and possible
spin dependencies of the configuration mixing be taken
into account. '

Using the above description and truncating the intrinsic
configuration space after the lplh excitations one obtains
the angular-momentum-projected deformed particle hole
model based on the HF approach (PHM), in which the
nuclear wave functions are approximated by linear com-
binations of the angular-momentum-projected deformed
HF reference determinant and the equally spin projected
deformed lp1h configurations with respect to it. Consid-
ering doubly even X =Z nuclei in an sd-shell model space
the PHM approach is an excellent approximation to the
exact SCM solutions. However, contrary to the SCM
prescription, the PHM method, which contains the usual
Tamm-Dancoff approximation as limiting case for doubly
closed shell nuclei, can be applied in rather large model
spaces and hence could be used with some success for the
description of the GMR's as well as of low excited posi-
tive and negative parity states of some doubly even X =Z
nuclei in the lsOd-shell mass region.

However, since it is based on an HF reference, the
PHM approach is obviously restricted to such nuclei for
which the HF description itself can already be considered
as a reasonably good approximation. This limits its appli-
cability essentially to light self-conjugate nuclei. As soon
as neutron excess nuclei are considered pairing correla-
tions start to play an important role and consequently the
PHM method not accounting for such correlations has to
fail. Hence, unfortunately, not even light neutron excess
nuclei can be described within the PHM limit and for the
heavier systems, for example, those of the rare-earth re-

gion where pairing becomes one of the essential degrees of
freedom, the PHM approximations become even less justi-
f1ed.

In order also to cover these nuclei one has essentially
two possibilities: Either one increases the PHM configura-
tion space by including the 2p2h and maybe even higher-
order excitations or one skips the HF approximation itself
and tries to account for the possible pairing correlations
right from the beginning. The first procedure leads to
drastically increased dimensions of the matrices involved
and therefore, at least in large model spaces, to essentially
the same numerical difficulties as the SCM method dis-
cussed at the beginning of this section. Therefore, the

second possibility, namely to include the pairing correla-
tions directly in the reference potential via the well-known
Hartree-Pock-Bogoliubov (HFB) transformation, seems
to be much more promising. In contrast to the HF ap-
proximation, in which a system of independent particles
serves as reference state, the HFB approach yields as
reference configuration due to the inclusion of pairing a
system of independent "quasiparticles" each of which has,
with some probability, particle as well as hole character.
Consequently, this reference configuration does not have a
sharp Fermi surface and an expansion of the additional
correlations in terms of particle-hole states looses its
meaning. Instead —considering doubly even nuclei —the
lplh configurations now have to be replaced by two
quasiparticle (2qp) excitations, the 2p2h ones by 4qp
states, and so on.

The HF—as well as the HFB—approach in general
breaks the required rotational symmetry. Furthermore
the HFB transformation violates the particle-number con-
servation. Hence, here, in addition to the angular momen-

tum projection, projections on the desired proton and neu-

tron numbers are also required, which for similar reasons
as discussed above for the spin projection, have to be per-
formed before the diagonalization of the residual interac-
tion.

In the present paper we shall present a quite general
survey of different possibilities for approximating the nu-

merically inaccessible solutions of complete SCM calcula-
tions in large model spaces using the ideas outlined above.
In Sec. II we shall first develop a particular formulation
of the HFB theory and the necessary projection tech-
niques, which will turn out to be very suitable to develop
models anywhere in between the usual HFB approxima-
tion and the exact diagonalization of an effective Hamil-
tonian in a finite single-particle basis. Using this formal-
ism we shall then discuss in Sec. III various levels of ap-
proximation where we can either put the emphasis on how
to obtain the optimal mean field (which in general de-

pends on both the chosen configuration space as well as
the considered angular momentum) or on the construction
and truncation of a suitable set of A-nucleon configura-
tions serving as a basis for a subsequent diagonalization of
the residual interaction. Conclusions will then be present-
ed in Sec. IV and some detailed expressions of certain ma-
trix elements will be given in two appendixes.

In paper II of the present series of papers we shall then
specialize the ideas developed here with the aim to con-
struct a numerically feasible model. This model —the
model for handling large numbers or number- and spin-

projected two-quasiparticle excitations with realistic in-
teractions and model spaces (MONSTER) approach —will

then be applied to several nuclei in various mass regions
and its results be compared with those obtained with other
methods and with the experimental data.

II. BASIC FORMALISM FOR CALCULATIONS
'WITH ARBITRARY HFB-TYPE CONFIGURATIONS

We shall define our model space by a finite, M-
dimensional set of orthonormal single nucleon states
I ~

i ),
~

k ), . . . I ~. The corresponding creation and an-
nihilation operators obey the usual Fermion commutation
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rules and will be denoted by I C;,Ct„. . . I sr and

I C;, Ck, . . . J~, respectively. We shall furthermore assume
that the effective many nucleon Hamiltonian appropriate
for this model space is known and can be written in the
chosen representation as a sum of only one- and two-body
terms

d —= gD;*C; (2)

H= gt(ir)C; C, + —,gu(ikrs)C; CkC, C„,
ikrs

where t(ir)=—(i
~

t
~

r) and U(ikrs)=(ik
~

V~ rs sr) a—re
shorthand notations for the one-body matrix elements and
the antisymmetrized two-body matrix elements of the ef-
fective interaction, respectively.

The exact solutions of the A-nucleon problem in the
chosen finite model space can then be obtained by di-
agonalizing the given Hamiltonian in the space of all the
3-nucleon Slater determinants which can be constructed
out of the M single nucleon basis states.

Obviously these solutions are invariant with respect to a
unitary transformation of the single-particle basis

with all the others are occupied and the remaining
(M —2) ones are empty.

The number of correlations accounted for by a given
number of configurations can even be further increased, if
instead of the HF-type single-particle states (2) the quasi-
particle states of the well-known Hartree-Fock-
Bogoliubov (HFB) theory ' ' are used as building blocks
for the many nucleon configurations, because then the im-
portant pair correlations between the nucleons induced by
the short-range attraction of the effective interaction can
be included in the average field itself and hence do not
have to be taken into account explicitly via configuration
mixing. Such a theory, which tries to optimize its trun-
cated configuration space using HFB-type quasiparticle
determinants as basis states will be described in detail in
the following sections.

A. HFB-configuration space

Elementary building blocks of the theory presented here
are the HFB quasiparticles

a —= g [A;~(q)C; +8; (q)C;] (5)

or, in matrix notation
or, in matrix notation

where the unitarity

D D=DD =U~

r

a (q) F C A (q)B (q) Ct
a(q)

= q C
=

Bt(q)At(q) C

where the unitarity of the transformation F (q)

F(q)Ft(q) =Ft(q)F(q) = Uzi (7)
with UM being the (MXM) unit matrix, guarantees the
Fermion properties of the new particle creation and an-
nihilation operators d and d~. In other words, when di-
agonalizing H in the complete space of 3-nucleon Slater
determinants it does not matter whether these are con-
structed using as building blocks the eigenstates of the
originally chosen basis creating potential or the orbits d
of some other average potential in the model space.

If, on the other hand, only a subspace of the total con-
figuration space is taken into account —and this is usually
the case since at least on present day computers complete
"shell model configuration mixing" (SCM) calculations'
are unfortunately restricted to rather small model
space—then the choice of the average potential becomes
essential. In fact, for each particular incomplete set of
m A-nucleon Slater determinants there exists an optimal
average potential, which can be obtained m. inimizing the
total energy by treating not only the mixing coefficients of
these Slater determinants but also their building blocks,
i.e., the elements of the transformation matrix D, as varia-
tional parameters. The resulting wave functions are then
the optimal approximation to the exact solutions, which
can be reached in the truncated space of only m A-
nucleon Slater determinants provided that these are all de-
fined with respect to one and the same average potential.
For m = 1 this "multiconfiguration-Hartree-Fock"
(MCHF) procedure obviously reduces to the well-known
Hartree-Fock (HF) method, which approximates the nu-
clear ground state by a single Slater determinant, in which
the A energetically lowest orbits of the optimal average
potential each of the nucleons feels due to its interaction

with U2~ being the (2M X2M) unit matrix, is required to
ensure that the quasiparticle operators (6) fulfil the Fer-
mion commutation rules. The parameter q has been intro-
duced in order to distinguish between different transfor-
mations of the type (6) and can hence be interpreted as a
sort of "quasiparticle representation label. "

Each of the quasiparticle operators (6) is a linear com-
bination of both particle creation and annihilation opera-
tors and therefore has with some probability "particle" as
well as "hole" character. So the "smearing" of the sharp
HF-Fermion surface due to the virtual scattering of corre-
lated nucleon pairs into the unoccupied orbits is taken into
account.

Using (7) one obtains from (6) immediately the inverse
transformation

r r

C t a (q) A'(q)8(q) at(q)
C q a(q) B*(q)A(q) a(q)

I
tq)o&—= g a.(q)

I
o&,

a=1
(9)

which expresses the creators and annihilators of the single
nucleon basis states in terms of the quasiparticle operators
(6) and can hence be used to transform any arbitrary
operator whose basis representation is known into the
quasiparticle representation q. As an example the quasi-
particle representations of the total Hamiltonian (1) and
the nucleon number operators are given in Appendix A.

The condition (7) ensures that a ~(q) =0 for all
a = 1, . . . , M. Therefore the configuration
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where
~

0& denotes the particle vacuum, is obviously the
vacuum state of the quasiparticle operators (6) and hence
the equivalent of the HF ground-state Slater determinant,
which has been mentioned above.

It is obvious from the transformation (6) that the state
(9) does not conserve the total number of nucleons. In-
stead, if M is even as is usually the case, the configuration
(9) is a linear superposition of different components corre-
sponding to all the even nucleon numbers A (0&A &M)
which are possible in the chosen model space. This is the
price for taking into account the pair correlations impli-

citly via the transformation (6) rather than explicitly via
configuration mixing.

On the other hand, the "one-quasiparticle" (1qp) states

I
IqIi&=—a, (q)

I fqIo& qi=» (10)

contain only the odd A components (1 &A &M —1). These
states are also known as "blocked" HFB states since in
them the quasiparticle orbit q& is not participating in the
virtual pair scattering.

Generally, each arbitrary "n-quasiparticle" (nqp) state

~ Iqlo& for n =0

IIa&, (q)
I Iqjo&, qi&q2» q„=l, . . . , M; for n=1, . . .

consists for even n only out of even A, for odd n only out
of odd A components. Following Mang' we shall refer to
this property of the HFB states (11) as "number parity. "

It is interesting to note that each of the states (11) can
be considered as a vacuum of a particular set of quasipar-
ticle operators defined by a transformation matrix F(q')
which is obtained from the original transformation F(q)
by interchanging the n rows corresponding to the opera-
tors az (q)(i =1, . . . , n) with those corresponding to the

operators az (i = 1, . . . , M)

Because of the unitarity (7) of F(q) the states (11) for
n =0, . . . , M form a complete set of orthogonal configu-
rations for all the possible ~odel space nuclei with
0&A &M. Its dimension

M M
dim(I /qI&)= Q dim([ Iq]. &)= g

n=0 n=0

equals the sum of the total SCM dimensions for all these
nuclei. Therefore, the diagonalization of the Hamiltonian
(1) in the complete space (11) yielding the exact solutions
for all the model space nuclei simultaneously is obviously
numerically even more involved than a complete SCM cal-
culation for a given particle number A. However, each of
the configurations (11) is already a rather complicated
linear combination of very many Slater determinants and
hence contains many more correlations than any of the
latter. Consequently, with a suitable choice of F(q) in any
incomplete subset of m configurations out of the complete
space (11) one can obviously reach a better approximation
of the exact solutions than would be possible by using the
same number of Slater determinants as basis states.

Again for any incomplete set of m quasiparticle deter-
minants of the type (11) there exists an optimal basis
transformation F(q) of the form (6) corresponding to an
optimal average field which, at least in principle, can be
obtained by treating the mixing coefficients of these deter-
minants and the matrix elements of F(q) simultaneously
as parameters in a variational principle for the total ener-

gy. For m = 1 this procedure now reduces to the standard

I

HFB theory.
Unfortunately, as already mentioned in the Introduc-

tion, in general the configurations (11) are eigenstates nei-
ther to the square of the total angular momentum opera-
tor nor to its projection along the z axis of the chosen
frame of reference. Consequently the determinants (11)
cannot be considered as physical states but only as some
"intrinsic" structures from which the physical states in
the laboratory system have still to be obtained by restoring
the broken rotational symmetry. The easiest way to
achieve this would be to diagonalize the Hamiltonian first
in the chosen truncated subspace of (11) and then project-
ing the required spin quantum numbers out of the result-
ing wave function. However, this procedure would lead to
severe difficulties. First, obviously spin dependencies of
the configuration mixing are not accounted for and
second, and even more serious, the results would depend
on the orientation of the chosen intrinsic frame of refer-
ence since truncated subspaces of (11) are in general not
invariant under rotations. Hence diagonalizing H in the
intrinsic system we would give the system the possibility
to gain energy by simply changing its orientation. In or-
der to avoid these spurious effects and to take into ac-
count possible spin dependencies of the configuration mix-
ing it is therefore essential to restore the broken rotational
symmetry before the diagonalization of the residual in-
teraction. '

It has furthermore already been mentioned above that
the configurations (11) do mix rather different nucleon
numbers. Also here a diagonalization in a truncated sub-
space of (11) would yield spurious effects due to the mix-
ing with components corresponding to other nuclei than
the considered one, Consequently, the desired nucleon
numbers also have to be restored before the diagonaliza-
tion of the residual interaction.

Last but not least, in general also F(q) will depend on
spin and nucleon number. Hence in principle also the
variation of the transformation F(q) should be performed
after restoring the broken symmetries. We shall come
back to this problem in Sec. III of the present paper.

For the moment we shall assume that F(q) is given and
a particular subset of (11) has been chosen. The tech-
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niques to restore the broken symmetries in such a set of
HFB configurations are well known. "" However, since
they are very essential for our theory we shall describe
them in detail in the following two sections.

B. Particle number and angular momentum projection

Let I ~

NZIKX) j be a complete basis of orthonormal
shell model configurations for the chosen model space.
Here N denotes the neutron, Z denotes the proton number,
I is the total angular momentum, E is its projection on the
z axis of the chosen intrinsic frame of reference, and X
represents all the necessary additional quantum numbers.
The total number of those configurations is 2 (12). Each
of the configurations

~ Iqj) out of the last section can
then be expanded as

= g ~ No ZoIMX ) (yf)z (19)

which already have the required number and spin quan-
tum numbers, but which still depend on the orientation of
the intrinsic system via their K dependence. Furthermore
they are obviously neither normalized nor orthogonal.

Let us now assume that we have a number of intrinsic
configurations

~ Iqj) of the type (ll), which do not
necessarily have to belong to only one quasiparticle repre-
sentation q. The most general wave function construct-
able in the defined truncated subspace of the total shell
model configuration space has then the form

(NoZoI}~i;NpzpIM)= g ~
IqjNozpIM;K)f(q}'»;

Iq IK

~

NZIKX&(NZIKX
~ I q j &

NZIKX

~
NZIKX)y,'".(",}' .

NZIKX

Obviously the operators

Q(No) —= g I
NozIKX) (NpZIKX

~

ZIKJ
and

Q (Zp ):—Q ~

NZ pIKX ) (NZ pIKX
~

NIKX

(13)

(14)

where the first sum runs over all the HFB configurations
~ Iq j) to be included as well as over all the 2I+1 K

values and the f 's are variational parameters being re-
stricted only by the constraint

f'Nf = (yf)'(yf) =—& (20)

which guarantees the orthonormality of the states (19).
Here U is the unit matrix and the overlap matrix N is de-
fined by

(NoZoI)
N (q }» (q')»' = & I q'j NozoIM 'K

l I q
'
jNoZoIM 'K'

&

(21)

P(IM;K)= g ~NZIMX)(NZIKX
~

NZJ
(16)

which produces a state with spin I and projection M in the
laboratory frame of reference from the (I,K) component
of (13) in the intrinsic system. Obviously this operator is
a mathematical projector only for M =K. However, as we
shall see below, the use of the nondiagonal form (16) is
essential, since only then the resulting total wave functions
will become independent of the particular orientation of
the intrinsic reference frame.

The three operators defined above do commute with
each other and can hence be applied in arbitrary order.
Application of

P(NoZoIM;K): P(IM;K)Q(Zo)Q—(No )

= g t N, Z,IMX) (N,Z,IKX
i

(17)

on the expansion (13) yields a set of configurations

I Iq jNoZoIM'K& =P(NoZoIM'K)
I
—Iq j &

project from the expansion (13) onto the components with
fixed neutron number Np and proton number Zp, respec-
tively. Both operators are Hermitian and idempotent and
hence true mathematical projectors.

Conceptionally more difficult is the projection onto
good angular momentum states. Here one usually intro-
duces the operator

N is Hermitian by construction and furthermore, since for
any arbitrary column vector z with the proper dimension

z tNz =z (y y)z = (yz) (yz) )0 (22)

also positive definite.
The configuration mixing coefficients f can then be ob-

tained by requiring a minimum of the expectation value of
the Hamiltonian (1) in the state (19) with respect to varia-
tions of the parameters f constrained by the orthonormali-
ty condition (20). One gets

(H EN)f =0— (23)

with N out of Eq. (21) and H being defined as

(NoZoI)
H(q}'» (q )» =

& [q jNoz. oIM;K IH I
Iq'jNoZoIM;K'&

S (24)

where

hzz'(NoZoI):(NozoIMX
I
H

~

NozoIMX'&

is the representation of H in the shell model basis.
The solution of (23) under the constraint (20) is

equivalent to the diagonalization of H in the subspace of
a11 the shell model configurations for given No, Zo, and I,
which are contained in the chosen truncated intrinsic con-
figuration space. This can be seen by rewriting (23) with
the help of Eqs. (21) and (24). One obtains

(NoZoI= g ~

NozoIMX)yz. (q)» (18)
y (h' EU)(yf)=0— (26)
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which has to be compared to the equation S„((td„)—=exp( —i i/(„N ) (34)

(h' E—U)g =0 (27)

R(Q) =R(a,P, y)

—:exp( —iaI, )exp( i PI& )—exp( i yI—, ) (28)

where Q=(a, /3, y) are the three Euler angles, on the in-
trinsic configurations (13). This yields a new set of rotat-
ed configurations

giving the exact model space solutions for given Xo, Zo,
and I.

Furthermore, it can easily be shown that the wave func-
tions (19) indeed do not depend on the intrinsic orienta-
tion. For this purpose we apply the usual rotation opera-
tor"

where N is the neutron number operator, we may for ex-
ample write

S„($„)= US„((/(„)U

~
NZIKX)exp( iP—„N)(NZIKX

~
.

NZIKX

(35)

Multiplying this identity from the left with
(1/2m. )exp(iP„NO) and integrating over ()I(„ from 0 to 2m

yields then immediately

Q(NO)= g i
NOZIKX)(NOZIKX

2IK+

~ Iqj ) =R(Q)
~ Iqj )

=(1/2n )f di/i„exp(ii/P„NO)S„(i/i„) (36)

NZIKX

gran(q~jrc

Dfcx (»
K'

which is the more familiar integral representation" of the
neutron number projector (14). In the same way one ob-
tains

NZIKX )yg. (q) x
NZIKX

where the D function

Dicic (Q) = (IK
~

R(Q)IK')

(29)

(30)

g(Z, ) = g ~

NZ, IKX) (NZ, IKX
~

NIKE

=( /(2 e)ef ddeexp(ideZe(Sp(de), (37)

is the familiar representation of the rotation operator in

good angular momentum states. ' Diagonalizing H in the
resulting set of projected configurations (18), now with f s
as variational parameters, it becomes obvious that (29) in-
duces only a unitary transformation on the original f 's.
By writing

where

S~(qI(~ ) =exp( i i/i~Z )— (38)

with Z being the proton number operator.
To derive an integral expression for the operator (16) we

can use exactly the same method. Here we write the rota-
tion operator (28) as

~NOZOI) ~ (N()Z()I)f (q)sc = QDxx (Q)f (q)'rc';
K'

it follows immediately that

(31) R(Q) = UR(Q) U

NZIKXK'
i
NZIKX)Dxic (Q)(NZIK'X

i
(39)

~f=sf (32)

and hence the resulting wave functions (19) remain un-
changed.

Note that the use of the nondiagonal form (16) of the
angular momentum projector requires the diagonaliza&ion
of H according to Eqs. (23) and (20) even if only a single
HFB state is included in the intrinsic configuration space.
The projection procedure discussed in the present section
therefore leads us already some steps beyond the mean-
field concept underlying the standard HFB theory.

Unfortunately, in most cases the decompositions (13) of
the intrinsic configurations in terms of shell model states
are very hard to obtain. Therefore, in general the forms
(14)—(16) of the projectors cannot be used in practical cal-
culations but other representations have to be chosen. Us-
ing the identity operator

(40)

which is the well-known integral form of the spin projec-
tor (16).

Introducing the shorthand notations

R (Q) =R(Q,Pp, g„)=R (Q)S„((td„)Sp((I((~), (41)

d Q =d Q d qI(~ d P„, (42)

and multiply from the left with (2I + 1)/8mDMx(Q). In-.
tegration over Q (dQ=da dy sinPdP, a and y from 0 to
2~, P from 0 to m.) gives then the result

P(IM;K)= g ~

NZIMX)(NZIKX
i

NZX

U—= g ~

NZIKX) (NZIKX
~

NZIK+

and the definition

(33)
and

&ozoi
(Q)

2I + 1 1 ld'
(

ip Zo ie/e„NO

8m. (2m)'
(43)
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we may then write the combined projector (17) as

P(N Z IM'K) =—g I
NpZpIMX ) (NpZpIKX

I

= fdQa)Mx (Q)R(Q) . (44)

Using this operator now the reduced matrix elements of
I

A. Lany arbitrary tensor operator T&(b,Np, bZp), which may
even change the neutron and proton number by ANO and
EZp, respectively, in between arbitrary configurations of
the type (ll), which may not even belong to the same
quasiparticle representation, can be calculated without
knowing the decompositions (13) explicitly. With the help
of the well-known transformation properties of tensor
operators under rotations' one obtains straightforwardly

( [g jNp+ANo Zo+4Zo&If yKf I I

T'(~No ~Zo) I I
[g' jNoZoI~ K

=(2I +i)~&2 y (IIIf IKf pI K—f) fdn~x' '„sc,«)&[gj I
Tp(~Np, ~Zo)R(n)

I
[g'j & (45)

where the reduced matrix element is defined using
Edmond's convention. '

Obviously the evaluation of the rotated matrix element
under the integral is in general rather complicated but
nevertheless straightforward. The special techniques
which are necessary to perform this evaluation are the
subject of the following section.

C. Evaluation of general rotated matrix elements

Let
I [q j ) be an arbitrary nqp state out of the set (11)

and
I
[q'j ) an arbitrary mqp state out of a similar set

generally being based on a different quasiparticle represen-
tation q'. In order to evaluate the general rotated matrix
element under the integral in Eq. (45) we shall then first
introduce a set of rotated quasiparticle operators

b"q,'-"' —=R(n) '"q,' R'(n) (46)
b(q, n)

= a (q')

q. We get straightforwardly

b (g yn) F( r Q)Ft( )
a (g)

b(q', Q)

=F(q', q, n)
( )

a (q)

where

F(q', q, Q ):F(q', Q )F—(q)

A (q', q, n) 8 (q', q, n)
8 (q', q, n) A "(q',q, n)

(51)

is again a unitary transformation with its components be-
ing defined as

A(q', q, n) =At(q)R (Q)A (q')+Bt(q)R *(Q)8(q')

(52)

in terms of which the rotated vacuum configuration of the
representation q' can be written as

M

I
[g'(Q) jp) =R(Q)

I
[g'jp) = ff b (g', Q)

I
0) . (47)

and

B(q', q, n)=B (g)R(Q)A(q')+A (q)R*(Q)B(q') .

(53)

Using the basis representation of the generalized rotation
operator (41)

By using Thouless's theorem' the rotated vacuum (47)
can now be expressed through the unrotated quasiparticle
operators of the representation q as

Rk(Q)=(i
I
R(Q)

I
k) =(0

I
C;R(Q)Ck I0) (48)

and the well-known transformation properties of the basis
creators and annihilators C~ and C under this operator
one obtains from (46) immediately

b (g in) F( g Q) C
b(q', Q)

I
[q'(Q)jp) =np(q', q, n)exp[Q t(q', q, n) j I [qjp),

where

Q (q', q, n)—:—, gg ~(q', q, n)a (q)a&(q)
aP

with

(54)

(55)

T

A (q')R (Q),8 (q')R t(Q) C
Bt(q )R T(n),A t(q )R t(Q) C

Because of the unitarity of R(Q) and of F(q') also,
F(q', Q) is a unitary transformation. With the help of the
inverse transformation F"(q) out of Eq. (8) we are then
able to express the rotated quasiparticle operators (46)
through the unrotated ones belonging to the representation

g(q', q, n)= 8*(q',q, Q)X —(q', q, Q)= g(q', q,n)—
(56)

being an antisymmetric matrix and X(q,q, Q) defined as

X(q', q, Q)—= [A t(q', q, n)] (57)

The rotated overlap np(q', q, n) can be calculated following
Gnishi and Yoshida. ' One obtains
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[a (q), exp[Q (q', q, Q)j]=0 (59)

no(q ~q») —= ( [q jo ~ [q (0) jo& = [detA (q q 0)] ~

X exp [ —(i /2)(Q„M„+PzMz )j, (58)

where use has been made of the assumption that the single
nucleon basis [ ~

i ),
~

k ),. . . j M has the isospin projection
as a good quantum number and consists of M„neutron
and M~ proton states (M„+M~ =M).

With the commutators

and

[a~(q), exp[Q (q', q, Q) j]=gg~~(q', q, Q)a&(q) (60)
P

which can be easily derived, and Eq. (50) one can easily
check that (54) is indeed the vacuum for the operators
b (q', 0), and such, because of the uniqueness of the vacu-
um, prove Thouless's theorem. Furthermore, it follows
immediately that

bt, (q', Q)exp[Q t(q', q, Q) j =exp[Q t(q', q, Q) j g [[A(q', q, Q) g(q—', q, Q)B(q', q, Q)j,a (q)+B, (q', q, Q)a (q)]
a

=exp[Q t(q', q, Q) j +[X,(q', q, Q)a~(q)+B, (q', q, Q)a~(q)], (61)

where use has been made of the relation

A(q', q, Q) g(q', q,—Q)B(q', q, Q) =X(q', q, Q) (62)

which results directly from the definition (56) and the unitarity of F(q, q, Q).
Expression (61) now enables us to write also the rotated mqp states of the representation q' in terms of the unrotated

operators a~(q). So one obtains, for example, for the rotated lqp states

b, (q', 0)
~

[q'(0) jp)—:R(0)a, (q')
~

[q'jp) =np(q', q, Q)exp[Q (q', q, Q) j QX, (q', q, Q)a (q)
~ [qjp) .

a

Similarly one gets for the rotated 2qp states

(63)

b, (q', 0)b, (q', 0)
~

[q'(0) jo)—:R(Q)a, (q')a, (q')
~
[q'jo)

=np(q', q, Q)exp[Q t(q', q, Q) j

where

X g, , (q', q, Q)+ gX, (q', q, Q)X, (q', q, Q)a (q)a~(q)
~ [q jp),

aP
(64)

g(q', q, Q) =B (q', q, Q)X(q', q, Q) = —g T(q', q, Q) (65)

and so on.
With the use of the above form of the rotated mqp states, which has been first proposed in Ref. 15 and was also used

in Ref. 16, the rotated matrix element in Eq. (45) can now be calculated using a sort of generalized Wick s theorem. For
this purpose first the operator T„(KNp AZo) is transformed into the quasiparticle representation q with the help of the
inverse transformation (8). The rotated matrix element can then always be written as a linear combination of terms of
the following type

=([qjo
~ a~ (q) a~(q)a (q) a (q)a~ (q) ap(q)bt, (q,', 0) b", (q', 0)

~

[q'(0) jp) (66)

(68)

which in turn can be written as the product of the overlap np(q, q, 0) with the sum of all the possible terms, in which all
the operators in (66) are pairwise contracted, while the sign of each term is given by the number of permutations as in
the usual %'ick s theorem. The only difference with respect to the ordinary theorem, which considers only one and the
same vacuum state on both sides, is that here not only one but four nonvanishing elementary contraction possibilities
have to be taken into account. These can be easily derived considering the matrix elements

( [q jo ~
a& (q)aq (q)

~

[q'(0) jo& —=no(q' q 0)( [q jo ~ [aq (q)a, (q)],
~

[q'(0) jo& (67)

( [q jp ~

b, (q', Q)b, (q', 0)
~

[q'(0) jp)—:np(q', q, Q)( [q j p ~

[b, (q', 0)b, (q', 0)], (
[q'(0) jp),

( [q jp ~ a~ (q)b, (q', 0)
~

[q'(0) jo) —=np(q', q, Q)( [q jp ~ [a~,(q)b, (q', 0)],
~

{q'(0)jp), (69)
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and

& [q jp I a~ (q)a (q)
I
tq'(Q) jp&

—=np(q', q Q)& [q jo I [a~ (q)a (q)], I
Iq'(Q) jo& .

With the above Eqs. (54), (63), and (64) and the commutators (59) and (60) follows immediately

& Iq jo I [ (q) (q)], I
[q'(Q) jo& =&( q ) (71)

&[q ]pl [as (q)as (q)]. I
[q'«)jo&=& [qjol aq (q)+ ggs gq'q Q)ap(q)

P

X a~ (q)+ gg~ (q', q, Q)a (q) Iq jp& =g«(q', q, Q) .
a

(72)

Furthermore

& [q jp I
[b (q', Q)b (q', Q)], I

Iq'(Q) jp& =g, , (q', q, Q) (73)

and finally

&Iqjol [as (q» ~ (q'»)].
I Iq'«)jo&=&Iqjol a, (q)+ gg, p(q' q, Q)ap(q)

P

&& gX, (q', q, Q)a (q)
I [q jo& =X, (q', q, Q) . (74)

As an example for the application of this generalized Wick's theorem we consider now the overlap between two arbitrary
two quasiparticle states. %"e obtain

q jo I as (q)a& (q)b ' (q' Q)b (q' Q)
I

[q'(Q) jo&

=no(q' q Q)K & Iq jo I [aq (q)aq (q)]e[b (q' Q)b ~ (q' Q)]c
I
Iq'(Q) jo&

+& Iqjp I [a~ (q)b, (q', Q)], [a (q)b, (q', Q)], I
tq'(Q) jp&

—
& Iq jp I [a~ (a)b, (q', Q)], [a~ (q)b, (q', Q)],

I
Iq'(Q) jp&

=no(q' q Q)[g~„,(q', q, Q)g, (q', q, Q)+X, (q', q, Q)X, (q', q, Q)

—X, (q', q, Q)X, (q', q, Q)j . (75)

Expressions for the rotated overlap and energy matrices needed in a space of Oqp and 2qp states are given in Appelldix B
of the present paper.

III. TRUNCATION SCHEMES FOR GENERAL HFB-BASED CONFIGURATION SPACES

After having developed a formalism to calculate the matrix elements of an arbitrary operator within general angular
momentum and particle number projected HFB-type configurations we shall now come back to the problem of how to
determine the transformation Ii (q) of Eq. (6) for various truncated model spaces. Obviously there are different ways to
obtain this transformation corresponding to different levels of approximation. Some of these will be discussed in the
present section.

A. HFB theory with number and spin projection before the variation

We shall first consider the case that the chosen intrinsic configuration space consists only of the quasiparticle vacuum

I Iq jp&. According to Sec. IIB the most general number and spin conserving wave function constructable from this sin-
gle determinant has then the form

[q' jp/pZ IM l & = g I
tq' j pN ZoIM'E &f» (NpZpI 'q). (76)

with the mixing coefficients f(NoZpI;q;) to be obtained as solutions of the matrix equation
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(No Zo I) ( NoZoI)g IH(,')~. ( )~ E—(N. oZoI'q )N( )~. ;(,}~. jfrc', (NoZoI'q )=0
K'

being subject to the constraint

f (NpZpI'q )N(NpZpI)f (NpZpI'q ) = U

(77)

(78)

where U is the unit matrix and N and H are defined by Eqs. (21) and (24), respectively.
Left to be determined then is the optimal quasiparticle transformation F(q;) for the energetically lowest solution i of

Eqs. (77) and (78). This can be done in a very elegant way with the help of Thouless's theorem' as has been demon-
strated, for example, by Mang. ' This theorem allows us to write any variation of the vacuum

I I q; j o) in the form

I Iq +5qjo&=coexp gd pa (q )ap(q;)
aP

Iq jo& (79)

with cp being a normalization constant and d an antisymmetric (M &&M) matrix. Consequently the total energy can be
written as a function of the matrix elements of d and the variational problem for the average HFB field be formulated as

„ IE;[Id jl j«=o= ~d.
8

y5 ad

(Iq;+5q jpN Z IM;i
I

H
I Iq;+5q jpN Z IM;i )

(Iq;+5q joNpZpIM;i Iq;+5q jpNpZpIM;i ) d=0
=0. (80)

This yields straightforwardly the set of equations

~so ' ' (r»= Jd&—gfx;;(NoZoI'q )~ex ' (»
KK'

Xfry't(NoZoI'q )& Iq jo I as(qi)ar(q )[H —E (NoZoI'q;) jR(Q)
I tq; j, & =0,

a (q )= gt tta&(q;)
P

(83)

leaves the vacuum
I Iq; jp) invariant. The resulting ambi-

guity in F(q;) is usually resolved by using (83), the so-
called "third Bloch-Messiah transformation, "' to diago-

nalize the H ~'~ part of the Hamiltonian requiring that

H ~'~(aP)—:( Iq; jp I
a (q;)Hatt(q; )

I [q; jp)

—&Iq;jolHI tq j.&5(»)

which expresses the stability of the state i (76) with respect
to arbitrary spin- and number-projected 2qp admixtures
within the same representation q;. The explicit expression
for the rotated matrix element in Eq. (81) is given in Ap-
pendix B. Furthermore, in addition to the above equa-
tions the unitarity of the transformation matrix F(q;)

F(q;)Ft(q;)=F (q;)F(q;)=U (82)

has to be ensured.
However, the above set of equations is not yet sufficient

to determine F(q;) in a unique way. This is due to the
fact that any unitary transformation t of the form

(78), (81), and (82) determines the stationary points of the
state (76) in the variational space spanned by the matrices

f (NpZpI 'q;) and F(q; ) in a unique way. Similar equa-
tions have already been proposed by several authors a long
time ago. ' ' At least in principle, they can be solved nu-
merically using a straightforward extension of the itera-
tion scheme for the variational equations of the HF prob-
lem with spin projection before the variation which has
been recently discussed.

B. The "optimal" truncation scheme

As for the spin conserving HF approach described in
Ref. 5 the above procedure can also be easily extended to
construct an optimal truncated configuration space for
each spin value of the considered nucleus. For this pur-
pose the equations of the last section are repeatedly solved
requiring in addition that each new solution i (76) should
be orthogonal to all the already obtained solutions

j=1, . . . , i —1. This can be formulated mathematically
by additional constraints

(NoZoI
n J(NpZpI) —= g f» ;(NpZpI;q; )N(q')~ .

(q}~.
KK'

=E 5(a,P) . (84) &(fx J.(NoZpI;qj)+H. c. =. 0 (85)

Here E are the usual "quasiparticle energies. " The expli-

cit expression for H» (ap) is given in Appendix A.
Together with (84) now the system of equations (77),

which have to be added with Lagrangian multipliers p~ to
the total energy functional before performing the varia-
tion. Equation (77) is then generalized to
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(NpZpI) (NpZpI ) (NpzpI )

g[[H„.',Z, (,.)Z —&;(N.Z I;q;)N(, ,.')~, (,, )~ 1f ', (NoZ. I q ) —X N(., )~;(;)Zfx"No~oI q'~ j =0
K' j=l

(86)

and instead of Eqs. (81) now the set

i —1 N pZpI*
~2o(yg) —g pj fdQ g fx ;(No.ZoI q;)roxx

' (&)fir',, (NoZoI'qJ') & [q jo l
&s(q )riy(q )+(+')

l [qj jo) =0
KK'

(87)

has to be used.
Solving Eqs. (86) and (87) together with (85), (84), (82),

and (78) successively the optimal one determinant approx-
imation for each nuclear state of a given spin value can be
obtained. Truncating after m configurations and di-
agonalizing the residual interaction in the resulting space
according to Sec. IIB yields then the optimal approxima-
tion to the m lowest exact solutions which can be reached
using only m HFB states as basis configurations.

Obviously the procedure described above using a dif-
ferent F(q;) for each number of the truncated configura-
tion space becomes more and more difficult with increas-
ing number of configurations. For problems requiring the
use of very many configurations as, for example, the in-

vestigation of the giant multipole resonances, the above
method is therefore not very suitable. Here it is obviously
preferable to start with a certain number of intrinsic con-
figurations right from the beginning and to require that
these are all built on the same quasiparticle transforma-
tion F(q). While the configuration mixing has then al-

ways to be obtained according to Sec. IIB, there are dif-
ferent ways to determine F(q). These will be discussed in

the following three sections.

C. The "second best" approach: Spin
and configuration space-dependent I' {q)

The optimal quasiparticle transformation F(q) for a
given incomplete set of configurations

l [q j ),
l
[q'j ), . . . , of the type (11) is obviously the simultane-

ous variation of the configuration mixing and the matrix
elements of F(q) in order to minimize the total energy.
The resulting variational equations look very much like
those derived in Sec. IIIA except that now all the sums
run not only over the (2I+1) IC values but also over all
the configurations

l [qj), l
[q'j), . . . , included in the

configuration space. Equation (77) therefore has to be re-
placed by

( NpZpI) (NpZpI)
X [~(q)'x', (q )x. E, (NoZoI)N'(q)'x —

(q )~ j
I q'I, K

Xf(q )rr. ;(NoZoI) =0 (88)

and instead of Eqs. (81) now the system of equations

f dQ f(q)x''(NoZoI)
Iq), K, I q'J, K'

NoZoI
X~x~ (&)f(q )x;.(NoZoI)

&«[q j I &s(q)~, (q)[II—E;(NoZoI)]R(Q)
l
[q'j ) =0

(89)

l

has to be used.
The solution of the coupled system of Eqs. (88), (89),

(82), and (84) together with the orthonormality condition
(20) yields then the optiinal approximation to the exact
solutions which can be reached within a given subset of
HFB configurations being all based on the same quasipar-
ticle transformation F(q). This F (q) obviously depends on
both the actual spin I (and particle numbers No and Zo) as
well as on the chosen set of intrinsic configurations.

Unfortunately even the approach described above which
is the natural extension of the MCHF approximation (see
Schmid et al. , Ref. 8), which is based on particle Slater
determinants, can hardly be used in realistic calculations
because of the extremely time consuming iterative pro-
cedure necessary for the solution of the corresponding
coupled systems of equations. Therefore, additional ap-
proximations have to be made.

D. The "third best" approach: Configuration
space-independent F(q)

A drastic simplification can be reached, if the set of
Eqs. (89) is completely discarded and instead the fixed
transformation F (q), which results from the solution of
the spin and number conserving HFB equations in Sec.
III B, is used to build up the configuration space in which
the Hamiltonian is then diagonalized according to Eqs.
(88) and (20). Since the coupling of the configuration
mixing to the quasiparticle degrees of freedom is neglect-
ed, however, both f(NoZoI) and F(q) do still depend on
the given spin value.

Note that in this case because of Eqs. (81) the vacuum
state (76) does not mix with the spin- and number-

projected 2qp excitations belonging to the same quasipar-
ticle representation. Restricting the truncated configura-
tion space to the vacuum and the 2qp excitations with
respect to it, the yrast states of the nucleus would there-
fore have the form (76) while the excited states would be
linear superpositions of projected 2qp states. Thus the ex-
tension of the well-known TDA or RPA to open shell
quasiparticle systems could be easily constructed using the
spin-dependent but configuration-space-independent
transformation F(q) resulting from the above prescription.

However, even for this drastic simplification of the
more general approach described in Sec. IIIC the solu-
tions of the variational equations of Sec. IIIA would be
needed, which at least for realistic model spaces have nev-
er been obtained numerically up to now. Hence for practi-
cal calculations in general even more drastic approxima-
tions are necessary.
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E. The "fourth best" approach: Spin
and configuration space-independent F(q)

With the use of a configuration space based on HF-type
Slater determinants it could be shown that often the use of
a fixed HF transformation for all the spin values still
yields a very good approximation to the exact solutions
provided that at least the configuration mixing is done
after restoring the rotational symmetry. We shall there-
fore make the same approximation in the following for
configuration spaces consisting of HFB determinants of
the type (11). This procedure has the advantage that I'(q)
has only to be determined once via the standard HFB
prescription in the intrinsic system and can then be kept
fixed for all further steps of the calculation.

In standard HFB theory a minimum for the vacuum ex-

pectation value of the Hamiltonian H '

&{q}olH'I {q}o&—:&{q}olH—~ N —~ ZI {q}o&

=minimum! (9O)

with respect to variations of F(q) is required, where the
additional constraints

'& Iq }o N
l {q }o&=No(q) =No

& {q}OIZ I {q}o&=ZO(q)=ZO,

(91)

(92)

which ensure that at least the average nucleon numbers
have the desired values, have been coupled with Lagrang-
ian multipliers Xz and A,„(the "chemical potentials" or
"Fermi energies") to the original Hamiltonian. Using ex-
actly the same methods as in Sec. III A one then obtains a
set of equations

a)p (y5) X.N—)o (y&) —~,Zg (y&) —= & {q}o l
~s(q)~r(q)(~ —~.N —~i Z)

I {q}o&=0 (93)

which are the equivalent of the Eqs. (81) in the intrinsic
system and express the stability of the intrinsic vacuum
versus intrinsic 2qp admixtures. These equations have
been first derived by Belyaev. Explicit expressions for
Hp(q), No(q), Zp(q) and the matrices H)p, N)z, and Z)o
are given in Appendix A. Furthermore, because of the ad-
ditional constraints (91) and (92), Eqs. (84) are modified,
too. Here one obtains

H fi(aP) —A,„Nfi(aP) —A~Zfi(aP) =E 5(a,P) (94)

with all the matrix elements again given in Appendix A.
Together with the unitarity constraint (7) Eqs. (91)—(94)

are the usual HFB variational equations. For their nu-
merical solution elegant methods are available. '

With the solutions F(q) of'the above equations the in-
trinsic configuration space can now be built up and the
Hamiltonian can be diagonalized according to Sec. IIB.
Note that in this approach now the number- and spin-
projected 2qp excitations do mix with their projected vac-
uum since Eqs. (93) guarantee stability of the vacuum
with respect to 2qp excitations only for the unprojected
intrinsic configurations.

Naturally, using a fixed Ii (q) for all spin values the pos-
sible spin dependencies in the total wave functions (19)
can only be accounted for via the configuration mixing
coefficients and not by the quasiparticle transformation it-
self. Therefore, to reach an approximation to the exact
solutions as good as with the approaches using spin-
dependent transformations I' (q) described in Secs.
III B—III D here obviously more configurations have to be
taken into account. However, from the computational
point of view working with a spin- and space-independent
quasiparticle transformation seems at least at the moment
the only possibility for the realization of practical calcula-
tions using realistic interactions in large model spaces.

The numerical realization of the procedure described in
the present section for the case that the truncated intrinsic
configuration space consists only of the quasiparticle vac-

I

uum and the 2qp excitations with respect to it was the
goal of the computer code MONSTER, which has been
developed during the last three years and whose main de-
tails will be presented in paper II of the present series of
papers. Paper II will also contain the results of first ap-
plications of this approach to nuclei in various mass re-
gions.

IV. CONCLUSIONS

Many nuclear structure problems, as, for example, the
microscopic description of the giant multipole resonances
or the theoretical analysis of the various high spin phe-
nomena in heavy nuclei require the use of single-particle
basis systems, which are far too large to allow for the di-
agonalization of a given effective many nucleon Hamil-
tonian in the complete shell model configuration space at
least on present day computers. One is therefore forced to
approximate the inaccessible complete shell model expan-
sion of the nuclear wave function within a truncated space
consisting only of a numerically manageable number of
A-nucleon configurations. Thus it is desirable to account
for as much of the correlations as possible between the nu-
cleons by as few A-nucleon basis states as possible.

In the present paper we have described and discussed a
variety of such truncation schemes which are all based on
the HFB theory. The essential idea behind this is to in-
corporate the most important collective correlations in the
nucleus as, for example, pairing and deformation via a
mean-field approach already in the reference configura-
tion and thus to increase the changes to account for the
essential residual correlations within a relatively small
configuration space.

Unfortunately such an approach in general conserves
neither the particle numbers Zp and Np nor the total an-
gular momentum I of the considered nucleus. A physical
basis can therefore only be obtained by restoring these bro-
ken symmetries with the help of projection techniques
which lead to rather drastic complications both in the
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mathematical formulation as well as in the numerical real-
ization of such a theory. We have therefore tried to give
in Sec. II a rather general review and survey about the
methods which are necessary in order to handle general
spin- and number-projected HFB-type quasiparticle deter-
minants. Special emphasis has been put here on the prop-
erties of the projection operators and on how to evaluate
the matrix elements of general operators in between arbi-
trary HFB-type configurations which may even be based
on completely different quasiparticle transformations.

Left to be answered then is the question of how these
quasiparticle transformations themselves are to be deter-
mined. This was the main subject of Sec. III. The obvi-
ously most sophisticated answer to this question is to re-
quire an optimized HFB transformation for each configu-
ration of the chosen truncated space separately. This can
be achieved by successively constructing these configura-
tions using the HFB procedure with spin and number pro-
jection before the variation out of Sec. IIIA requiring in
addition orthogonality of the different solutions obtained
for a given spin value. For each state of a given spin the
optimal one determinant approximation can be calculated.
Truncating the resulting configuration space after m solu-
tions and then diagonalizing the residual interaction yields
obviously the best approximation to the lowest m states of
a given spin value which can be reached using only m gen-
eral quasiparticle determinants.

Unfortunately this procedure, which has been discussed
in Sec. IIIB and which is the natural extension of the
HF-based truncation scheme proposed in Ref. 5, is numer-
ically extremely involved especially if highly excited states
as, for example, the giant multipole resonances are to be
described. Here it is preferable to fix the number of con-
figurations to be included for a given spin value right
from the beginning and to construct them all out of one
and the same HFB transformation. In general this
transformation will then still depend on both the spin as
well as the chosen configuration space and can be deter-
mined via the solution of the variational equations for the
multiconfiguration HFB procedure with spin and number
projection before the variation which have been derived
and discussed in Sec. III C of the present paper.

However, for large single-particle basis systems these
variational equations can hardly be solved numerically at
least with present day computer facilities. Therefore, in
general additional approximations are unavoidable. A
great simplification of the variational equations is reached
if, for example, the configuration space dependence of the
HFB transformation is neglected. In this case the still
spin-dependent reference configurations for the considered
nucleus are again given by the solutions of the variational
equations discussed in Sec. IIIA, which are stable against
arbitrary spin- and number-projected 2qp admixtures be-
ing based on the same HFB transformation. Hence this
procedure, which has been discussed in Sec. IIID, is the
natural starting point for the extension of quasiparticle
TDA- or RPA-like theories to deformed nuclei. Still the
numerical realization of even this method is rather in-
volved. Nevertheless, we think there is a fair chance for
its application within the next few years.

For the moment, however, we probably have to be con-

APPENDIX A: QUASIPARTICLE REPRESENTATION
OF THE HAMILTONIAN

AND THE NUMBER OPERATORS

With the use of the transformation (8) any arbitrary
operator whose basis representation is known can be
transformed into its "quasiparticle representation" q. In
this appendix we shall do this for the Hamiltonian (1) and
for the neutron- and proton-number operators.

For the Hamiltonian one obtains'

H =Hp(q) +H f &
+H )p+ H (z+H )]+H fp (A1)

where

and

Hp(q)—:Q I [t(ik)+ —,
' I L]p) + —,

'
6&i,«$; I

ik

pL —= [&*(q»'(q) lk

«L —= [&'(q)~ '(q) lk

I,k = g U (Elks)ps'

(A2)

(A3)

(A4)

(A5)

Q U (lkl"s)«,„ (A6)

Furthermore,

H f)= gH f)(aP)a (q)ap(q)
aP

with

(A7)

tent with an even less general approximation, which has
been discussed as "fourth-best" solution in Sec. IIIE. In
this approach the transformation is forced to be not only
configuration space but also spin independent and deter-
mined by a standard HFB calculation in the intrinsic (i.e.,
symmetry breaking) frame of reference. All the spin-
dependent structure changes in the nuclear wave functions
therefore have to be described entirely by changes in the
configuration mixing. Hence in order to obtain as good a
description of the nucleus as with the more sophisticated
methods discussed above, here obviously a larger configu-
ration space is necessary out of numerical reasons; howev-
er, this is at present still much more practical than the
complicated iteration schemes which are necessary to ob-
tain solutions for the other methods.

Restricting the configuration space to the reference
determinant and the 2qp excitations with respect to it the
method of Sec. III E reduces to the MONSTER approach
(model for handling large numbers of number- and spin-
projected two quasiparticle excitations with realistic in-
teractions and model spaces) being the basis of the equal-
named computer code, which has been developed during
the last three years. This approach and the essential addi-
tional approximations which were made for its numerical
realization are the subject of paper II of the present series
of papers. This part will also present the results of first
applications of the MONSTER to nuclei in various mass
regions.
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H fl (ap)—:[A (q)h (q)A (q)+B t(q)h (q)B (q)

+B (q)&s A(q) —At(q)h'lB(q)] p (A8)

Finally

H )z—= g H)z(apy5)a (q)a p(q)as(q)ar(q), (A12)
aPyS

and

h k(q): t—(ik)+I &j, . (A9)
H/)—= g [H)((apy5)as(q)ar(q)ap(q)a (q)

aPyS

Similarly

H )0= g [H)z(aP)a~(q)a p(q)
ap

+H)0 (aP)ap(q)a (q)],

where

(A 1()) alld

+Hf, (apy5)a (q)ap(q)az(q)as(q)),

(A13)

H $0—:g [Hfo(apy5)a (q)a p(q)a&(q)as(q)
apyS

H)0(aP)—:—,
'

[A (q)h(q)B*(q) —B (q)h (q)A*(q)

+Bt(q)bs B'(q) —At(q)bsA*(q)] p. (All)

+H 40(aPy5)as(q)ar(q)a p(q)a (q)],

(A14)

where

H)l(apy5) = —,
' g v (ikrs) IA,

*
(q)Akp(q)A, &(q)A, s(q)+B;* (q)Bkp(q)B„&(q)B,s(q)

ik~s

A;* (q)Bk—s(q)A„&(q)B p(q) B; (q)Ak—s(q)B„&(q)A,p(q)

+A,* (q)Bkg(q)A, r(q)B„p(q)+B (q)Aks(q)B, r(q)A„p(q) I (A15)

while

H)&(apy5) = —,
' gv (ikrs) IA;~(q)Bkp(q)A„s(q)A, &(q)+B;~(q)AI p(q)B„*s(q)B,*&(q)

ikrs

A; (q)Bkr—(q)A,'~(q)A p(q) B; (q)Akz—(q)B„'~(q)B p(q)

+A; (q)Bks(q)A„* (q)A,*p(q)+B; (q)Aks(q)B, „(q)B,*p(q)I (A16)

and

HQ(aPy5) = „gv (ikrs) I—A—,' (q)Akr(q)B s(q)B p(q)+B,* (q)Bkr(q)A,'s(q)A,'&(q)
ikrs

A,
'

(q)Aks(q)B-„', (q)B,*p(q) B,' (q)Bks(q)A—„'„(q)A,'p(q)

A ~(q)Akp(q)B„—'s(q)B,'~(q) B (q)Bkp(q)A.—s(q)A. &(q)] (A17)

Much simpler are the quasiparticle representations of the
neutron- and proton-number operators. We obtain for ~ f, = +

~gal(aP)a

(q)ap(q)
ap

(A22)

and

~)gN =N

&pe =Z
&

Ao(q)+8 tl+A—lo

(A18) with

(A19) and

(A20)

~f, (aP) =[A (q)gP(q) B(q)g+(q)] p—

(g, );k =5(i,k)5(r;,r)—
(A23)

(A24)

where

&o(q) —= g 5(~;,~)pL

and

(A21)

while

P 10—= y [W)0(aP)a. (q)a p(q)
ap

+~)o (aP)ap(q)a (q)] (A25)
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+)z(aP) = ,
'

[A—t(q)gg'(q) B—t(q)gg'(q)] p

{A26)
»« th« in Eqs (Ala) —(A26) it has been assumed that »;
is a good quantum number of the basis orbits
f I

i ), . . . j1». The transformation I'(q) of Eq. (6), on the
other hhnd, ma.p st111 m1x Pl'oton Mld Ilcotl'on orb1ts ss 1t
is necessary to account for proton-neutron pairing.

APPENDIX 8: ROTATED OVERLAP
AND ENERGY MATRICES

Here we shall give explicit expressions for the spin- and
number-rotated matrix elements needed for the evaluation
of the overlap and energy matrices of Eqs. (21) and (24),
respectively. For simplicity we shall restrict ourselves to

I

only Oqp and 2qp configurations which nevertheless may
be based on various different quasiparticle representations

q, q', . . . . Higher-order configurations (nqp) may be treat-
ed using exactly the same methods.

With the help of the generalized Wick's theorem of Sec.
II C one obtains straightforwardly

( fqjoIR(Q) I fq'jo) =no(q', q, Q)

with no(q', q, Q) given by Eq. (58). Furthermore

( fq jo IR(Q)a, (q*)a, (q')
I fq'jo)

=no(q', q, Q)g, , (q', q, Q) (82)

with g, , (q, q, Q) given by the definition (65). SimIiariy

one gets

(fqj Ia,fq)a, (q)R(Q)I fq'j }=no(q',q, Q}g, ,(q', q, Q)

with gq q (q,q, Q) of Eq. (56) aIld f111ally

(83)

( fq jo I aq, (q)aq, (q)R(Q)a, (q')a, (q')
I fq'jo} =no(q', q, Q) fgq, q, (q', q, Q)g, , (q', q, Q)

+X, (q', q, Q)X, (q', q, Q)

—X, (q', q, Q)X, (q', q, Q}j . (84)

With X, (q', q, Q) defined by Eq. (57). Equation (84) has been considered as an example already at the end of Sec. II C

[see Eq. (75)].
For thc rotRtcd cnc1gf Hle, tr1x onc obt3.1ns

{fq jo I
HR(Q)

I fq'jo} =no(q', q, Q)ho(q', q, Q),

ho{q', q, Q)=Ho(q)+ —,
—g [2H)o +12H g (Q)]~IIg ~(q', q„Q)

CEP

with

[H Qq (Q)] p—= Q Hg (aPy5)grs(q', q, Q)
y5

and Ho(q) H)o (QP) aIld HQ (et@/5) as gIve11 III APPend1x A. S111111arly OIM gets

( f q jo I
HR(Q)a, (q)q, (q')

I fq'jo) =no(q', q, Q) fh, , (q', q, Q)+ho(q', q, Q)g, , (q', q, Q) j,

(86)

(87)

(8&)

h, , (q', q, Q) =—XT(q', q, Q)[2H)o +12H Q» (Q)]X(q', q, Q), ,

& fq jo I aq, (q)aq, (q)HR{Q}
I

fq'jo& =no(q', q, Q}fhq, q, {q',q, Q)+ho(q', q, Q)gq, q, (q', q, Q) j (810)

h, ', (q,q, Q)=—(2H)o+2H )2»(Q)+g(q', q, Q)[2H)o +12H foq (Q)]g(q', q, Q)

+ f [HfI —3H $I» (Q)]g(q', q, Q) j —
f [H$1 —3H gq {Q)]g(q',q, Q) j )qIqq, (811)
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where

[H )2 (Q)) tt =—QH)z(aPy5)g s(q', q, Q)
y5

and

[H'fIq (Q)] ~—= QHft (uPy5)grs(q', q, Q)

(B12)

(B13)

with H[t~)2~'f& again given by Appendix A. Finally we obtain

( Iq Io ~
aq (q)aq (q)HR (Q)a, (q')a, (q')

~
Iq')o)

=no(q', q, Q)Iho(q', q, Q)[gq q
(q', q, Q)g, , (q', q, Q)+X, (q', q, Q)X, (q', q, Q) —X, (q', q, Q)X, (q', q, Q)]

+h'q (q', q, Q)g, , (q', q, Q)+h,', (q', q, Q)gq q
(q', q, Q)

+h", (q', q, Q)X, (q', q, Q)+h", (q', q, Q)X, (q', q, Q)

where

—h, (q', q, Q)X, (q', q, Q) —h ",(q', q, Q)X, (q', q, Q)+U)zq (q&qz, q'tq&) I, (B14)

and

hap(q ~q~Q)= I [H'[—i 3H )Iq (Q)]+g(q ~q~Q)[2H)o +12H P (Q)]IX(q ~q~Q)&p

~'

U)z (qtq»'q&qz)—= g [4H)2(qtq2y5)]+6+ [gq p(q', q, Q)H), (qtPy5) gq p(q', q,—Q)H 3(q P2y5)]
P

(B15)

—24 g [gq (q', q, Q)g p(q', q, Q)HQ (tzpy5)] .X, (q', q, Q)X, (q', q, Q) . (B16)
aP

Similar expressions can be easily obtained for the rotated matrix elements of general tensor operators. These wi]] not be
given explicitly in the present paper.
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