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The effective mass and pole strength for protons and neutrons are evaluated in neutron matter for
different densities. The source for the N-N interaction is the nonstatic one-boson-exchange model,
and the many-body problem is treated self-consistently by looking simultaneously at the renormali-

zation of the nucleons and the bosons in the medium. The m and p meson exchanges in the ex-

change channel are shown to play an important role in the energy and momentum dependence of
the nucleon self-energy. The renormalization of the meson properties in the medium, especially the

pion properties, stresses the energy dependence of the interaction, making retardation effects impor-
tant at high densities. Some astrophysical implications of our results are also discussed.

NUCLEAR STRUCTURE Neutron matter. Effective mass, strength factor.
Boson exchange model used. Self-consistent treatment.

I. INTRODUCTION

In this paper we want to study the nuclear properties of
pure neutron matter, which are of particular relevance in
neutron stars where there is only a small fraction of pro-
tons to provide the equilibrium against neutron P decay.

Earlier studies of neutron matter have been carried out
in the framework of the Brueckner-Bethe theory' or by
means of hypernetted chain expansions. ' A common
feature of these expansions is the use of a static N-N in-
teraction, which neglects the finiteness of the velocity of
propagation of the interaction. While this approximation
is very reasonable for the short range pieces of the N-N
force, it is more questionable when dealing with the long
range part, i.e., the one pion exchange part of the interac-
tion. It becomes even more questionable at large nuclear
densities, where the pion becomes progressively softer, and
consequently the interaction due to one pion exchange of
longer range.

In a previous paper the authors have developed a
many-body scheme in order to study the properties of
symmetric nuclear matter, starting from a nonstatic
source for the N-N interaction, which is the one-boson-
exchange model. The problem is solved self-consistently
in the sense that both the nucleons and the mesons are al-
lowed to interact with the medium. Thus the same N-N
interaction now becomes a function of the nuclear density.
The pion and, to a lesser extent, the p meson are shown to
play a major role as the factors responsible for the quasi-
particle properties of the nucleons, the effective mass and
the pole strength. At normal nuclear rnatter density the
results are comparable to the empirical data extrapolated
from finite nuclei and also comparable to other results
based on the Brueckner-Bethe expansion. The scheme
provides a method to study the properties of nuclear
matter at higher densities, where other approaches, based

on static potentials and without the self-consistency re-
quirement, are expected to give inaccurate results. On the
other hand, in this self-consistent scheme the pions are al-
lowed to interact with a Fermi sea of interacting nucleons,
in contrast to standard calculations which use an uncorre-
lated Fermi sea. This feature has some important conse-
quences with respect to the problem of pion condensation,
raising the threshold for condensation four times above
nuclear matter density, with standard values for the spin-
spin correlation parameter g'. The purpose of this paper
is to use the same scheme to study the quasiparticle prop-
erties of pure neutron matter.

II. MODEL FOR THE NUCLEON SELF-ENERGY

gt(x)cr; V;~qP (x)f(x),
m~

5W~~~(x)= gt(x)[cr &( V];~~; (x)f(x),
fll p

~~wNN(x )

where alt(x)„Pr(x), and p";(x) are the nucleon, n, and p
meson fields, respectively.

The first step in calculating the nucleon self-energy
would be to consider the Hartree terms, which in this case
do not contribute since we have a spin saturated neutron
Fermi sea. Thus the first term to contribute would be the
Fock term shown in Fig. 1. The nonstatic effects of the

As shown in Ref. 5, the scalar and vector mesons tT and
co of the one-boson-exchange model ' contribute only a
small fraction of the energy and momentum dependence
of the nucleon self-energy. Hence only m and p will be
taken into account to construct the nucleon self-energy.
The starting point will be the effective Lagrangians, cou-
pling the mesons to the nucleons, which in the nonrela-
tivistic reduction for the nucleons can be written as
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s",t"

s', t'

p-h, 6-h interaction is constructed from the bare one pion
plus one p-meson exchange modulated by a corI'elation
function which is generated by the simultaneous multiple
exchange of a~ mesons, the responsible agent for short
range repulsion in our model. The corresponding 6-h in-
teraction is given by

W(q, tU)=[V (q, m)Si.q S2.q+ Vp(q, ~)(S).(q)(S2Xq)

+g'(q, m)S) S2+h'(q, w)Si2(q)]Ti T~, (3)

K;K s, t

PIC~. 1. Fock term in the nucleon self-energy from pion ex-
change. The variables k, q are quadrimomenta and s, t refer to
the spin and isospin indices„respectively.

nucleon-nucleon interaction will be already present in this
Feynman diagram slncc thcI'e 1s an 1ntcgIatlon ovc1 thc
internal pion four momentum, and thus the pion propaga-
tor will appear with its energy dependence. This is in
contrast to the static potential picture where the energy
variable is set to zero. Another interesting feature at this
lowest order is that the nucleon self-energy will already
have an energy dependence, i.e., it will have a "dynami-
cal" character in contrast to the standard Hartrce-Fock
approximation with a potential, which is known to be stat-
ic, i.e., there is no dependence of the nucleon self-energy
on the nucleon external energy.

One of the aims of this many-body scheme is to treat
both nucleons and mesons on the same footing. Thus we
want to calculate the meson self-energy and use, in the
Feynman diagram of Fig. 1, the full meson propagators in
the medium, in the same way as we have done for the nu-
cleons.

The propagation of pions in a nuclear medium has re-
ceived a great deal of attention so far and there is a widely
accepted microscopic picture consisting of the excitation
of p-h or 5-h for the p-wave part, plus an s-wave part
which can be conveniently represented, on a phenomeno-
logical level, by means of the zero-range effective Hamil-
tonian of Koltun and Reitan

S~2 ——3S~ q S2 q —S&S2 .

S and T are the transition spin and isospin operators
and f (q ) the corresponding coupling constants which
incorporate a monopole form factor consistent with
empirical determinations from pion absorption in the
deuteron, the Qp and pp charge exchange scattering
and dispersion-theoretical analysis' (the last two for the
m.NN vertex). For the p-h interaction a similar form holds
with o and ~ replacing S and T and different coupling
constants F,(q ). The main effect of the short range in-
teraction here is the introduction of the g' term, which has
a smooth dependence on the energy and momentum vari-
ables' and can be very well approximated by a constant
g', the usual parameter to account for the Lorentz-Lorenz
effect. The tensor correlation h'(q, w) has only influence
at large momenta. Explicit form of this interaction in
terms of the rr and p coupling constants can be seen in
Ref. 10. The correlated pieces associated with the p ex-
change give the largest contribution to the g' parameter in
this model; hence changes in g' are implemented here by
changing the

p
coupling constant, which is not determined

too prcc1scly.
The actual calculation of X(k, k), the nucleon self-

energy, is more complicated than the one for symmetric

In this expression r is the pion four momentum transfer,
and n' is the momentum canonically conjugate to P and
A, ~, A,2, two parameters that can be related, on shell, to
simple linear combinations of the empirical mN s-wave
scattcr1Ilg lengths.

%'ith all these ingredients the resulting diagram for the
nucleon self-energy is shown in Fig. 2, where the excited
p-h or 6-h states are seen to propagate in the medium via
thc corresponding p-h or 6-h interact'on which ls shown
there by the wavy lines. By recalling that originally we
exchanged pions or p mesons it is clear that we do not
need the full p-h or 5-h interaction, but only the part of it
that carries the appropriate quantum numbers correspond-
1ng to thc p1on 01 p meson.

A model is made in Ref. 10, where the corresponding

FIG. 2. Model for the nucleon self'-energy. The wavy lines
refer to m and p exchange plus additional short range correla-
tions, The m. and p are allowed to interact with the medium via
p-h or 5-h excitation.
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nuclear matter, in the sense that one has to calculate expli-
citly the contribution from the exchange of every charged
state and also carry out the calculation separately for neu-
trons Rnd protons.

%"e will omit here all intermediate steps leading to the
I

final form of the nucleon self-energy, which can be easily
deduced from Ref. 5 with minor modifications. In the ac-
tual calculation we will also take the numerical constants
that were used in that paper. The expression for X now
reads

X„(k)=i35g,5„+C(—,', 1,—,', t, r, t ——r)z -- G(')' '(k —q) 3a+ q
1 —aU, b—q U,

1

k —q —e(k —q)+i5
(3a+bq )

whcI'c 5, P ar c thc nucleon sp1Q and 1sospln t1Hrd coIYl-

ponents, e(k) is the nucleon kinetic energy, and Go"(k) is
the nucleon propagator for the neutrons or protons in an
uQcorrclatcd ncutI'on Fermi sca. IQ thc Rbovc equation thc
nucleon propagator is given by

6,'"(I ) =
kkO +)5
2m

0 k 2

+2rrl B(k )5g 'i y25 k
2@i

—(q + ', q, )D g(q)F z(q
—)Cz],

b= f
z [Do(q)F (q ) D~q(q)F&(q )Cz-

Pl ~

Do(q)F (q )+D—~q(q)F&(q )Cz],

where Do(q) are the meson propagators
O2

Do(q) =(q —q —m +i5)

F;(q ) are the corresponding form factors

A-
F(q )=

A —q

and Cz is the ratio of p meson to pion coupling constant

where n(k) is the occupation number. The medium
correction, given by the second term, appears only for
neutrons since there is no Fermi sea for protons. With
trivial changes in the Clebsch-Gordan coefficient and the
sllbstitiitloll of Go by tlie 6 piopagatoi', oile cail immedi-
ately include terms with 6's in intermediate states. Our
calculations include these terms.

The function U„ in (5) is the I.indhard function corre
sponding to p-h plus hh excitation by a pion of isospin
third component r. Explicit formulas for real and com-
plex values of the energy variable, with different proton
and neutron masses, can be seen in the Appendix.

Finally, a and b are given by the following expression:

a=
2 [q D~p(q)F&(q )Cz ,'q, DO(q)F~(—qz—)

Pl ~

II,' (q) =4' (p„+pp) rz 2q (p„—p—p)
( )

2Ai A2 o

nl~ " m
(10)

with p„, pp the neutron and proton densities. The parame-
ters A, I and k2 at t=O can be related to the s-wave m-N
scattering lengths in the isospin channels T= —,, —,, a&,
and a3, by thc slI11plc relations

Pl +Pl~
(a i+2a3)m

6 I
Pl +Pl~A2=- (a i —a3)m

6 m

where the factor (m+m )/m is the typical kinematical
factor Vs /m, at threshold, which relates the usual f am-
plitude (

~ f ~
=d~/dn) wit the invanant T matnx that

would come directly from the effective Hamiltonian (2).
The numerical values are then given by

A, i(t =0)=0.0075 and A2(t =0)=0.053 .

Some models have been made for the t dependence of
these parameters. " For the second term in (10) which is
supposed to account for p exchange in the t channel, this
dependence should naturally be the t dependence of the p
propagator, as is assumed in Ref. 11. In our case, al-
though the pion might be off shell, t will always be equal
to zero since the pion keeps its energy and momentum.
Thus, we simply take the on-shell values at t=0 for A, i
and A,2.

fp
2Pl
p

The functions Do(q), F,(q ), are the corresponding
meson propagator and form factor obtained by substitut-
ing q by q +q„q, being a parameter that characterizes
the range of the nuclear correlation function and which is
taken equal to the co mass.

The expression for X given by (5) clearly exhibits its
genuine many-body content, in the sense that it vanishes
rvhen the nuclear density, and thus U, goes to zero.

The s-wave pion self-energy is immediately taken into
account by RddlQg it to thc pion squRrc ITlass in thc pion
propagator Do(q) in b given by (7). The pion self-energy
is giveil explicitly by
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In the last term of the second term of (5) the b function
should not include this s-wave m self-energy in the pion
propagator since this piece is meant to subtract the self-

energy pieces when p=0. The final formulas are much
simpler if the same b function is taken in both terms. Es-
timates of the errors induced by this change give us

enough confidence to make it, since the k and k depen-
dence of X is barely affected by the pion s wave.

In order to perform the q integration in (5) we find it
useful to make a Wick rotation, but for such purposes it is
important to know the analytical structure of U„, which is
shown in the Appendix. If p„and p& are the neutron and

I

proton chemical potentials, we find that U has an ana-

lytic cut in the real axis from —oo to p„—pp, with the
function continuous below the real axis. Analogously
U + has the cut from —(ILI,„—ILt~) to oo with the function
continuous above the real axis. Finally for a n. the cut
goes along the real axis with the function continuous
above it for Req & 0 and below it for Req & 0.

This suggests the Wick rotations shown in Fig. 3 and as
a consequence the integrals for real q will be substituted
by similar ones along a complex line parallel to the ima-
ginary axis and the contribution from a pole, with the fol-
lowing result:

&«.(k) = —36~5«QC( —,', 1, z,'t, r, t r)—— f q dq
(2m )

0k —LX—

X
x m

Pr
ln—~2m kq

k —ix —p, —

(k —q)

M„(q,a) o

2m

1—f d(cosa)8[k e(k ——q) —IM„]M,(q, q)
~

1 1 Qq2+ cosa n k —q 3a+
1 —aU„1 aU, bq —U, o—ko, (k

where

M, (qo, q)= 3a +2abq +b q~U„bq U, 1 —aU,
(12)

and

IJr = —r(pn —pp) .

The remaining two integrations are performed numerical-
ly.

We should note at this point that the whole formal
development is based on a ground state of pure neutron
matter. As we already know, when compressing the neu-

I

tron matter at higher density there might be the chance to
create a pion condensate, and the ground state of the sys-
tem would now accommodate a certain amount of con-
densed pions. ' ' Hence, the formal development should
now be changed to account for these pions as well. This
poses a natural limit to the validity of our formal ap-
proach at the threshold for pion condensation in neutron
matter. The onset of this phase transition has been
thoroughly investigated by us, '

by looking carefully at
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FIG. 3. Diagrammatic representation of the I complex plane with the analytical cuts and the nucleon pole of the inte-
grand in Eq. (5). The dashed curve shows the path followed in the complex integration.
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the different branches that the pions develop in a neutron
medium. The conclusion which is relevant for this paper
is that for values of g' in the commonly accepted range
g'=0. 5—0.7 there are no pion condensates at any density.
The natural limit for this approach would come now at
anothcI' phase transition, when thc Qcutlons would lose
their identity and would give way to the quark degrees of
freedom.

Another point is worth noting in this approach. When
calculating the binding energy from the nucleon propaga-
tor that we have evaluated, we would be considering a
subseries of the Brueckner-Bethe expansion, formed by the
Ring diagrams. It is interesting to note that this series
was shown to be asymptotic in Ref. 20 for symmetric nu-
clear nlattcr, wltll growlllg oselllatlolls startlllg at 1'clatlvc-

ly low order for normal nuclear matter density. The
method used here also has the virtue of summing exactly
this series, avoiding the nonconvergence of the series ex-
pansion. However, a partial convergence was found in
Ref. 20 for low orders of the series expansion, to which
they linked the apparent convergence of the Brueckner ex-
pansion. This convergence was found to become worse
for increasing densities. The exact sum of the Ring series
that we do here also makes our approach more reliable at
large densities than a conventional Brueckner expansion.

As stated in Sec. II, we have selected only a part of the
p-h interaction which is the one with T= 1 in the t chan-
nel, where one pion exchange plays a major role. As was
the case in Ref. 5, the pion plays an important role in pro-
viding the energy and momentum dependence of the nu-
cleon self-energy, essentially because of its small mass.
This makes the pion propagator, once the self-energy is in-
cluded, very sensitive to changes in the momentum and
energy variables, since the self-energy can be appreciably
largcI' than Pl ~.

This can be seen better in Fig. 1 if we replace k —q —+k.
If we take a renormalized one pion exchange for the
dashed line, the nucleon self-energy would contain the
product of propagators Go(q)D(k —q), and thus the
dependence on k would be contained in the pion propaga-
tor, D(k —q), given by

[(k —q )2 —(k —q) —p —II(ko —q, k —q)]

where II is the pion self-energy. The k dependence of X
is stressed because the pion mass is small. Also, the at-
tractive character of II goes in towards canceling the pion
kinetic energy, which once again stresses the k depen-
dence of the pion propagator and hence of the nucleon
self-energy.

One may wonder about the contribution from other
pieces of the p-h interaction, for example, from two pion
exchange. We can think of a dispersion theoretical
approach where the p-h interaction would have the pion
pole and the exchange of a continuous mass distribution,
wh1ch would beg1n at I =4m .

The one pion exchange piece, given essentially by the
pion propagator [(k —q ) —(k —q) —p j ' would then
be replaced by

I, dtpl (&)/[(k —q ) —(k —q)1—tj,F2

where p2 (t) is the spectral function representing the mass
spectrum of the exchanged 2m. system, and which can be
obtained from the lrlr~NN helicity amplitudes. The
T =0 channel in the 2' system has a mass distribution
peaking around 550 MeV while the T= 1 channel peaks
around 750 MCV and is fairly well reproduced by the

p meson distribution. In all cases the range of t in the
dispersion integral is fairly larger than m, and this au-

tomatically reduces the k and k dependence of the
dispersion integral. Indeed, the T= 1 part, that we replace
1Q our calculat1on by thc p-meson pole, w111 be shown ex-
plicitly to contribute little to the k dependence of X when
we evaluate the strength factor. The k dependence will be
somewhat more important because of the extra momen-
tum dependence of the pNN vertex. The same can be said
about other irreducible pieces, like the two pion exchange
in the T=0 channel, which is normally accounted for in
terms of a "cr" exchange. Calculations done by Hohnde
and Machleidt, mentioned in Ref. 5 in the same context as
here, again show that the k dependence from these pieces
1s ncgl1glblc and thc k dcpcndcncc 1s very small COIl1parcd
to the results that we obtain here.

With respect to the relevance of the q dependence of
the medium modified NN interaction we can just quote
the results of Ref. 5 on the density dependence of the ef-
fective mass. This magnitude was shown to increase with
the density, and the q dependence was the reason for it.
This is in contrast to the results of Futami et al. ,s' where
essentially the same model was used to evaluate the effec-
tive mass, but the q dependence of the interaction was
neglected. In the latter work the effective mass decreased
with the density instead of increasing. Also, at normal
nuclear density our results for m* at the Fermi surface
gave m'= l. lm, in fair agreement with experilnent, while
their approach inevitably gave m*&m (m*=0.6m) be-
cause of the absence of the energy dependence.

One more word should be said about the s-wave pion
self-energy, Eq. (10). This expression was derived from
the effective Lagrangian (2) and the parameters A, l, A,2
were kept fixed without worrying about their energy
dependence. Note however that the isovector term in (10)
is proportional to q, giving thus a fair q dependence to
the most important part of the s-wave pion self-energy in
neutron matter. We should also note that the k depen-
dence of the nucleon self-energy through II"' comes from
the last two terms of Eq. (11) where q =k —c'(k —q).
The values of q involved there are actually small
q =0—60 MCV {at p=po), and thus we are dealing with
low frequency pions for which Eqs. (2) and (10) are fair
approximations. With respect to the isovector piece of
II", which comes from the isovector part of the s-wave
mN interaction, we would like to mention that it is fairly
well described in terms of the vector part of the p ex-
change in the t channel, * which leads to the q depen-
dence written in (10). In any case, we should also mention
that the s-wave part of the pion self-energy is at least one
order of magnitude smaller than the p-wave self-energy in
the pion kinematical region of largest contribution to X,
which comes around small values of q, and

~ q ~

=3—5p.
Thus, as we mentioned before, the s-wave pion self-energy
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does not play an important role in the quasiparticle prop-
erties of the nucleons.

X(k, k) =X (k, k )+ i@'(k,k) .

For a Fermi sea of particles the imaginary part is known
to vanish at ko= e+, the Fermi energy, and to behave as2'

W(k, k)=Sk(k eF) s—gn(eF k) „—k ~eF . (14)

Here we find the first difference in the behavior of pro-
tons and neutrons. For neutrons the structure of (14) re-
sults in our case from the analytic structure of (11) and
comes out numerically from a cancellation between the
imaginary parts of the different terms. Instead, for pro-
tons, where there is no Fermi sea, the imaginary part rises
monotonically with the energy. The particular structure
of (14) makes the quasiparticle approximation very useful.
There the neutron propagator can be written approximate-
ly as

where Zk is the residue of the propagator at the pole, or
pole strength, and m'„ the neutron effective mass, given,
respectively, by

BX(k,k)
k ~ko ko= k 2/2m

1 —(BX(k,k)/Bk )

1+2m(&X(k', k)/&k') k'= k 'r2m*

By taking k /2m*„ for the neutron energy, we have al-
ready set the energy origin at the energy of a neutron with
zero moGlentum.

The quasipartide approximation for protons would be
less useful, except at small energies, where the imaginary
parts are still small. At large energies, of around the neu-
tron Fermi energy, Zk and m*, calculated according to
(16) and (17), develop important imaginary parts.

There is another difference with respect to symmetric
nuclear matter. Once the energy origin is set, the protons
of zero momentum will have a certain energy not neces-
sarily zero. This magnitude is calculated self-consistently
by means of the equation

ep ——Xp(ep, 0)—X„(0,0) „

and is found to converge to a value around —20 MeV,
rather independent of the neutron density. Because of this
fairly large starting energy, the proton energy can be quite
well approximated by

k
ep(k) =e'p+

2fPl

III. QUASIPARTICI. E PROPERTIES

A direct evaluation of (11) gives us the nucleon self-
energy as a complex function of the independent variables
k', k

for momenta smaller than the neutron Fermi momentum.
This is the approximation made for the proton energy in
the evaluation of our integrals. The neutron propagator is
instead substituted by the quasiparticle propagator with
the aim of attaining a self-consistent solution. Here we
refer the reader to Ref. 5 for a detailed discussion of the
quality of the approximation.

IV. CHEMICAL POTENTIAL

As stated before, one important ingredient in the
analytical structure of X(k) is the difference between the
chemical potentials for neutrons and protons. As shown
in the Appendix, this magnitude, in the framework of the
quasiparticle approximation, is the maximum possible
difference between the energy of a neutron of the Fermi
sea and a proton; hence, it is the difference between the
neutron Fermi energy and the energy of a proton at zero
momentum. It is clear that in the present approach we
lack contributions to X that would mainly come from a G
matrix constructed from o. and ~ mesons.

This contribution can be appreciable but it was argued
in Ref. 5 that it was rather independent of energy and
momentum. On the other hand, this part of the interac-
tion is also isospin independent which might suggest its
equal contribution to the self-energy of neutrons or pro-
tons. This would be so in the lowest order contribution in
the interaction, but for these short range pieces the ladder
iteration to generate the 6 matrix is essential in order to
get a meaningful answer, and there the symmetry with
respect to protons and neutrons would break down. In
other words, although the interaction is an isospin invari-
ant quantity, the ground state is not, and we should expect
different contributions to X„and X~ from these isospin in-
dependent pieces. This implies that our approach,
neglecting these last pieces, is not appropriate to calculate

Pn —Pp.
On the other hand, p„—pp is a necessary input in this

calculation as it was shown when making the Wick rota-
tions. For reasons of consistency it is clear that one has to
use in the calculation the same p„—pz that the model pro-
vides in order to get the appropriate analytical structure of
the Green's function. We will comment later on the re-

percussions of using this value of p„—p~ instead of a
more realistic one, but before that let us see the way to
calculate it.

In the framework of the model, p„—p„can be calculat-
ed as

kp kFp„—p~= +X„,, k~ —X~(e~,0),2' 2' ~
(20)

The numerical agreement (-2% difference) in both ways
of calculating p„—p~ is an indirect check of the quality of
ihe quaslpaI'tlcle appI ox1111aiion.

It is clear that e~, once the origin of energies is set at the

and also, by making use of the quasiparticle approxima-
tion~ as

kg
P~ —Pp= —Ep .

2m*.
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the momentum. This is a feature that contrasts with the
corresponding one in symmetric nuclear matter, where the
cffcctlvc mass shows a plonounced maximum alound thc
Fermi energy and, on the contraI'y, Zk exhibits a
minimum at the same energy. ' ' The enhancement of
m* and the dip of Zk around the Fermi surface is a conse-
quence of the existence of a filled Fermi sea together with
the continuous choice for the nucleon single particle ener-

gy. However a large part of the neutron self-energy
comes from the exchange of charged mesons in Fig. 2,
which implies protons in the intermediate states for which
there is no Fermi sea. This fact, together with a slight
shift in the energies due to the s-wave pion self-energy
(which is ignored in symmetric nuclear matter) are respon-
sible for the lack of such maximum or dip in the case of
neutron matter.

The proton self-energy is less apt to be cast into a quasi-
particle form because of the absence of a Fermi sea. At
large momenta, comparable to the neutron Fermi momen-
tum, the imaginary part of X is fairly large. Keeping this
warning in mind we have used the same formulas (16) and
(17) to obtain a complex renormalization factor, Z~, and
effective mass mz. In Fig. 8 we can see Zz as a function
of momentum for p=po. The real part is fairly constant,
while the imaginary part, always negative, rises in
modulus approximately as a linear function of k . For en-

ergies about double the neutron Fermi energy it can be as
large as half the real part.

As for the proton effective mass there are similar
features, as can be seen in Fig. 9. The real part is practi-
cally constant and very close to the nucleon free mass,
while the imaginary part rises again approximately like a
linear function of k and it is, as an average, about one or-
der of magnitude smaller than the real part, making more
useful the concept of a real effective mass over a large
range of momenta. We have thus calculated I& as a
function of the density and show it in Fig. 10. The
derivatives are calculated at kF as for neutrons. We can
see a smooth decrease of m ~ at densities below po and then
a steady increase up to p=4po where m ~ is around 1.4 m.

At small Inomenta compared to the neutron Fermi

I.O "

0.6

0.4 r

FIG. 9. Same as in Fig. 9 for the proton effective mass.

momentum, all the imaginary parts of X are small com-
pared to thc I'cal parts» and the quaslpartlclc approxima-
tion for protons would also become a useful tool.

With respect to the neutrons, the imaginary part of Z is
very small around k~ and about, an order of magnitude
smaller than the real part at large or small energies in the
range of momentum of Fig. 6. Something similar holds
for I'„/m where the imaginary part is about a factor 20
smaller than the real part for large and small momenta in
that same range, and is negligible around k~.

The actual values of m* are very important to calculate
the neutrino emissivities in neutron stars via the nnvV,

npw, or the modified URCA process. 2 ' The cooling
rate is proportional to (m') . The values used in Ref. 25
for m' are m*„=m~ =0.8m. With the values of m' ob-
tained here, always larger than one, the cooling rate would
be immediately increased.

More relevant than this is the importance of I' on the
superfluid gap of neutrons and protons which substan-

2
Zp

0.6 "

12

0.1-

1.0

0.9"

FIG. 8. Real and imaginary parts for the proton pole
strength factor, at p=p0, as a function of momentum. The ar-
row signals kp (kF, neutron Fermi momentum).

FIG. 10. Proton effective mass, calculated at the neutron
Fermi momentum, as a function of the neutron density.
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tially changes the cooling scenarios. The gaps are
roughly proportional to exp[ —I/X(0)Vp], where X(0)
=m "kz/rl is the density of states at the Fermi surface
and Vo is an average pairing potential. In the early stages
of the cooling of the star when T) 10 K the superfluid
gaps suppress the phase space available to the nucleons in
the neutrino emission process. However, later on, for tem-
peratures somewhat below the neutron superfluid transi-
tion temperature, the superfluidity induces an acceleration
of the cooling process due to a drastic reduction in the
specific heat. This new cooling mechanism depends
strongly on m', because of the dependence of the transi-
tion temperature on this magnitude.

As an example, let us quote from Ref. 26 the calculated
effective surface temperatures of the Crab pulsar with two
values of m'. For m'„=m, T, =1.6&&1 0 K, while for
m*„=0.8m, T, =3.8&10 K. With our calculated values
of m*=1.2m, the effective surface temperature would be
substantially lower than 1.6)&10 K to compare with the
present observability limit for this star of Tc„b——4.7&(10
K.

This more efficient cooling mechanism would make it
easier to explain present temperatures of other stars,
without referring to the even more efficient mechanism
based on the P decay of pion condensates.

VI. CONCLUSIONS

We have used a many body scheme, based on a nonstat-
ic boson exchange picture for the N-N interaction, which
treats the mesons and the nucleons on the same footing,
allowing all of them to interact with the medium. The
problem is solved self-consistently and the quasiparticle
properties are calculated for neutrons and protons. The
renormalized one pion exchange is seen to play a major
role with respect to these quasiparticle properties, though
heavier mesons play an important indirect role as the re-
sponsible agents for the nuclear short range correlations.

The effective masses for neutrons and protons are very
close to unity, increasing smoothly with the neutron densi-
ty. The pole strength factor as a function of the density
follows the same trend as in symmetric nuclear matter but
there is an important difference with respect to the energy
dependence. While in symmetric nuclear matter this fac-
tor had a minimum around the Fermi energy, in neutron

I

FIG. 11. Feynman diagram entering the calculation of the
Lindhard function.

matter it is a remarkable constant function with the ener-
gy. Similarly, the effective mass, which in symmetric nu-
clear matter had a maximum around the Fermi energy, is
also remarkably constant as a function of the energy.

Our results on the nucleon effective mass, have an im-
mediate repercussion on astrophysical questions related to
the cooling rate of neutron stars. These results show that
this velocity can be substantially increased with respect to
the available calculations. This would make the conven-
tional cooling mechanisms more efficient, thus, probably
making unnecessary the cooling mechanism based on a
pion condensate in the medium.

'k
U„(q,q)=4 J n(k)

p (k —q) k+
2mp 2m~

r+15'
(A 1)

with e~ the proton energy at rest, after defining the energy
origin for neutrons of zero momentum. Performing the
integrations explicitly, we get

We are particularly grateful to O. Maxwell for very
helpful discussions on the mechanism of neutron star
cooling.

APPENDIX: THE LINDHARD FUNCTION

For a n. , the Lindhard function for p-h excitation
(neutron-hole proton particle) takes into account the
lowest order contribution to the pion self-energy, as shown
in Fig. 11, and is given by

ReU (q, q) = 4 mp ]

(2w)~ q 2b

c2 a+ bkr+ ck
bkF'+a — ln +2ckF —co ln

a +bkF' —ck~

2bk~ a+2ak~b-
bk„—a —2ak~b2 (A2)

where

a= —q—0
2mp

1

gC=
mp

b= 1

2m„ 2mp

p

(A3)

I

If u is complex or the arguments of the ln are complex,
we should take the complex ln of the arguments. When
the arguments are real, then they should be substituted by
their absolute values.

For the imaginary part we get

ImU (q,q)=0 if c —4ab (0,
ImU (q, q) =0

1/2
Q C

4b2 ImU (q, q) =—
if c' 4ab )0, but

~

—k,
I
)k~,

1 2 2(k 3
—k

& ) otherwise,
2&C

(A4)
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—a

Ref. 5 with trivial modifications.
The structure of (Al) clearly shows that if

q &max (E„)—min (E~), (A7)

(A5)

k3 ——min [k~ k2] .

For a m+, we use the relationship

U +(qo,q)=U ( —qo, q) . (A6)

With respect to the Lindhard function for n.o, or for b;h
excitation, we can use the formulas of the appendix of

where E„and Ep are the neutron and proton energies,
then U does not have an imaginary part. The second
member of (A7) defines the difference of neutron and pro-
ton chemical potentials in the quasiparticle approxima-
tion.

There are some particular cases where the I.indhard
function presents strong cancellations if calculated with
the above formulas. This is also a feature that appears in
symmetric nuclear matter. The appropriate limits have
been calculated analytically for these cases and used in the
actual calculation.
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