
PHYSICAL REVIEW C VOLUME 29, NUMBER 1 JANUARY 1984

Eigenvalues of the Yakubovskii equation kernel for a four-nucleon system
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Low-lying states of He have been studied by calculating the trajectories of the first two eigen-
values of the kernels of the Yakubovskii four-body equation as the total energy E increases from
—«e to ao +i e. The two-particle interactions used are of the separable Yamaguchi type and include
spin-dependent forces. The integral equations are derived for each state with values of spin S, iso-
spin T, and total angular momentum L. To obtain a set of single variable integral equations, the
Schmidt expansion is applied. The deformation of the integration contour is performed for the
complex eigenvalues, and the eigenvalue problems for these equations are solved to determine the
binding energy or the resonance energy including I=1 subamplitudes for 3+ 1 subsystems. The
binding energies for the ground and the first excited state are —45.009 MeV and —11.529 MeV,
respectively. A resonance state is found to be about —4.889 MeV in the state with ST=10,L=1
corresponding to the degenerate state of the second, third, and ninth excited states of the He nu-

cleus.

NUCLEAR STRUCTURE He; calculated levels. Four-body, separable poten-
tial model.

I. INTRODUCTION

It is of current interest to extend the method of calcu-
'lating the scattering problem established in the three-body
system to the four-body scattering problem based on the
Faddeev-Yakubovskii (FY) formulation' with a separable
potential. The success in the three-body scattering prob-
lem ~ is founded on the fact that the singularities ap-
pearing in the kernel of the integral equation have been
treated by the contour rotation method. As regards
four-body scattering, some representation for the ampli-
tudes describing 3 + 1 and 2 + 2 subsystems at energies in
the continuous spectrum region is needed in order to
reduce the FY equations in two variables to a set of single
variable integral equations. It was shown in a previous pa-
per that the introduction of the Schmidt expansion makes
it possible to answer these questions. This expansion is
applied to the calculation of the eigenvalues of the kernel
of the FY equation to seek a resonance state. A more
realistic analysis with spin dependent forces and with due
regard to the orbital angular momentum decomposition is
required. Such a study plays an important role in check-
ing the rate of convergence of the Pade approximation
which will be used for the calculation of the four-body
scattering. We could also examine whether we can get a
general experimental level scheme of the He nucleus.

The level scheme of He is shown in Fig. 1 (see Ref. 7).
As we have central s-wave forces, the spin algebra does
not involve the orbital angular momentum, and we can
perform the spin-isospin analysis independently of the
oribtal angular momentum structure. Therefore, in our
formulation, total spin J is not conserved, so we must as-
sign the degenerate states of the spin-isospin supermulti-
plets to each state of the He nucleus with J T. From

II. EXPANSION OF TWO- AND THREE-BODY
SUBAMPLITUDES

In this section we shall give the expression for the am-
plitude for 3 + 1 and 2 + 2 subsystems, taking account of

TABLE I. Degenerate states of the one- and fifteen-
dimensional spin-isospin supermultiplets. Adapted from Table
3.0.1 of Ref. 7.

[N]

0+

1+
0+
1+

012
012

1+2+3+
2+

1+2+3+

Table I (see Ref. 7), the ground and the first excited state
correspond to our ST=OOQ =0 state; the second, third,
and ninth excited states correspond to our ST=10/, =1
state; the ninth excited state corresponds to our
ST=OOQ =1 state; and the fifth, sixth, seventh, and
eighth excited states approximately correspond to our
ST= lip, =1 state. In this paper we would like to seek
these resonance states using our resonance theory.

In Sec. II the separable expressions for 3 + 1 and 2+ 2
amplitudes are obtained. The four-body formalism used
in this paper is the one introduced by Narodetskii. The
necessary generalization of his method for the problem at
hand is given in Sec. III with the expansion obtained in
the preceding section. Section IV contains the obtained
results and a discussion. A summary is given in Sec. V.
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A. The 3+ 1 channel
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(0+, 1+,0)

28.297
2n+2p

26.072
z H+n+p

To apply the Schmidt expansions, the eigenvalue prob-
lem must be defined for the eigenvalue qI„'(z) and the
eigenfunction qr; „"(p;z):

nI, :(z)V', (p z) =f QKI,'~(p»p' z)V,",.'(p', z)p'dp',
J

where

K;i'II'(p,p.',z)= f gK;k"(p,p";z)Kjk"(p",p';z)p" dp",R» 0 sk

23.848
z H+d

K;k' (p,p', z ) = 8ir —d;
' z-

2Nl

221

21.1

20. 1

2, 0

0,0

19.815
3H+p

20.578
3 He+n

&2

x V,k
' (p,p';z) dk z-

m

Vf (P,P';z) =
2 V3

f g'(P 1 )gk(P2 )Pl(x )

' 2mz ——', (p +p' +pp'x)

and A,J' are spin-isospin matrices

1 3
4 4

p1/2 1/2
3 1

4 4

0.0 0+,0
0

4He
FIG. 1. Energy levels of 4He. Adapted from Fig. 2 of Ref. 7.

spin, isospin, and angular momentum.
The triplet and singlet two-bdoy potentials were as-

sumed to be s-wave separable potentials of Yamaguchi
form. The corresponding T matrix is of the form

g;(k)g;(k')
TI(k, k';z) =-

2m d;(z)

g;(k) = (k'+P,') ir2A,
d;(z) =1-

P;(P;+&—2mz )

where z is the energy parameter, m is the nucleon mass,
and the label i =0, 1 denotes the isospin state. The values
of the parameter in Eq. (1) are the same as those of Ref. 9:

po ——v 2)&1.450 fm

p& ——~2)&1.165 fm

A,o——2v 2)&0.4156 fm

A, I ——2v 2X0.149 fm

a=& 2X0.232 fm-'.

3/2 1/2A 0 0

p1/2 3/2
0 0

0

for cr =i.= —,
' and in the form

f I (p;z)%;'„"(p;z)p dp=5 „
1 3 3 1for cr = —,, i.=—, or o.= —,, i.= —,.

If we set

[iII,:(»]'"0 (p 'z)

g IC)~i
' (p,p;z )g)j~„' (p;z )p dp

J

then this new function y; „' (p;z) will be an eigenfunction
of KIj'.I'(p,p', z) corresponding to the same eigenvalue i1

The orthonormality conditions may be written in the
form

f I/21/2, I( .
)

I/2 I/2, I( . )
i=0, 1
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and will satisfy the similar othogonality condition. The the separable expression for the 2+ 2 amplitude is ob-
kernel K;i'.q (p;p';z) is defined as follows: tained:

Kgl(pp';z)= f QKI„(p",p';z)Kfj (p",'p';z)p" dp"IJ,I. » 0 k» I kg
u;,+;(p,p', z) = g co; (p;z)Fi+ (p';z),

—1

4m

Following our method in Ref. 6 the separable expression
for the 3 + 1 amplitude is obtained:

u;; (p,p', z) = g co; (p;z)F; (p', z) .
4m

w; i" (p,p';z) = g ipse'„' (p;z)FJ„' (p', z) .os, l (4) The unknown function F;+(p'—,z) is determined by the re-
lation

The unknown function FJ„"(p';z) is determined from the
following relation:

FJ'"(p»z)=[rli, :«)l'" Py, (p'z)+ g+ja"(p»'z)f i
k

F; (p;z)=[/ (z)]'~ ~; (p;z)+ QFi+ (p;z)f"
Nf

F;+(p;z)=[( (z)]'~'gF; (p;z)f"„,

f". = f, 0,", (p;z)V', "(p;z)p'dp .
f" ~ = f a; (p;z)co; (p;z)p dp .

B. The 2 + 2 channel

The expression for the 2+ 2 subamplitude for all cases
but S=T= 1 is already given in Ref. 6, and so we will dis-
cuss th1s case Only.

From Narodetskii's formulae we have the integral equa-
tion for the 2 + 2 amplitude:

u;;
—(p,p';z) = K;; (p,p' )z

4m

+ K;;"p,p;z u;-; p,p;&p p

where the labels i and i' take the same values, i =1, i'=0
or i =0, i ' = l, and

III. FOUR-BODY FORD.ASM

We shall discuss the question of what modifications
must be made in Narodetskii's equations (19) and (20) in
Ref. 9 constructed under the spin-isospin analysis, if the
orbital angular momentum decomposition is performed.

Let l~ be the angular momentum of a given triplet of
particles and ls be the angular momentum of the remain-
ing particle relative to the center of mass of the other
three. The orbital momenta 3& and lz are then coupled to-
gether tQ form a state in which the tQtal angular momen
turn L is diagonal. The partial wave decomposition of the
function has the form

2

Ki; (p,p;z) = —d; z p

ST ST,i ere +
+icrr(p)q~z)= g izLI i (p)g)z)ILMi 1 (p)q) )

P 0
(8)

I2

&& Vi; (p,p;z) d; z—I p
Pl

g;(p)g; (p')
Vii (p,p', z) = —QA, ;A,; (1—

2Viz —p —p

r,M, , (p, q)= g(P, L, ~m, m, ~)r, (P)r, (q).

(9)

The eigenvalue problem is defined as follows:

(z)ro; (p;z) = f K;; g(p,p', z)co; (p', z).p'2dp',

and the orthogonality condition

f &i ))) (p;z)coi n(p;z)p dp =5)))))

Introducing another eigenfunction by the definition

[g (z)]'i'a; (p;z) =f K;; (p',p;z)co; (p', z)p'dp',

Because of our restriction to s-wave two-body forces, the
partial decomposition of the function b;~ (p, q;z) is just

b
g (»q z) = g br'. '"(P'»iI'z) ~L~(q) .

L

Hereafter to the end of this paragraph we follow the
Kharchenko formulation, ' which is based on the method
proposed by Ahmadzadeh and dijon" in the three-body
problem. Substituting expansions (8) and (10) in
Narodetskii's integral equations (19) and (20) in Ref. 9 and
projecting (19) and (20) onto the state (9) and Fl i)r( q ), we
obtain the following system of two-dimensional integral
equations for the expansion coefficients of al i i' ', bl 'i:



e(z) 2v'2

3 l 0'f' CFV ll
2

+ (v'3I2 ) g+C/'(ST) f w/"" (p t„s)d; ' s-
l J

)&B1 1 (x)bL "J(R2,q';z)q' dq'dx ~,

bL. '"(p,q;z)= — 21 ( —)s+ (&3/2)'
e (z)

2R2 q'2
d) z—

ipse ital

2

X g C,',~(ST) J U;J;J' p, R1,z q-
l O'T 2' X g D, , (x)a,', '(R2, q', z)q' dq'dx

I' I'

(12)

+3q - 3q+q R q+~3q
'

R '1/3q+ q
'

1 ~ ) 2 ~ ~ 1

I 9 2 ,2 3 , I 3 2 ,2 2
z1 ——z — —(q +q' + zqq'x), z2 ——z — —q +q + qqx, x=q q2' 8 2m 2 v3

The spin-isospin recoupling coefficients C~' ', (ST) can readily be calculated and are given exphcitly by Narodetskii and
Grach. ' The function for the angular momentum part takes the form:

I.l I I.+/ —I
l l

A,", (x)=16qr'/'+2l, '+1(—)
P

Ply, Plq
Nlp Vp P5q

I. lq l» I.
F1 ~ (Hq g,O)F1, (Hq g,O)F1 ~ (8qq, O),0 ~ y ply g ) & I» V f P& qltlq

B1 1 (x) 8& g(l»mplq m» ~1.0)F1 ~ (HqR 0)F1 (Hqq 0)p p q p»)N» q )) qÃl»
78p

+2lq+1
D1 1 (x)=8& g (l»m»lqO

~

I.m»)F1 (Hq'a 0)FL, (Hqq' 0)

Hereafter to the end of this section we confine our attention to the case ST=11 and arbitrary I. values, since this state
increases the number of Narodetskii's components of the unknown function b(q;z) by using the Schmidt expansion.

The Schmidt expansions for the 3+ 1 and 2+. 2 amplitudes obtained in the previous section are of the following
orms:

II/2 I/2;I 1/2 1/2; I'" (p,p';z) = g u1;,„'(p;z)X;,„'(p',z),

I /2 3/2;1 1/2 3/2;11/23/2, 11( t,
) g 'p( . )y '»(

fT

3/2 1/2; l 3/2 1/2; I
(p,p', z) = g u)0 „'(p;z)XO „'(p';z),

Pf

—1
U;; (p,p', z)= g u;„(p;z)8+ (p';z),

(13)
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er;I nwI
w;„~(p;z)=ip; „''(p;z)d / z

2

2

v; „(p;z)=r0; „(p;z)d z

2

8; „(p;z)=E;+„(p;z-)d z

A solution of integral equations (11) and (12) may be introduced in the following forms:

1//2 1/2 l 2
ll, il/21/2( . ) y ' p

Pt
Pl

11,1/2 1/2(

Z, PPl
I

t

5 ~m

2

b2,
"(p,q;z)= g ul „p;z 2'

(14)

2

(p, q;z) = g uo „p;z—q
bL, '„' (q;z),

2@i

where the aL 1' „'(q;z) and bL „'(q;z) are to be determined. Inserting Eqs. (13) and (14) into Eqs. (11) and (12), we may

obtain the set of equations for the unknown functions a„and b„:

ll, l/21/2i . ) ~ & ~ R 1/21/2;1/21/2;i;nn'i/l ~ . zy i i.
) &2d

P O'P 0' q 0

Ip 0

CC 4

+ ~ QSi i.i. """(Rl,R2,'s, s')bl. „(q';z)q' dq'
5

1l,gg oc

izL„'1,', (q;z)= g ——, g Ri 1 .i. i,'.~
' "'""(Ql, Q2,s, )asi, ,(q';z)q'2dq'

+ ~ I QSi'1 r.
"""(Rl,R2', s,s')b. L, „(q';z)q' dq'

Pf
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b 1 l,i(~ z. ) ~ ~ T(s);1/21/2;I';rrrr'(R R .S s )&11,1/21/2( .z) 2dL, rr r
( )

~ ~ V/3 O ~ I'I'.L lr 2r r ~L I'
i'=0, 1 n'I' I' q 7

Ip

—2t/2
(17)

where

1/2 1/2; o&i;nn' / 1 3
RI I I, I, L (Ql r Q2, SrS )——

p e'z e' 2 2%2

1/2 1/2; I err; I'
X;„(Q],S)LU; „(Q2,$ )

—1 Q2
d z-

2m 2m

err; 1/2 1/2;i; nn' 1 3
RI I I I L (Qi Q2 S S )

2 2v2

3 a~;I 1/2 1/2;1'
1 X;,„'(QI,S)uI;,„'(Q2,S') LI I

A «'dx,—1 Q2
d; z-

2m 2m

err; I
1 X;„~(RI,s)U;„(R2,s')

1

di Z
2m 2m

err, l

TI'I'. L"""(R i,R2,s,s') =—(v'3/2) riI'( —) + ' ' D dx .
8I'„'(R i,s )uI; „~(R2,s')

—1 ~2
2-

2m

In Eqs. (15)—(17) the labels o, r, i, and (s) take the same values: IJ= —,', r= —,', i = 1, (s)= +,—(i '= 1,0) or ir = —,', r= —,',
i =0, (s)= —,+ (i'= 1,0).

In the numerical analysis, we must take the finite sum instead of an infinite sum in Eqs. (15)—(17). I.et the number of
the unknown functions in the set of Eqs. (15), (16), and (17) be N and N„, respectively.

IV. RESULTS AND DISCUSSION

In this section the numerical results are given and dis-
cussed. We have plotted in Figs. 2—5 the trajectories of
the first two eigenvalues or the second one only of the ker-
nel of the FY equations for ST=00,10,11, L =0 or 1

states which are thought to correspond to the experimen-
tal energy levels, as the total energy z increases from —ao

to co +i e of the He nucleus.
In Fig. 2 the two largest eigenvalues are shown with a

circle of radius 1 for the state of ST=Op =0. The larg-
est eigenvalue passes through unity in the real part, and
this point can be assigned to the ground state. The second
eigenvalue seems to pass through the circle of radius 1 in
the complex part. But this is because of a numerical er-
ror. As we discuss later, we must regard this point of in-
tersection assigned to the first excited state as a bound

Im I7

Irn g

—4

-10.880

—10.865

—S.00

Re g
0

FIG. 2. Trajectories of the first two eigenvalues e(z) for the
ST=00,L =0 state. The numbers give the energies in MeV.

Re I)
0

FIG. 3. Trajectory of the second eigenvalue e(z) for the
ST=OQg, = j. state. The numbers give the energies in MeV.
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TABLE II. The 0+ state of He with the I =0 state only or
with I =0 1 states for thc (3 + 1) subamplitudc.

zg (MCV)
s wave s,p wave

z, (MCV}
s wave s,p wave

—11.274 —11.280

4.

Re t)

FIG. 4. Trajectory of the second eigenvalue e(z) for the
ST=10,I.=1 state.

state. At the indicated points in the two eigenvalues, the
values of the corresponding energies are given. In spite of
full use of our computer's memory, the insufficiency of
the mesh points in the Gaussian quadrature has brought
about an inaccuracy of the numerical value of the eigen-
values. So me have had to give up the plotting too soon.

In Fig. 3 we have plotted the second eigenvalue among
the largest two for the state of ST=OOg, =1. As the first
eigenvalue has a minus sign, we have not represented it on
Fig. 3. The second eigenvalue does not pass through the
circle and so we could not find the energy level corre-
sponding to the ninth excited state in the ST=--OOg, =1
state.

Flgill c 4 sliows thc sccolld clgcllvalilc of 'thc

ST=10,I. =1 state. The eigenvalue could be considered
to almost touch the circle of radius 1 in the neighborhood
of the turning point of the curve, at which the energy is
approximately —4.889 MeV. So we can assign this point
to the resonance state of the second, third, and ninth ex-
cited states of the He nucleus. The first eigenvalue has a
minuS Sign.

Figure 5 shows the second eigenvalue of the
ST= lip, =1 state. The eigenvalue is small and we can-
not find the energy level in this state corresponding to the
fifth, sixth, seventh, or eighth excited state.

In all of these cases, when the eigenvalue becomes com-
plex with a positive imaginary part, this rise to the com-
plex plane is initially horizontal. We could find all of the
energy levels in Fig. 1 but the bound states corresponding
to the ground and first excited states and the resonance
state corresponding to the second, third, and ninth excited
state of the He nucleus.

Bound state. We solved the eigenvalue problem for the
ST=00+, =0 state at energies on the left-hand side of the
point from which the continuous spectrum starts to run
on the real axis. We obtained Narodetskii's result that the
first excited state is in the bound state. By the way, this
state 1s regarded to bc In thc 1'csonaIlcc state by cxpcrIDlcIl"
tahsts. The effect of including the 1=1 (3+ 1) subampli-
tude is apparent from Table II, if we compare two pairs of
columns for the calculated energy levels. The results show
that the overboundness could be improved only slightly by
including the l =1 (3+ 1) subamplitude; the effect of in-
creasing the values of N„adnJV „from 3 to 4 is greater.

Resonance state Since t.he second eigenvalue does not
pass through the circle of radius 1, we have calculated the
eigenvalue at energies on the second sheet of the complex
plane. ' Though the calculated eigenvalue showed a ten-
dency to move on toward 1 as the imaginary part of the
energy increased in minus value, unfortunately owing to
the insufficiency of the number of mesh points in our nu-
merical analysis the accuracy of the calculated eigenvalue
became worse before its arrival at 1. Since the result'" for
the J T= 1+0 state in the Li nucleus is that the value of
the phase shift is 90', even though the corresponding
second eigenvalue does not pass through the circle of ra-
dius 1, we would like to conclude that there is a resonance
state in the vicinity of the value —4.889 MCV of the ener-
gy in the ST= 10@,=1 state. We cannot determine the
level width.

lm

FIG. 5. Trajectory of the second eigenvalue e(z) for the
ST=11,L, =1 state.

V. SUMMARY

In our formulation we could find the binding energies
corresponding to the ground and first excited states in the
ST=OOg, =0 state and the resonance energies correspond-
ing to the second, third, and ninth excited states of the
~HC nucleus in the ST= IOg. = 1 state, but none of the
other states whose existence is recognized by experimen-
talists. Calculated binding energies of —45.009 and
—11.529 MCV are too overbound compared to the experi-
mental values of —28.297 and —8.197 MCV, while the
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calculated resonance energy —4.889 MeV is underbound
compared to the experimental value, more or less —6.0
MeV. Nevertheless, we think that the present paper will
give further stimulation to the calculation of four-body
scattering,

The author wishes to thank Prof. J. Kokame and the
staff of the computer room of the Institute for Nuclear
Study for the use of the computer (Facom M-180 II AD)
and the kind cooperation given during the course of this
work.
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