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Variational principles for exclusive and inclusive cross sections
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Density matrices and dyadic operators are systematically introduced in the definition of a T-matrix ele-
ment and the square modulus of that element. This use of the density matrices and dyadic operators pro-
vides two new variational functionals in addition to the Kohn-Schwinger type functional. An equivalence
between the evaluation of the inverse of an operator and a diagonalization procedure for practical calcula-
tions is also established.

The boosted shell-model (BSM) theory of collisions that
has been recently proposed is based on two main in-
gredients, namely (i) a time-independent wave packet
representation of the T matrix, and (ii) a variational princi-
ple for the evaluation of each individual element of the T
matrix in that representation. Another approach to the
practical evaluation of the transition amplitudes can be
based on time-dependent theories and a recent variational
principle of Balian and Veneroni' stresses the usefulness of
the density matrix in such a theory. Besides, it focuses on
the calculation of the square modulus of the transition am-
plitude whereas our approach' deals with the amplitude it-
self (more precisely, it deals with the correction to the Born
amplitude). The purpose of this paper is to show how the
BSM theory can be reformulated in terms of density ma-
trices and dyadic operators. Besides leading to new schemes
of approximation in practical calculations, this reformulation
generalizes the BSM theory from exclusive cross sections to

I

one for inclusive cross sections. Finally, this formalism may
be useful in providing the connection between time-
dependent and time-independent theories4 as well as the re-
lation to intermediate, Wigner type representations5 thus
opening the way to a systematic semiclassical description of
the reaction mechanisms.

The system under consideration is a N-particle system
(actually pion absorption and emission can be included in a
further generalization of the BSM theory6) with a Hamil-
tonian M=X+K'=g, S;—S;~+X,» VI, in obvious no-
tations. As shown earlier, 7 antisymmetrization of the theory
is straightforward and will not be explicitly treated here.
Each partition of the W-particle system defines a post (prior)
potential V'( V).

For example, if the final channel is composed of three
fragments, B', B", and B'" with respective center-of-mass
momenta k', k", and k'", the corresponding channel wave
function in wave packet representation will be defined by
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where $8, Pa, and P are the usual shell-model wave

functions and r ~, . . . , r ~ are the single particle coordi-
nates. The description of the initial channel or any other
two body channel is trivially analogous to Eq. (1). The cal-
culation of the off-shell amplitude

where ImE=I ) 0, is thus a generalization of standard
shell-model calculations. The one nontrivial step of the cal-
culation is the multistep amplitude b T = (X'I V'GVIX), with
G = (E—A ) '. As discussed elsewhere, "7 b Tean be es-
timated as the stationary value of either of the functionals

r= (x'I v'I@&+ &@'I vlx) —&@'l(E—m) I@), (3)

or

where @ and @' are trial functions. In what follows, we
shall use the abbreviations

~= vlx) (xl v,
~'= v'Ix') (x'I v',
& = vlx) (x'I V,

and define the density operators p = IP) (PI, p'= Ip') (Q'I
and p= I@) &@'I.

The functional I' t, Eq. (4), can be reexpressed as

Tl per
1

Trp (E—m)

with the constraint

p p Trp
(4)

where Tr is the symbol of trace. The constraint, Eq. (6), is
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necessary to ensure that p is a dyadic operator. It thus al-

lows us to consider the functiona1 of a trial operator,
with the same notations. It is trivial to verify that the func-
tional of two trial density operators p and p',

F2= Trpa. —fTrp(E —4 ) —TrA(p —pt) (7) F3= Tra 'p+ Trp'a +Tr(E —~)p'(E —~)p (10)
where f and t are two C-number Lagrange multipliers and A

is an operator Lagrange multiplier. The stationarity condi-
tion of I'2 with respect to p reads

(8)

(9)
I

a —f(E 4')——Ap —pA+ At = 0

which has the form of a set of linear, nonhomogeneous
equations for the matrix elements of p and A. Depending
upon the choice of the trial operators p, a large class of
models is thus available. Once p has been determined as a
function of A from Eq. (8), the parameters f and t have to
be adjusted self-consistently so that they satisfy f=F~ and
t = Trp, respectively. Finally A has to be adjusted to satisfy
Eq. (6) as well as possible.

To summarize this section, the amplitude 6 T is obtained
as the stationary value of a functional of a trial operator p
which takes into account the two trial functions Ig) and
Ip') considered in Eqs. (3) and (4). It may be worth re-
marking that Ft becomes equal to b, T, Eq. (4), as soon as
the stationarity with respect to Ip) alone, or Ip') alone, is
reached. Thus, a special problem of interest in the future
will be the behavior of F,, Eq. (7), and of Eq. (8), when
p= GVIX) &O'I «p= I4) &x'I v'G

The square modu1us of 6 T can be expressed in terms of
cr and 0.' as

IA T I'= TrG a-G'a-',

becomes equal to IA TI2 when stationarity with respect to p
and p' is reached. This is not subject to the constraints such
as p=p and p =p Trp as can be seen by considering the
derivative of I'3 with respect to p',

where the tilde —represents transposition. Equation (11)
is the same as

p=G G'=Gvlx) &xlvG',

which is automatically a diagonal dyadic operator. Similarly,
the stationarity of F3 with respect to p leads to p'= 6 a-'6
which is a diagonal dyadic operator as well.

It should be pointed out that the above variational for-
malism for the square modulus is not restricted to exclusive
reactions. This is because a and a. '

in Eqs. (9) and (10)
can be generalized into measure operators for inclusive
reactions. Indeed, as can be seen from Eq. (1), a dyadic
a. '= V'lX') &X'I V' carries labels k', k", . . . and so on. An
integration over a part of these variables, properly weighted
for energy and momentum conservation, defines an in-
clusive measure. For instance, one could define in a three
fragment case, the "inclusive density operator"

a '(k') = dk "dk"'5(k'+ k "+k'")8 E—
2mB'

kt/2 kltl2
IX i Is &II& &X' r rr ilail VV'

2mB"' (13)

It is thus obvious that a-' can be substituted for o-' in Eqs.
(9) and (10) and that F3 remains a variational functional for
the corresponding inclusive IATI2. Any other definition of
a. '

by improvements or generalizations of Eq. (13) will re-
tain the same relationship between Eqs. (9) and (10).

The same argument can be applied to the cross terms
which express the interference between the Born amplitude
and AT. Consider for instance

I = &xl v'Ix'& &x'I v'Gvlx& = Tr vlx& &xla'G . (14)

It can be shown that it is the stationary value of the func-
tional

f-'&x'I V'I@& = I,
Eq. (18) is equivalent to

(19)

(20)

i.e., IP) is the difference of the exact off-shell wave func-
tion at energy E and the Born term IX). If one uses Eq.
(18), with the normalization constraint (19), one can con-
sider the energy E as the stationary value of the functional

I

eigenvalue E and an eigenstate IP). If the normalization of
IP) is chosen such that

F4=Tra. 'p+Tr VIX) &Xlp' —Trp'(E —M)p
&y'I [~+f 'vlx) &x'I v'] l-p)

(21)

&@'l[(E—A ) f 'vlx) &x'IV'll@& =0 —. (i7)

If, in Eq. (17), the stationary value f ' of F~
' was used, it

is valid for arbitrary variation of $'. Hence, one can consid-
er the following "eigenvalue equation, "

[E 4 f ' vlx) &x'I v'] lp) —=0— (i8)

For a given value of f, one can determine a (complex)

One of the variational functionals to estimate the mul-
tistep amplitude 5 Twas of the form [Eq. (4)]

&x'I V'I@& &@'I vlx&

At the stationary value of the functional, one can rewrite
Eq. (16) as

Equation (21) has the form of a generalized Ritz variational
principle for off-diagonal matrix elements. The energy E
and the "correction amplitude" f are conjugate quantities
which are derivable from the same variational principle. It
can be seen that f is a function of the energy E, Eq. (4),
and E is a function of f, Eq. (21), and only if the stationary
value of Ft in Eq. (4) is used in Eq. (21) will one obtain the
correct energy E.

As it has just been established, I@) and &$'I are, respec-
tively, right and left eigenstates at eigenvalue E of the
operator P'+ f &, a non-Hermitian operator indeed. In
order to bring the theory closer to the hermiticity of the
Bloch theory of collisions, it is tempting to convert the
dyadic "source operator" a. into a Hermitian operator. This
can be achieved as follows.
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(25)

Let X be the generalization of o- defined by

x=(vlx)+~ v'Ix'&)(&XI v+~ &x'I v'), (22)

with four independent values of n, for instance 0, 1, 50,
and i. —Then the replacement of o. by X in Eq. (5) defines
a variational principle for a linear combination of the four
amplitudes &Xl VGVIX), &X'I V'GVIX), &Xl VGV'IX'), and
&X'I V'GV'lX ). Each individual amplitude can be later
recovered by suitable admixtures of the results obtained for
those independent values of n considered above.

A first property of this symmetrized variational principle
is that, insofar as the wave packets IX) and IX') are close to
channel wave functions, then

vlx) +n v'Ix') = (~—ReE)(lx) + ~lx'&), (23)

hence one formulates the theory in terms of forward elastic
amplitudes only for the "double channel" IX) + n IX').
Another property is that lp) and lp') are now eigenstates
of A +f tX, whose nonhermiticity is now carried by just
the complex amplitude f '. It can be checked finally that,
in case practical calculations are performed in a representa-
tion where P and Iy) = VIX) +n V'IX') are real, then lp)
and lp') are just complex conjugates, hence the Euclidean
functionals

E5 = (y I@)+ (@ly) —(d I (E—~) I@) (24)

(yly)(ply)
(@l(E-~)lo) '

(41(~+f 'ly& (y I 1 I@)

and so on, where the round bracket ( I ) now denotes the
Euclidean scalar product already familiar in Kohn-type vari-
ational principles. It may be stressed, however, that P
remains square integrable, both in the Hermitian and the
Euclidean metrics.

Although the replacement of the perturbation o- of P by
X increased the apparent rank of that perturbation from 1 to
4, this symmetrization seems therefore to show significant
advantages. Generalizations of optical theorems might be in
order, and also a complete hermitization of the theory
should be investigated, for P and Q' are square integrable
eigenstates of 4 +f 'X (we notice, however, that they be-
come purely outgoing and ingoing waves when E becomes
real and relations with the approach of Hahn9 are likely).

Two classes of results have been found in this paper. The
first one is the set of functionals I'2, I'3, and so on. Their
flexibility is somewhat remarkable since they generalize the
theory to (i) a very large class of trial density matrices, (ii)
the calculation of inclusive processes, and finally, (iii) a
highly symmetrized and Euclidean formalism. More impor-
tant might be the second class of results, whereby the com-
plex energy and the amplitude have been found to behave
like dual quantities. The latter enters the definition of an
auxiliary Hamiltonian, the former is the physically relevant
eigenvalue, and the corresponding eigenfunction is square
integrable. This relation between the transition amplitude
and the energy has thus transformed the usual continuum
formulation of scattering into one of a discrete quantization,
Eq. (18).
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