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Collective particle hole excitation in a deformed ground state
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It is shown that stable collective particle hole excitations are possible in a generalized Hartree-Fock basis
which describes a ground state that has less symmetry than the Hamiltonian. It appears that these collec-
tive states remain stable also for strong attractive interaction.

NUCLEAR STRUCTURE Nuclear matter density fluctuations, generalized random
phase approximation.

It is well known that the Hartree-Fock ground state of an
infinite system cannot support collective particle hole excita-
tions for an attractive residual interaction. ' On the other
hand, the breakdown of the random phase approximation
(RPA) for attractive interactions is believed to signal the
onset of a phase transition which is associated with a broken
symmetry of the ground state. ' In the case of an infinite
system, the question naturally arises as to whether a
nonuniform ground state which breaks translational sym-
metry exists, and whether this new ground state can support
collective quasiparticle quasihole excitations in terms of a
suitably chosen single particle basis.

The first question has been answered in the affirmative in
a recent paper. It has been shown there that a self-
consistent nonuniform density distribution does give rise to
a lower total energy of the ground state. The appropriate
quasiparticle operators are

mode in principle between the two bands. In the following
we see that this is in fact possible.

The single particle Green's function for the quasiparticle
defined by Eq. (1) is given by
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the matrix elements for V are no longer diagonal in the
momentum transfer when Eq. (3) is rewritten in the quasi-
particle basis, i.e. ,

where the occupation number n is unity for m =1 and
~k

~

~ Q/2 (first band is filled) and zero for m ) 1 (second
band empty). Note that G is diagonal in k and m.

Assuming a residual interaction of the form
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where the ck are plane wave operators and the u„'"'(k) are
solutions of the self-consistent equations. The fixed
momentum value Q determines the "lattice spacing"
d =2m/Q. The total ground state energy is minimized for
the value Q = 2kF where the Fermi momentum k~ is deter-
mined by the density of the system. The Brillouin zones are
characterized by ~k~ ~Q/2. The single particle spectrum
cu„(k) shows the same pattern as the one obtained in the
band model produced by an external periodic potential.

In this note, we investigate the possibility and the proper-
ties of collective density oscillations in this nonuniform
medium.

We recall that long wavelength oscillations in a uniform
medium with attractive interactions are prevented by the
presence of the unperturbed particle hole spectrum which
extends from zero to 2kFq for small momentum transfer q;
as a consequence, any collective state with an energy falling
into that range would be strongly damped. However, this
situation is changed dramatically in the nonuniform medi-
um. Since the first Brillouin zone is just filled in the modi-
fied ground state, any unperturbed quasiparticle excitation
has to bridge the finite gap between the first and the second
energy bands, thus allowing for an undamped collective

with

k]ln) ~ ~ ~ k4ln4 X ~(q + iQ)g& (k& q )gt (k4 q )

x 8(k)+ k2 —k3 —k4)

q = k3 —k1= k2 —k4

a ' '(k~, q)= gn. '(k, )~.+'i(k, +q) .

F24, 3t (~) = n jo (1 —n3')

QJ QJ (k3) + QJ (k[) + i0

n30 (1 —n )')
~14~23

cu —co~ (k3) +~~ (k)) —i0

the interaction renders the RPA propagator nondiagonal,

While, from Eq. (2), the bare quasiparticle quasihole propa-
gator is diagonal, i.e.,
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with
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where Eq. (5) is used for V and the labels 1-4 stand for
k1m 1 to k4m4.

The energies of the collective modes are the pole posi-
tions of F. From Eq. (7) we find these from the zeros of
the determinant of the matrix

where k and k + q are associated with labels 1 and 3, respec-
tively.

The most important contribution to this expression ori-
ginates from excitations between the first and second bands;
we therefore extend the sum only over these two bands. A
physically less obvious simplification is the assumption that

mlm3
the "form factors" g,

' ' are weakly dependent on k and
can be taken out of the integral. There is strong numerical
evidence that this is in fact the case: the more pronounced
the band structure, the weaker the k dependence of the g, .
With these simplifications we find
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where k denotes an appropriate mean value and
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Since Eq. (10) is just the bare polarization for the quasipar-
ticle quasihole pair, Eq. (9) is, in a formal sense, perfectly
analogous to the usual RPA in an infinite system; here,
V(q) is replaced by an effective interaction which has the
same sign but is attenuated by (g, )'. The essential differ-
ence of the roots of Eq. (9) originates from II1 2(6p, q ).

The integral in Eq. (10) can be evaluated if analytic ex-
pressions for p11(k) and p12(k) are available. While this is
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not exactly the case, we may approximate reasonably well
the values found by computation using the parametrization

p11(k ) = —D/2 —A cos (27r k/Q )

p12(k) = D/2+ 8 cos(27rk/Q )

with 8 & A & 0 and D &A +8. Inserting these Eq. (10)
we obtain by contour integration
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This function is sketched in Fig. 1 ~ It looks very different
from the corresponding expression for plane waves. The
new important feature is that H assumes negative real
values for lp1l (D —C. The determinant in Eti. (9) can
therefore have zeros in that zone if V(q) is negative and if

t

Hence, even if V(q) were q independent, a linear disper-
sion law would occur. The precise slope of the linear term
depends of course on the actual form of the interaction.
Note that the polarization term [Eq. (12)] does not contri-
bute to the linear term since

II1, 2(hl, q) =II1,2(Cu, o) +0(q )

Collective quasiparticle quasihole modes can therefore occur
for an attractive interaction due to the energy gap of the
quasiparticle spectrum which characterizes the new ground
state. It is expected that this mode remains stable even
when the interaction strength is increased, since D also in-
creases while C decreases when the interaction becomes
more attractive.

For small values of q we expect a linear dispersion law for
the eigenmode, viz. ,
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Note that the linear term originates from the effective in-
teraction, i.e., from the terms (g,), since

g&(q ) = (1 —s,p) g (0) + 0 (q )

FIG. 1. The bare polarization as a function of co and fixed
momentum transfer q. No qualitative change is caused when a dif-
ferent value is taken for q.
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We interpret the stability of the RPA as an indication that
the new ground state which has the lattice structure is
dynamically stable; this is further supported by its lower to-
tal energy. The modified Hartree-Fock ground state is, as
always, only an approximation to the exact ground state and
the question arises whether a linearization procedure can do
justice to a dramatic change such as that occurring in a
phase transition. This question was thoroughly discussed
using a soluble model. It appears, that, while Hartree-Fock

and RPA are not reliable in the vicinity of that interaction
strength for which the phase transition occurs, it can be reli-
ably used beyond that interaction strength as was done in
this paper. Note that our treatment would in fact break-
down for decreasing interaction strength, since then the
band structure of the single particle spectrum disappears. It
appears that deformed nuclei as well as superconducting nu-
clei can be dealt with in an analogous fashion, These cases
are being investigated.
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