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Semiclassical theory of quantum tunneling in multidimensional systems
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A semiclassical method is applied to the problem of quantum tunneling in the presence of internal oscil-
lator degrees of freedom. Comparison with coupled channel calculations verifies the accuracy of the semi-
classical method. Providing the coupling has a physically reasonable form factor, the coupling produces an

enhancement in the tunneling rate. The enhancement becomes larger when the tunneling degree of free-
dom couples with a harmonic oscillator with lower frequency. The semiclassical method is found to be
quite useful in situations where the coupled channel method becomes numerically difficult.

The effect on quantum tunneling of the internal degrees
of freedom has been much discussed recently' ' in connec-
tion with the large enhancement of subbarrier fusion cross
sections found in heavy ion collisions. ' ' An interesting
question in this respect is the relative roles of high- and
low-frequency collective excitations of the individual nuclei.
The problem is quite difficult to study by the numerical cou-
pled channel methods, when many degrees of freedom are
involved simultaneously and one deals with energies much
below the barrier. We shall examine the problem using the
influence functional formalism of Feynman's path integral
method. This method conveniently clarifies the importance
of the potential renormalization, and the decisive role of the
functional form of the coupling to the internal motion. We
compare the results of the path integral method with those
of coupled channel calculations to verify the accuracy of the
path integral method.

The problem studied is the quantum tunneling of a sys-
tem, in which the collective tunneling degree of freedom
linearly couples to a harmonic oscillator. The corresponding
Hamiltonian is postulated as
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the problem to be considered in the present work. We also
approximate the time integral by the saddle point method.
We then consider the following path integral representation4
of the transition probability from the initial position rI to the
final position rf during the imaginary time lapse from
t(= —i7I=O to tg= —i~f= —iT'.
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where r and p are the coordinate and the conjugate momen-
tum of the collective tunneling motion. Physically, the cou-
pling coefficient o- is the amplitude of the zero point oscilla-
tion of the harmonic oscillator. The function f is a form
factor with the dimension of a force, to be specified later.

We focus only on the collective motion, and consider an
inclusive tunneling probability I';„. It is associated with the
matrix elements of the Green's function as follows:

J„=„&rl (r )exp {—[q (r )]'. . .i (6)

In these equations we have used the average and the differ-
ence, R (r) and q(r), of two paths to determine the transi-
tion probability. The influence potential W„ in Eq. (4)
takes into account the effect of the linear oscillator coupling
on the tunneling probability. In the formulas we derive
below, we ignore the factor J„, which is associated with a
quantal effect.

The integral over the average path R (r) will be dominat-
ed by the saddle point path R(r). It obeys the following
classical equation of motion:4

The sum runs over all final states p of the intrinsic degrees
of freedom. We disregard the variation of the momentum

k& from the initial momentum k, which is not so large in

pR(r) = +F(r)
dR

where
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There is no dissipation effect in the case of ~=0. In this
limit, therefore, the effect of coupling can be represented
exactly in terms of a renormalization of the potential. The
resultant effective tunneling potential barrier U„'"'p(R) is
given by

2~2 f T
U -p(R ) = U(R ) — f(R)

&
dr, ffR(r, )]

U;g(R) = U(R) — '[f(R)]'/~ (10)

To make a specific model of the entrance channe1 poten-
tial U(r) and the coupling form factor f(r), we have ex-
panded the Hamiltonian used in Ref. 6 with respect to the
coordinate of the harmonic oscillator and truncated by the
first order term. This truncation is required because the
derivation of the influence potential Wz in Eq. (5) is based
on linear coupling. ~ The explicit forms of U(r) and f(r)
are as follows:

with

U(r) = Ug(r)+ Z(Z2e
r

In the opposite limit of high frequency, the effect of linear
oscillator coupling can be well represented in terms of a re-
normalization of the potential. For application to the nu-
clear fusion problem, this adiabatic limit requires co && Op,
where h Qp- 4 MeV is the energy scale of the curvature of
the potential barrier. The effective potential in this case
U;g (R ) is given by

tegral J~ evaluated on the dominant path:
r

T

P„(E, ) =exp —2 —R'+ U(R )

The uniform approximation provides an improved formula
for the tunneling probability P that we shall use in our calcu-
lations:

P„(E. )=& (E.. )/II+&„(E. )] . (16)

The dependence of the tunneling probability on the oscilla-
tor frequency is implicit in the influence potential 8'.

In Fig. 1 we compare the enhancement factor,
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co C.m. f
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(17)

calculated by the present path integral method (solid lines)
with the results of coupled channel calculations (dashed
lines). In Eq. (17), Pb„, is the tunneling probability in the
absence of coupling, i.e., when o-=0. The colliding system
is ' 0+'"8Sm. The amplitude of the zero point oscillation
has been fixed to be 0-=0.2 fm. We show the results of
the coupled channel calculations for the case of f~ = 0 MeV
and of Ace=20 MeV. We took only two channels for the
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The values of parameters were chosen to be

Up=31.67 MeVfm

R( = 1.233M '/' —0 983 '~ fm

hR =0 290 fm

and

a=0.63X4/Jm =1.422 fm

(14a)

(14b)

(14c)

(14d)

20-

where A& is the mass number of the projectile or the target.
%e have then determined the dominant tunneling path by

solving Eq. (7) by iteration. We have ignored the excitation
prior to tunneling. This is consistent with Eq. (5), which
assumes that the harmonic oscillator is in the ground state
at the beginning of the tunneling process, i.e. , ~o. ) = ~0).
Accordingly, we have chosen the initial condition to solve
Eq. (7) such that Rr equals the outer turning point for the
bare tunneling process and the initial velocity is zero. The
transmission time 7f = T has been identified with the time
when the velocity again becomes zero, namely, when it
changes sign. The transmission point Rf is the correspond-
ing reflection point.

Our approximation to the tunneling probability is the in-
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FIG. 1. The enhancement factor g is shown as a function of the
incident energy. The solid lines are the result of the path integral
method, while the dashed lines are the result of the coupled channel
calculations. The numbers denote the energy quanta of the intrinsic
harmonic oscillator.
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latter case. The case of hem=0 MeV is the case when the
disagreement betweeen the path integral calculations and
the coupled channel calculations is largest. The path in-
tegral method compares quite well with the coupled channel
calculations except near the top of the potential barrier,
V&=61.53 MeV. The case marked by a cross (E, =60.93
MeV, @co=0 MeV) is beyond the scope of the present
method. The imaginary time path integral method breaks
down for this case because the effective potential becomes
lower than the incident energy.

Under our assumption of a single dominant semiclassical
path, the influence functional method can easily be general-
ized to many internal degrees of freedom. 5 If the internal
degrees of freedom are oscillators that couple independently
according to Eq. (1), the classical equation of motion (7)
has independent contribution to the force from each inter-
nal degree of freedom. Practically, the equation can be
solved just as easily as in the single oscillator case. The
penetrability function wi11 have a product of exponential fac-
tors, each of which is represented as the time integral of the
influence potential. The approximate effect on the penetra-
bility will thus be given as a product of enhancement factors
for each intrinsic degree of freedom. In this respect, the
semiclassical method is far superior to the coupled channel
method, which is severely limited in the number of chan-
nels that can be treated.

Another advantage of the semiclassical method is that
there is no limitation in the strength of the coupling. In
contrast, the coupled channel method becomes numerically
difficult for small cv when the amplitude is large, i.e., for
a & 0.4.

Figure I compares also the enhancement factor $„(E, )
for five different values of ~. The figure shows that the
enhancement is larger when the tunneling degree of free-
dom couples to a harmonic oscillator with lower frequency.
This agrees with what has been found in Ref. 6. This fre-
quency dependence of the enhancement can be attributed to
the strong co dependence of the renormalization of the po-
tential barrier. As an example, Fig. 2 compares the effec-
tive potential U'"'c(r), Eq. (9), for the case of E, =56.93
MeV with the entrance channel potential and the adiabatic
potential for A co = 20 MeV. The effective potential
U„"'0(r) for different incident energies does not differ so
much from that for E, =56.93 MeV except when E, is
very close to the barrier top energy Vz. Figure 2 shows that
the potential renormalization is indeed much larger and
favors the enhancement of the tunneling probability for the
coupling to an harmonic oscillator with lower frequency.

Caldeira and Leggett have discussed the importance of
the dissipation effect in the quantum tunneling in open sys-
tem problems. They have attributed the hindrance of the
quantum tunneling of flux quanta across superconducting
junctions to this effect. In order to learn the importance of
the effect in the present case, we compared P„(E, ) with

U(r)
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FIG. 2. Comparison of the bare and the renormalized potentials.
The solid, dashed, and dot-dashed lines represent the entrance
channel potential, the adiabatic potential for hew=20 MeV, and the
effective potential U'rro (r) for E,~ =57 MeV, respectively.

The authors are grateful to H. Esbensen, A. B. Balante-
kin, and J. A. Negele for useful discussions. They ack-
nowledge the support of the National Science Foundation.

the bare tunneling probability and the adiabatic approxima-
tion P,d(E, ) for the case ofhce=20 MeV. P,d(E, ) is
the tunneling probability through a one-dimensional effec-
tive potential barrier U,'dr" (r). As is expected on physical
grounds, we found that I',d is always larger than the final
tunneling probability P„(E, ). It is, however, only slightly
larger than P„(E, ). This means that the dissipation effect
plays a minor role in the adiabatic case. Obviously, there is
no dissipation effect in the other extreme limit, i.e., when
ice=0. For small but finite values of co, the total effect of
the oscillator coupling on the collective quantum tunneling
cannot be easily factorized into dissipation and potential re-
normalization effects. 4 Therefore the concept of a dissipa-
tion effect does not seem to be useful in discussing the
quantum tunneling considered in the present work.

Finally, we wish to comment on the strong sensitivity of
the potential renormalization to the form of the coupling.
The integral on the right-hand side of Eq. (9) will almost
cancel out if the coupling form factor changes sign during
the tunneling process. The corresponding potential renor-
malization for the case of cu = 0 will thus be much smaller in
this case than where the sign of the coupling form factor is
fixed, as is assumed in this work. Quantum tunneling has
often been discussed in the framework of a model having a
linear coupling potential in the tunneling degree of free-
dom. 23' The above observation is a warning that such a
model could give totally different behavior compared with
models with physically reasonable coupling potentials.
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