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The possibility of "universal" effective forces for the particle-hole and particle-particle problem in the re-

normalized random-phase approximation approach is analyzed using Green's function theory. A numerical

comparison in the lead region for a simple semiphenomenological force and a more microscopic force de-

duced from the bare nucleon-nucleon interaction is given and discussed.

Several extensive investigations have been reported in the
literature to find "universal effective interactions, " which
reproduce both ground and excited states of nuclei. Details
and further references can be found in recent Skyrme force
fits' by Nayak and by Warroquier, Heyde, and Wenes. It
seems an interesting but difficult question to find out
whether in principle there exists such a "universal poten-
tial" describing a variety of nuclear properties. For this
purpose we start from the microscopic definition of effective
forces by means of the well known Green's function
theory. ~' In principle these "pure" effective forces deter-
mine the nuclear spectra, but one is forced to use different
forces for the excited (ph) states and for the two-particle
(two-hole) valence nucleon spectra. ~' This is illustrated
shortly in the first section of this paper. However, as
known from many investigations one incorporates in
particle-hole (ph) [particle-particle (pp)] random-phase ap-
proximation (RPA) calculations —at least implicitly —renor-
malization procedures due to basis truncation and quasipar-
ticle behavior. ~7 The consequences of this treatment are
outlined in the next step. From these considerations it
seems possible to find a candidate for a "universal poten-
tial. " Since the validity of the assumptions involved are dif-
ficult to prove, we have tested the possibility of a simultane-
ous description of the pp and ph spectra for two potentials
in the third part.

Since the Green's function theory is given in many text
books and articles (for instance in the book by Migdal4), we
shall only give the relevant equations. The ph spectra are
determined by the generalized response function L defined
by7

(2)
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(2) pp (2)
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where G „denotes the single particle propagator. We use
the convention to sum or integrate, respectively, over all

doubly occurring variables. Kn" (Kn') are the ph- (pp)
forces (irreducible vertices), defined as the sum of all ir-
reducible graphs in the ph (pp) channels. An alternative
but equivalent definition of K uses functional deriva-
tives. " [In the appendix of Ref. 9 an extensive list of
general relations between K,KPh and different six-point
functions is given which contain also the core polarization
problem (see Refs. 11 and 12, for instance)]. By perform-
ing the energy integrations in Eqs. (3) and (4)—as in pro-
cedure (2a)—and taking the limit cu E (E —2), respec-
tively, one obtains directly the unrenormalized equations for
the ph and pp spectra. According to the given derivation
one has to use the effective force K""(E ) for the N parti-
cle spectra, but for the N + 2 spectra K n( +E — ) enters
as an effective force. Within this (pure) scheme no
mathematical and physical reason can be seen for a common
description of K"" and K", since these are defined com-
pletely differently. For instance, Kp" is not necessarily an-
tisymmetric in contrast to K "." The situation is different
with respect to a common potential for the ground state
properties and the ph spectrum only. The ground state
properties are determined by the nucleon self-energy M (ir-
reducible mass operator). In ladder-type approximations
one obtains

two-particle propagator G . L and G obey the following
Bethe-Salpeter equations:

ph
Lkmin IGkcGbj(gbmgnc KcubvLvumn)

The Latin indices (a, b, . . . ) stand for the quantum numbers
(cn, p, . . .) and time variables (t„tb, . . .). Transforming to
energy space and integrating over the relative energy vari-
ables gives the desired quantities'b (Ebt = 0):

and
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In an analogous manner the pp spectra are given by the

The effective scattering matrix I can be considered as an
effective potential. ' ' Therefore, if the second term in Eq.
(6) is small8 one may use a common potential for the N-
particie properties. Possible choices for I"L are either
Brueckner's 6 matrix' ' or the so-called A approximations
of the Green's function theory. '

So far the presented scheme is very general. Practical nu-
clear calculations are usually done in a truncated basis under
the assumption that the nucleus has a dominantly shell-
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model structure, i.e.,

1 —n„ tl yG„.(~)=z„g„„"+
k„+ I7t 0 k c I'ri

+ G„"„(e)

(+E"-")=z.z,F.)., (+E ")
F ph (Ebt) F ph (Ew)

(8)

The new kernels F of the Bethe-Salpeter equations in the
restricted basis obey the following integral equations:4 "
Fabcd = [~aj gkc tFamcn [GnjGkm (~G njGkm ) jj&jbkd

~aXd [gakgbj + Fgmn (GmkGnj [PG mkG nj i )I+kjcd ~ (10)

The symbol P denotes projection onto the truncated space.
Furthermore one can also derive Bethe-Salpeter equations
for the effective scattering matrix I with the new ph or pp
forces, respectively

I abed Famcn [gmbsnd t (~Gnj G km)I jbkd1

or

(12)

As can be seen from Eqs. (9) and (10) the properties of the
new effective ph (pp) forces F'"(F") depend strongly on
the basis choice. One recovers from Eqs. (9) and (10) the
former result of distinct ph and pp forces, i.e.,

for the complete basis (I'=1,z =1). But by selecting a
sufficiently small basis, one gets from Eqs. (11) and (12) a
more suitable result, namely,

FPP FP~

Therefore one may conclude from this renormalization con-
sideration a possibility for a universal interaction for an ap-
proximate overall description of N and (N + 2)-par-ticle
spectra. Further support is given by the usual ladder ap-
proximation for I, which takes the important hard core
corelations into account. '5 They seem to be an essential
contribution from the excluded part of the Hilbert space. It

= G„n(k) + G f„(k)
Here, z, ( ~ 1) denotes Migdal's renormalization constant. ~

Both effects can be taken into account by changing the in-
teraction utilizing standard procedures. 4 '7 The advantage
of this procedure is the replacement of the two-point func-
tion by the shell-model propagator in the Bethe-Salpeter
equations with renormalized forces. By applying the same
procedure as in the first part one obtains the renormalized
RPA equations which agree formally with the standard RPA
equations. ' But instead of the pure interactions one has
to use the following renormalized forces F, given by

is a very complex task to justify the involved assumptions in
detail. For this reason we make only a simplified test for a
common pp and ph potential. The first attempt in this
direction was done by Vary and Ginocchio, ' who used the
(density-independent) Gillet forces for a simultaneous cal-
culation of ph and pp spectra. For our purpose we have
selected (i) a simple phenomenological interaction —namely,
the surface delta interaction SDI—and (ii) a force RNT, de-
duced from a ladder-type approximation in nuclear matter
and extended to finite nuclei by a local density approxima-
tion. ' Both forces have been employed in the lead region
for ph spectra. ' For the ph treatment the simple SDI
force gives fair results and the RNT force reproduces the
experimental situation as well as the semiphenomenological
forces of Bauer et a/. ' We do not try a Landau-Migdal
parametrization of the forces, since according to Klemt,
Moszkowski, and Speth the L-M force ansatz should be
different for the ph and pp problem. But at least for the
RNT force, which makes no restrictions with respect to the
rnomenta —as does the I. -M ansatz —and includes energy
dependence, one has a different situation. If one performs
with the SDI and RNT forces the pp RPA, one obtains
reasonable agreement with the spectra. ' Also the eigenvec-
tors seem satisfactory, since, for instance, the spectroscopic
factors for ~'DPb (p, d) 9Pb are in agreement with the ex-
periment. As in the ph case' the strength parameters or
Migdal's renormalization constants z, respectively, have
been adjusted to the data. For the pp case a least-squares
fit to the relevant energy eigenvalues of Pb, ' Pb, and
' Bi was performed. For details see Ref. 16. The outcome

is similar to the results of Klemt and Speth, who also use
the renormalized RPA. The parameters are given in Table
I.

Comparison with the results of the ph RPA seems to sug-
gest that the use of common forces for the pp and ph RPA
is not adequate, but this conclusion can be too precipitate
due to the role of the different isospin interactions. For the
pp states with T, = 0 and the ph states both isospin parts of
the interaction (t = 0, 1) contribute, but the pp states with

T, = + 1 are determined by the (t = 1) potential only.
Therefore, it may be possible that by shifting the relative
strength of both parts a common (phenomenological) force
can be found for both problems (see also Ref. 6). This sup-
position is supported by the force SMII, which shows this
trend in the strengths. For the force RNT this procedure
would imply, that one has determined in the calculation of
the pp states with T, = 0 and the ph states an average poten-
tial renormalization only. However, such an explanation
seems to violate the spirit of the RNT approach, where one
starts from a free interaction and should only need a com-
mon renormalization constant for the quasiparticles [see Eq.
(8), z =ztt=z]. '" In our opinion it remains an open
question, whether an improved calculation of the vertices
would resolve and decide the question.

TABLE I. Comparison of the SDI strengths V„(MeVfm ) and Migdal's renormalization constants z for
the pp and ph RPA in the lead region.

PP
SDI

ph PP
RNT

Vo& = —1290.
Vgo = —1037.56

Vpi = —1150.
Vgp = —2500.

z =0.67 (T =0)
z=0.9S (T, =+1) z =0.64
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