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Deuteron electric polarizability
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The deuteron electric polarizability is calculated and the various contributions are analyzed
theoretically. Upper limits are constructed from zero-range approximations. These analytic ap-
proximations explicate the smallness of the deviation of the exact numerical results from the zero-
range approximation using no odd-parity forces and no deuteron D state.

[NUCLEAR STRUCTURE Electric polarizability. ]

I. INTRODUCTION

Recently there has been renewed interest in the proper-
ties of the deuteron. This interest has been spurred by a
variety of novel experiments' and by theoretical at-
tempts to probe the limits of traditional nuclear phys-
ics in the simplest nuclei. Traditional nuclear physics can
be defined as the following: (1) nonrelativistic nucleons;
(2) nucleons only (no nucleon substructure or explicit
mesons); and (3) two-nucleon forces only. There now ex-
ists excellent evidence for deviation from (2), good evi-
dence ' for deviation from (1), and circumstantial evi-
dence for deviations from (3).

Among those properties of complex systems which can
be described as fundamental are the susceptibilities ':the
electric polarizability and the magnetic susceptibility.
These quantities are the respective second-order responses
to static, uniform electric and magnetic fields. Although
a close connection exists between deuteron photodisin-
tegration sum rules and the susceptibilities, which we will
discuss in the next section, the first direct experiment to
measure the electric polarizability, uE, was recently per-
formed by scattering low energy deuterons from the in-
tense electric field of a heavy nucleus, and observing de-
viations from the Rutherford scattering law. The direct
and sum rule approaches to obtaining aE are just con-
sistent, 0.70(5) fm for the former and 0.61(4) fm for the
latter, " while theoretical calculations' ' give results in
the range 0.62—0.64 fm . A recent calculation' has
shown that the value of uE should be strongly correlated
to other deuteron observables, ' Az and q, the deuteron
asymptotic 5-wave normalization and the asymptotic D to
S ratio; in the context of photodeuteron reactions this has
been known for a generation. '

Our motivation is tripartite: (1) develop methods for
the deuteron which can be used mutatis mutandis for the
much more complicated trinucleon systems; (2) explore
the sensitivity of a~ to two-nucleon observables and
develop simple analytic approximations and bounds to
various contributions; and (3) make pedagogical and prac-

tical use of the old perturbation theory techniques.
Our hope is that additional experimental work will be
forthcoming; in particular, new low energy photodeuteron
data and more accurate direct experimental values for
aE of the deuteron and, hopefully, the trinucleon systems
are needed.

The remainder of the paper is organized as follows:
Section II describes the sum rule approach to calculating
aE, and presents results for eight different potential
models; Sec. III describes various zero-range approxima-
tions and discusses how well they work; Sec. IV describes
the formal perturbation theory approach to calculating
aE, Sec. V treats the S-wave part of az by means of an ef-
fective range expansion; Sec. VI uses the Yamaguchi-
Hulthen model of the deuteron to develop alternative ef-
fective range expansions; Sec. VII summarizes the results.
Various S-wave potential models for aE are solved analyt-
ically in the four Appendices. Throughout, our approach
will emphasize analytic results and approximations, zero-
range expansions as effective upper bounds to portions of
aE, and the effective "coupling constants" which deter-
mine the value of tzE. Our methods in many cases will be
applicable in the future to the trinucleon problem, and this
is an important motivation.

II. SUM RULES

Low energy photonuclear reactions provide a useful
way to "measure" and calculate the susceptibilities. '

At low photon energies to ( & 10 MeV), the wavelength of
the photon is very large compared to the size of the deute-
ron and the effective unretarded electric dipole interaction
between a photon and the deuteron is the nuclear current

given by Siegert's theorem: Do, where Do is the nonrela-
tivistic dipole operator. The total photoabsorption cross
section trr(to) can be weighted by any function of co and
integrated over all energies to form a sum rule. Of special
interest to us is the o.

2 sum rule,

l ~ dco
tr„(to) =tzg+P +, (1)
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where coo is the threshold for photodisintegration. The ad-
ditional terms indicated by the ellipsis are small in the
deuteron case and of no interest to us here. The unretard-
ed electric-dipole interaction defined above produces aE,
and no other terms. Unfolding the expression for the total
cross section and performing the integral one finds
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(2)

where a is the fine structure constant, H p I
X ) =E~

I
X),

Ho is the nuclear Hamiltonian, and
I
0) is the lowest ly-

ing of the states,
I
N ) . For the deuteron case,

Do ——[b,r, /2]r /2, r is the vector pointing from neutron to
proton, and A~, =r, (1)—~,(2). The appropriate matrix
element of the bracketed isospin operator is 1.

The factor of r in Dp weights the matrix element in the
tail of the wave function, which for the dominant S-wave
part (u) behaves as Ase "",where ~ =+2pE&, p is the re-
duced mass, 2p =938.926 MeV, and E& ———Ep
=2.224575 MeV (Ref. 19) is the binding energy. The
negative parity vector Dp determines that Pp, Pi, P2,
and F2 intermediate states contribute to aE. Only the
D-wave part (ia) of the deuteron wave function connects to
the latter state. Equation (2) provides a simple, inelegant
method for calculating aE numerically. Contributions
from the various angular momentum states are in-
coherent, and only the coupling of the last two partial
waves by the tensor force provides any difficulty. The
contribution of their sum can be shown to be explicitly in-
dependent of the mixing parameter and the phase shifts.
The net result is that aE depends only on the radial rna-
trix elements in the eigenphase representation.

Because of its simplicity, we have calculated aE for
eight potential models using the method described above.
The results are listed in Table I, including the S-wave
zero-range approximation to be discussed later, aE, the S-
wave (of the deuteron) approximation, aE, the effect of
the potential in odd parity waves, b,aE, and the effect of
D waves when there are no odd-parity forces, haE. We
have also scaled the results to a value of As ——0.885

fm '/ [i.e., az~az (0.885/As) ]. Although not listed in
the table, we have also calculated separately the F-wave
contribution (-0.00153 fm ) and have verified' that the
D-wave portion scales approximately as AD—=Azg . The2 2 2

Hamada-Johnston (HJ) result was at variance because the
binding energy of the deuteron does not correspond to ex-
periment. The Humberston-Wallace modification does
have a good binding energy and scales to a "good" value
of ag.

The effect of a potential in odd-parity intermediate
states in Eq. (2) was small in every case. Dropping the
deuteron D state, the P-wave forces give a positive contri-
bution -0.001 fm, while the additional effect with the D
state of the deuteron included is ——0.003 fm, almost
entirely from the P wave i-ntermediate states. We have
also calculated the effect of adding the spin-orbit part of
the dipole operator to Eq. (1). The net result of this re-
lativistic correction is negligible, although it plays a non-
negligible role (-20%) in photodisintegration at 0' outgo-
ing proton angle.

III. ZERO-RANGE APPROXIMATIONS

The results of the previous section confirm the con-
clusions of Refs. 12 and 18 that the only significant con-
tributions come from the S-wave part of the deuteron,
that the forces in the odd waves are not very important,
and that the binding energy and asymptotic S-wave nor-
malization are the two most relevant deuteron observables.
In order to understand the latter dependencies, we per-
form the simplest possible calculation of az. We assume
that the deuteron S-wave function is given by its asymp-
totic form,

u(r)=Age (3)

and that the P-wave radial functions are the same in all
partial waves:

Pi (r)=j, (kr)+k na(kir) . (4)

We have assumed the asymptotic form for the P waves
and tan5~ —k a; the P wave scatterin-g volume, a, van-3

ishes for free waves. Using Eq. (1) for az one finds

TABLE I. The electric polarizability, aq, its zero-range approximation, aE, the S-wave approximation without odd-parity poten-
tials, aE, the additional P-wave contribution, haE, in the absence of odd-parity forces, the effect of forces in the odd waves, ha~, the
asymptotic S-wave normalization, Az, and aE, the result of scaling aE by (0.885/A~) for eight different potential models. These po-
tentials are Reid soft core (Ref. 26), Paris (Ref. 27), Hamada-Johnston (Ref. 28), Humberston-Wallace version of the former (Ref. 29),
super soft-core version C (Ref. 30), de Tourreil-Rouben-Sprung (Ref. 31), Argonne-Vi4, (Ref. 32), and OPEP for the deuteron (Ref.
5), but SSC(C) for the odd parity waves. All polarizabilities are in units of fm .

a~ (fm')
aE (fm')
a~ (frn )

aDE (fm')
aa,' (fm')

(fm 1/2)

aE (fm3)

RSC

0.6225
0.627
0.620
0.0047

—0.0020
0.8776
0.633

Paris

0.634
0.640
0.632
0.0047

—0.0024
0.8869
0.631

HJ

0.610
0.616
0.607
0.0048

—0.0015
0.8919
0.601

Potential model
HW

0.630
0.636
0.627
0.0048

—0.0015
0.8852
0.630

SSC(C}

0.649
0.655
0.647
0.0045

—0.0025
0.8969
0.632

TRS

0.636
0.642
0.634
0.0047

—0.0026
0.8883
0.631

AV)4

0.641
0.648
0.639
0.0049

—0.0028
0.8920
0.631

opEp

0.6015
0.608
0.600
0.0047

—0.0035
0.8642
0.631
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ponents which arise from four contributing isospin triplet
partial waves: Pp, P„P2, and F2. Since

I
0) contains

both S- and D-state parts, bH
I
0) will also contain the

same partial waves. We can perform the isospin matrix
elements, yielding an effective interaction —eE.r/2. We
write the deuteron intrinsic spin wave function as X.e,
where e is a unit vector and find

wherey=a a/2. We also note that

As ——2a/[1 —xp( Et3,—Ett )]— (Sc)
where

fz [Yt&&]J
2pr g (Elet)J

J, 1
r 3

az ——0.638(2) fm (6)

relates the deuteron-based' effective range p( Eg, —E~)—
to ~s

Momentarily setting a to zero, we evaluate the zero-
range approximation to the electric polarizability, aE. Us-
ing p=1.764(6) fm and Ez ——2.224575 MeV we find
As ——0.885(1) fm ' . Thus

and

r

u Si2 w ge
r V8 r v4~

I [Ytg, ]~E r Qp ——Q gJ (Et 8 e ( )J
J, l

(12a)

(12b)

Clearly, this simple approximation accounts for most of
the polarizability. Moreover, we see that the "average" ef-
fect of the P wave forc-es expressed in terms of the P wave-
scattering volume enters as a a. The factor of v is 0.0124
fm, while the appropriate a, to be discussed in Sec. IV,
is also numerically small (-0.1 fm ) both experimentally
and for various potential models. Thus the S-wave part of
the potential effect, b aF, must be small. We note that the
zero range estimate we have made is typically larger than
a better estimate, and will be an effective (nonrigorous)
upper limit. Note also that aF -EJ3 /(1 —~p), and a poor
binding energy for the deuteron could have a deleterious
effect on aE. This accounts for the HJ result being much
too low.

IV. PERTURBATION THEORY

The techniques of perturbation theory provide the most
direct method for calculating az, particularly in systems
more complex than the deuteron. The expression for a@
obviously arises as a part of a second-order energy shift.
This shift for a perturbation bH can be expressed as

(0I kH IN)(NISH IO)

~~p Ep EN

with a corresponding first order shift in th-e wave func-
tion, b,g, given by

We obtain upon projection

J' d 3 tft (2J+ 1)

gJ=u +AJw /~, 2,

(13a)

(13b)

d 2 d 2 2 ( ) )33
2PVJ fJ —2PV2 fJ —J2

dr r dr r

=u+A, Jw/v 2, (13c)

d2d12 3 3 3]3]—~ —2p, V, f2 —2@V,f,
dr r dr r

=A,2w/v 2, (13d)

az —— dr r (uf+ —,
'

wg+
'
, h)w, —

3

f= —,
' g fg(2J+1),

J

(14a)

(14b)

where A,p
———2, A, I

——1, A,z ————,', and kz ——3W6/5. In Eq.
(13) Vz is the diagonal potential in the (I,J) partial wave
and Vz is the coupling potential between the I' and F
waves for J=2. Using (13b) we can rewrite the expres-
sion for aE ..

~~p Ep
(8) g =— g (2J+ 1)A,Jfg,92 2

(14c)

which satisfies the inhomogeneous differential equation

(E, H)
I
ay&=aH

I
o& —10—&(0

I
aH

I
o& .

We have written Pp
——

I
0). This allows us to write

(9)

bE' '=(0
I

bH
I

b,P) . (10)

Thus, solving for b,g allows construction of bE' ' by a
simple quadrature. This can be applied to az, where the
perturbation is —eE Dp, corresponding to a uniform elec-
tric field E. The function

I
b,P) is first split into com-

5h= ~f2.3 3
(14d)

This compact representation for az has been chosen so
that the S- and D-wave ground state dependencies are
manifest; the latter has been separated into P-wave (g) and
F-wave (h) intermediate state parts.

In order to see the underlying structure better, we resort
to first-order perturbation theory in the nuclear potentials,
VJ. We define fp, gp, and hp to be the solutions to Eq.
(13) in the absence of a nuclear potential, in which case
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the fI are simple linear combinations of two independent
solutions, easily obtained using Greens functions. The
function fo corresponds to a right-hand side in Eq. (13c)

of u, while go and ho correspond to ie on the right-hand
sides of (13c) and (13d). We find after some manipula-
tion,

r r g 0+ 5 gQ+ 5 0 — r r QV2 0 —g0 5 2 + Qvc+ 2 QgQ~T+gQ~g 2+ Q~P

(15)

Vc ———, g (2J+ 1)VJ,

VT ———,
' g (2J+1)(A,g) Vg,

J

Vg ———,
' Q(2J+1)(A,J) Vg,

VP ———', V2.

(16a)

(16b)

0!E— r r Q r r (20a)

-xI r —r '
If(r)=

0

2 —xr

xu(r')d r', (20b)

where x =r r '. We write u (r) as the zero-range approxi-
mation minus a defect function b, (r), and keep linear
terms in 6; the zero-range approximation to nE was previ-
ously calculated. One finds the defect contribution

Nominally, we expect the parts of a@ in Eq. (15) that are
proportional to fo (i.e., u ) to dominate. This produces

Using the results of Sec. VI, Eq. (24a), for the zero-range
approximation to fo, f, we find

—16'~" 0 ~ i h(r)
0,"E dr r e

0 ~s

We see that this correction to aE behaves as (scR ), if we
write

2
y 2~I ~& " 4 —z~r

b,aF -= drr e "'Vc
48m

(18) rr' r Ws -Z4-l m4

= —6aEx ac drr e Vc
3 & 4 —2~r

0

since the Born approximation to ac, generated by the cen-
tral combination of forces, Vc, is proportional to the
denominator integral in Eq. (19). To the extent that onc
can drop the exponential in Eq. (19), we have reproduced
Eq. (5b). Also, Eq. (19) for finite x is smaller than our
zero-range approximation, Eq. (5b). This confirms the
smallness of b,aE since ac is small experimentally, i i

and for "realistic" potential models. A recent study of pp
scattering produced a Coulomb-corrected value of
ac ———0. 12+0.13 fm . The tensor combination was not
small, however: aT ——1.70+0.25 fm, all assuming un-
correlated errors. Thus, the normally smaHer contribu-
tions from the D waves dominate ha@', both are small,
however.

In order to understand the smallness of the deviation of
aE from its zero-range approximation, we resort to anoth-
er type of effective range approximation. Ignoring D-
wave terms and forces in the P waves, the expression for
aE becomes

and is correspondingly small. For the Reid soft core
(RSC) model, the calculated correction is more than 90%
of the difference of the exact and zero-range S-wave re-
sults. Moreover, the integrand in Eq. (21) is heavily
weighted toward the tail of the defect wave function,
which is dominated by the one-pion exchange potential
(OPEP); fifty percent of the integral arises from r greater
than 2 fm in the integrand, and over 90% from r greater
than 0.75 fm. Consequently, the correction should be
similar for all realistic potential models.

VI. SEPARABLE MODEL

The separable potential Yamaguchi model provides a
good, albeit simphfied, form of the two-nucleon scattering
amplitude and bound state. The essential simplification is
the replacement of the left-hand cut in the scattering am-
plitude by a pole or sum of poles, which allows analytic
reconstruction of the wave functions. These wave func-
tions possess many properties of realistic wave functions,
and we will use them to further explore the electric polari-
zability.

The standard Yamaguchi S-wave weight function
g (p) = (P +p )

' leads to

u(r) =As(e ""—e ~"),

while the D-wave weight function T(p)=tp /(y +p )

leads to
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Hz(ar) —Hz(yr) (y& z&)
w(r) =As' . —e

K l' 2K

1+yr+ r(y —a.z)

4
(22b)

and

a@As(P—lr)
aE ——

3 (3p +18p a+51p ~
96m'p'(p+ x )

+96P a' +48'. +8a ),

(23)

with 1=1 and 3 and Pc=u or w. We apply the usual
boundary conditions: G vanishes at r= ao, and must be
finite at r =0. The easiest method is to write

G=[e ""A(r)+e ~'B(r)]/r +'

and solve for the polynomials A and B: nonpolynomial
behavior leads to the unacceptable form 3 -e "', etc. For
the S-wave case we find'

where Hz(z) =z h'3" (iz) and t, y, and p are constants. We
note that the original Yamaguchi T(p) was slightly dif-
ferent from ours and led to a w(r) which behaved as r
near the origin, rather than the proper r behavior of
(22b). Given the functions (22), we can use the results of
Sec. IV without potentials to calculate aE for the
Yamaguchi model, and, incidentally, a heuristic upper
bound for the D-wave contributions.

We have to solve the equations

G, g
2G' ill + 1 )G zG

r r2

ass2

—+ (1—32@ /P'+ ),
32K'

(24b)

~sn 3p Krg= e "" (1+sr)A, —
K l' 2 4

T

—e r" (1+yr)A, + I, ——r
(yz —az) 3

2 2

5yr y —K+
4

+ r4.

where the latter relations are the zero-range approxima-
tion (P~ oo). We note that the approximate treatment of
Sec. V leads to b, =Ase " and haE-=—aE32a /p' in
agreement with (24b). Indeed, virtually all of the next
term in the expansion indicated by the ellipsis is also
reproduced.

The D-wave parts are also easily calculated in principle,
although somewhat messy in practice. One finds

T

2As I (p2 —K2)2rf= e "" 1+sr
(pz ~2)2r 2 8~

2 K2 r 2p„p (p —~ )r
2

where

~sg „„3 Kr
(25)

s K1—+ — re
4K

A, =3(5y —a )/(y —v )

(24a) A tedious integral produces

Dt 0 z (y z) (240y +5—85y a+490y Ir +214y a +50ya +5m )
cxE' = 18Qg'g

240y (y+a)

2 P 121 K~18g2aE 1—
16 y

The I'-wave part is obtained similarly

h=
r4

Kl' Kl' 2f —K1+Kr+2 + e "'—e ~' ~ 1+yr+ +
5 15 5 10

3
(

2 ~2)r2+ y +p y r3
15 10

+ r (5y Ir )+ ' r . As—g/xz
120 120

e
—gP

+ 4

—KT

[1+yr (y Ir )r /2] — (1+—ar) —As'/x

~sn
e "'(1+sr),

4x
(27)

where A, '=180/(y —a ) . The zero-range limits correspond to y~ ao. We also obtain
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2 0 (y —«)6(560y +3125y~«+3810y «+1866y «+450y«+45«')
560y (y+«)"

The net zero-range D-wave contribution is

ag~25q as ——0.018aE ——0.012 fm

while Eqs. (26) plus (28) gives 0.0042 fm, with y=7«.
The zero"I'ange approxlmatlon Is essentially Rn upper 11Gl-

it; the additional pieces of the wave function are required
to regularize (render finite) the wave function at the ori-
gin. For nonpathological cases with nonoscillatory
behavior the additional pieces mill be negative and reduce
as. The large reduction factor (0.36) is typical of higher
angular momenta, unlike the small correction for S waves.
We note that for the Yamaguchi model

p(p+«)
(p —«)

(30b)

The singularities in (30) when P,y —+«are responsible for
the corresponding vanishing of the various expressions for
QE.

sensitive to the long-range part of the tensor force. The
deuteron D wave increases the result by nearly one per-
cent. An effective upper (zero-range) limit can be derived
for this contribution, which is 2.5 times larger than the
values actually found. Approximately 30 percent of the
B-wave contribution comes in combination with F-wave
intermediate states.

Table II lists the contributions to nF, beginning with
the zero-range approximation. The corrections are esti-
mates based on Table I and on uncertainties we have in-
vestigated using the approximations developed earlier. Er-
ror estimates are subjective. We note that our final result
has a very small error, which is unattainable experimental-
ly by any known method. This does not mean that we
would be shocked if the experimental value settled outside
the prediction of Table II. Such an occurrence would be
interesting and would indicate that the physics used in our
present analysis was incomplete or that experimental
values of our parameters were incorrect. The current ex-
perimental uncertainty should be improved. It would be
very interesting also to extend the experimental work to
the trinucleon system.

VII. CONCLUSIONS ACKNGWI. EDGMENTS

The deuteron electric polarizability has been separated
into five pieces, plus a remainder indicated by the ellipsis:

AE =CK +EkCX +E5CX +ECXg" +AXE' + ' . (3l)

The zero range approximation is sensitive to the deuteron
S-wave asymptotic normalization A~ and to the binding
energy Rnd overestimates the complete result by a few per-
cent. The S-wave effective range correction, haE, lowers
the zero-range result by about one percent, and is primari-
ly determined by the exterior part of the nucleon-nucleon
potential; thus it is similar for all realistic-force models.
It has the schematic form -(«R )", and is small because
aR is small. The potential correction Ao, z is small and
lowers the result by roughly —,

' of one percent. This
correction for S waves has the form «ac, where ac is the
ccIltrRl combInatlon of P-wave scattcx'Ing volumes and ls
very small (-+0.1 fm ); thus the potential correction is
slightly dominated by tensor terms and should be quite

The work of J. L. F. was performed under the auspices
of the U.S. Department of Energy. The work of S. F. was

supported in part by the U.S. Department of Energy. We
would like to thank E. G. Puller, D. Skopik, and E. L.
Tomusiak for useful conversations.

The archetype of the use of special perturbation theory
techniques is the electric polarizability of the hydrogen
atom. Calculated originally in 1926 as part of an exact
treatment of the Stark effect this quantity was also cal-
culated by Podolski using an inhomogeneous differential
equation in his treatment of dispersion. The method has
been generalized by Dalgarno and Lewis, and is treated
in textbooks. ' For purposes of completeness we briefly
repeat the derivation.

Using a perturbation —eE.r = —eE.Do, writing

TABI.E H. Contributions to the deuteron electric polarizability starting with the zero-range approxi-
mation based on Aq ——0.885(1) fm

0,'g0 4
Ao;g

D KegV CLE

0.6376(15) 0.005 —0.0025(10) 0.632(3)
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1{(r)= —2epE Dog(r)jr, described by a wave function u (r)!r:

and the hydro~en-atom ground state as ¹ /v4m,
with N=2ao and the Bohr radius ao ——(Zatu) ', one
obtains or

u(r)=¹ "" r &R (C1)

4xpX —r jao
CEE =—

3
dr r e g{r), (Al)

&(e"'—e "")
r&R

g"+2g'Ir 2g I—r +2g Iaor gja —o ¹e——

Solving this equation subject to the finiteness boundary
condition leads to

where the two components of u are constrained by requir-
ing continuity at r =R and a discontinuity of u at r =R
dctcHI11ncd by A, . Tllcsc two condltlons Rnd tllc noHI1811-
zation condition determine X, 8, and sc. Again using

00——r and

P(r) = —2epE. Dog(r) jr
2—r)a &0 &0

g(r) =—¹e ' +
2 4

and subsequently to the well-known result

9@0
3

2Z

{A3) we can write

AE=- 4&p
0

dr r u(r)g(r),

where

g"(r)+2g'/r 2glr +&p—A,5(r R)—a g=—u(r) .

One obtains

(C2)

Somewhat more relevant to nuclear physics is the har-
Hlonic oscillator problem. ' Writing

P(r) = 2epE. Do—g(r)jr,

y, =Ne-"'""/~4~,

with b 2= (pk ) '~I& coo &k l——p& Eo —,Irlo~o& Rn——d
N =4/m'~ b, we obtain with Do ——r

¹e"" P¹"" 1 1+ + r&R
4x (kr)

Bp'
=yi I(lrr)+ cosh(sr) r &R,

4v

where the p and y terms are the homogeneous solutions.
Their amounts are obtained by the continuity and deriva-
tive discontinuity conditions at r=R These .coefficients
are messy and we abstain from listing them. We have de-
fined the functions

a = — drr e ' g{r),4x Pf 2 2
(Bl)

i~(~)=( —i) j~(i~) . (C5)

where

g"+2g'/r 2gfr .rglb —+gib —=rNe

whose solutio~ ls

g(r)=Ne ' ~ ( rb l2) . —

(82)

(83)

A particle of mass p interacting with a square-well po-
tential V(r) = —Vo8(R —r) can have S-wave bound states
described by a wave function u(r)lr given by

Tllc qlladl'Rtul'c ls sllllplc:

aE=apb =ab /olo .2 (B4)

APPENDIX C: DELTA-SHELL INTERACTION

Clearly, thc lattcx' result 18 morc simply obta1ned by Using
the usual dipole selection rule for harmonic oscillators;
only the limo state contributes, with strength bled/2 per
matrix element of D„which follows from the virial
tllcorcm.

=8 sin(ar) r &R, (Dl)

Q
4ap

3 0
dr r u(r)g(r),

with g determined from

(D2)

g"+2g'/r 2glr +(a +a)8(R——r)g —s g=u. (r) .

where a'=2@,V0 —~'. Continuity conditions at ~=R
determine 8 and x.

The elle:tric polarizability is given by

A paftlclc of Illass p llltcIactlng wltll R f»cd potential,
V{r)= —iN(r —R ) can have S-wave bound states Ignoring the potential in (D3), we find

(D3)
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Kr — PN Kr-
g(r)= — +, +

4tr tr'
~

«(«)
2a j&(ar) sin(ar)=pi, (trr )+B
(a +tr ) (a +tc )

r&R

r&R . (D4)

As in Appendix C the P and y terms are homogeneous
solutions determined by the continuity conditions at r =R
and are too messy to warrant listing.
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