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A new approximate projection method is proposed to treat the spurious state problem in the

Dyson boson description of nuclear collective motion. In this method, successive orders of approxi-

mate projection are used to construct the various physical states in the Dyson boson representation

of the shell model. Even in the lowest orders of approximation, the approximately projected boson

states obtained turn out to be quite accurate in producing physical quantities. Furthermore, this ap-

proximate projection method is applicable not only to vibrational or tra.nsitional nuclei but also to
rotational nuclei.

I. INTRODUCTION

The Dyson boson representation of the shell-model
pairing and multipole degrees of freedom developed by
Janssen et al. ' has attracted a great deal of interest in re-
cent years. Using this boson representation, important
collective features of the nuclear many-body problem can
be studied in a very efficient and transparent way. Furth-
ermore, as emphasized in a previous paper (hereafter re-
ferred to as I), this boson representation, being non-
Hermitian and involving only finite expansions, also pro-
vides a distinct advantage for investigating the important
question of the microscopic basis of the interacting boson
model (IBM) introduced by Arima and Iachello. '0

As is true for any other type of boson representations,
the usefulness of the Dyson boson representation depends
to a large extent on how the important task of construct-
ing the complicated physical states in the boson space is
actually carried out. Although in I we have been able to
use the Dyson boson representation in a very efficient way
for the derivation of the seniority-scheme boson mapping
based on a monopole pairing interaction, the method em-

ployed there for generating the first few relevant com-
ponents of the complicated physical states relies complete-

ly on a special property of the monopole pairing interac-
tion in the non-Hermitian Dyson boson representation
and thus cannot be used for more general purposes.

In this paper we present a completely new method of
constructing the physical states in the Dyson boson
description of nuclear collective motion. In this method,
the first few relevant components of the very complicated
physical states in the boson space are generated succes-
sively by a new approximate projection procedure which
has also been applied successfully to treat the number
nonconservation problem in the quasiparticle description
of nuclear co11ective motion. " As we sha11 see later on,
this new method of constructing the physical states does
not depend on any special structure of the shell-model
residual interactions and thus should be very useful for
general applications of the Dyson boson representation.

The present paper is organized in the following order:
In Sec. II, we first give a brief review of the Dyson boson
representation of the shell model developed by Janssen
et a/. ' Then, the approximate projection method for con-
structing the various physical states in the Dyson boson
representation is described in Sec. III. And, to test the ac-
curacy of the present method, in Sec. IV this approximate
projection method in its lowest order is applied to a sim-
plified shell model defined by a monopole pairing Hamil-
tonian. In Sec. V, an approximate construction of rota-
tional physical states in the Dyson boson representation is
described. There, the problem of angular momentum con-
servation is also tackled in an approximate way. The
essence of the present method is summarized and dis-
cussed in Sec. VI, where further applications and im-
provements of the method are also briefly mentioned.

II. GENERALIZED DYSON TRANSFORMATION

In the Belyaev-Zelevinsky-Marshalek (BZM) boson ex-
pansion framework, corresponding to the fermion pair
operators aaap, where a and P characterize shell-model
single-particle states, one defines a set of antisymmetric
boson operators bap —— bp which sati—sfy the commuta-
tion relations

lb p, brs]=l:b p»rs]=0

[b p, bus]=5, 6ps 6sSpr . —
Thus, by using the following mapping for the states:

(aa ap )(aaap, ) ~ (aa ap ) ~0)

~Pa pP p Pa p ~0),

Pap=hap gbarbpsbrs, —
yS
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(O~(ap a ) (apa )(apa )

~(0
~

b p
. b,p,b,p, , (3)

where
~
0) and

~

0) are, respectively, the fermion and bo-
son vacuum states, one obtains the generalized Dyson
transformation for the fermion pair and multipole opera-
tors given by (for even-particle systems)'

(a~ p)D =P pH = b p —gbtrb psbrs a,
y5

(apa )g) b——p&,
(a ~p)D = g b rbpr H,

y

(4)

where H is the projection operator onto the physical sub-
space and is given explicitly by

1 p~
(2n)~(2n —1)~~ X P,p,

' '
a„p„ I

)(
I P~ p P~~p~

a1. an
&~''' ~n

1 P p, P „p„ I
0)(0

I
b „p„b,p,'

a& a„
P) P„

(S)

Here by physical subspace we mean the boson subspace
spanned by the so-called physical states defined by

Aside from the projection operator H, (4) clearly al-
lows a finite boson representation of the fermion pair and
multipole operators. The non-Hermiticity of the above
Dyson transformation, i.e., (a a p)D&(a pa )D, results
from the very fact that the mappings (2) and (3), respec-
tively, for the ket and bra states are totally different. As
shown in I, however, this non-Hermiticity of the Dyson
boson representation is actually not a drawback. In fact,
it is a distinct advantage of the Dyson boson representa-
tion, in the sense that the boson bra states are often simple
in structure and their relations to the original fermion
states are very transparent. Furthermore, as long as one
works with the physical ket states defined in (6), the pro-
jection operator H appearing in (4) can simply be re-

placed by unity.
The physical ket states as defined in (6) are, in general,

very complicated in structure. In principle, one can pro-
ject out from any given boson ket state the desired physi-
cal component by directly using the projection operator

However, in practice, the physical projection operator
H as defined in (S) is very cumbersome to use. Therefore,
in the following, we will employ a new approximate pro-
jection procedure to construct the physical ket states in
the Dyson boson representation.

(4) gives rise to the following two different transforma-
t1ons:

( a ~p)(asa& )~P pb rs,
(a~r)(apas) 5pra—~s~ gb ibrib&ebs

Ap

—&pr gb i.bs~. (8)

Z=gP pb p
NF(NF 1)~ ~ ap—

2n(2n —1),

where 2n = g pb~pb~p is the total boson number opera-

tor. It is not difficult to show that the Z operator defined
in (9) is Hermitian and satisfies the relations'

In general, whereas (7) is a non-Hermitian transformation,
(8) is clearly a Hermitian one. In fact, as long as (7) and
(8) operate on physical states such as those given in (6),
they are actually equivalent. However, because of the
neglecting of the physical projection operator H, the
transformations (7) and (8) are completely different out-
side the physical subspace spanned by those states given in
(6).

An interesting consequence of (7) and (8) is that, for the

product N~(N~ 1) of the total f—ermion number operator

NF pa~~, one——gets the following two different map-

plngs:

III. APPROXIMATE PROJECTION
OF PHYSICAL STATES

ZH
~
lP„)=2n (2n —1)H

~ y„),

(P„~Z
~
P„)(2n (2n —1),

(10)

Before describing the approximate projection procedure
for constructing the physical states, it is worthwhile to ob-

serve a "paradox" in the Dyson boson representation. '

Namely, when neglecting the physical projection operator
H, for any two-body interaction

a~ pasar a~ra pas 5pra~s——, —

where
~
P„) is an arbitrary n-boson state normalized to 1

and the equality in (11) holds only when
~
P„) is also a

physical state, i.e., H
~
P„)=

~
P„). &y contrast,

~
P„) is

always an eigenstate of 2n(2n —1) with the eigenvalue
2n(2n —1) no matter whether it is a physical state or not.
If one uses the transformation (7) or (8) and performs an
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M„ I P„)= g cq(n)Z q
I P„), (12)

where the coefficients cq(n) are determined by the follow-
ing v+ 1 conditions (r =0, 1, . . . , v):

(y„ I
z "~„1y„)= g cq( n)(P„ Izq+" 1$„)

q=0

= [2n(2n —1)]' . (13)

The first condition in (13) with r =0 is simply the nor-
malization (P„

I
M,

I P„)= 1. With this normalization
condition, (13) means that we have treated W„

I P„) as if it
is an exact eigenstate of Z with the eigenvalue 2n(2n —1).
Furthermore, by utilizing the expansion

10)(01 = 1 n+ n (n—1)/2!——

for the boson vacuum projection operator, it is not diffi-
cult to show that the physical projection operator H
given in (5) can actually be written as a power series in Z.
Therefore, the operator M„, defined by (12) and (13), can
be considered as a truncated version of the exact physical
projection operator H.

In what follows, we shall see that even in the lowest or-
der of approximation by taking v= 1 for (12) and (13), the
first-order projected states such as

exact diagonalization of the resulting boson Hamiltonian
in a boson basis, Eq. (11) can be used to distinguish be-
tween the physical and spurious eigenstates —although ex-
act diagonalizations are usually not practical for systems
with many valence particles. For our present purpose of
constructing the physical states such as H 1$„) given in

(10), the Z operator defined above is particularly useful
because what one has to do is simply to find the eigen-

states of Z with the correct eigenvalue 2n(2n —1). Here
we will use the following procedure to do the job.

Given an arbitrary n-boson state 1$„)which is normal-
ized to 1, we write the vth-order approximate eigenstate of
the Z operator as

I
Ao) = (Ao)" 10),

n!

I dekko ')= A, k(lo)" '10),
v'(n —1)!

where A,k=l, k&p and the boson operators A,k satisfy the
commutation relations [A,k, k,i]=5k' which are defined by

(k)9 ~pb ~pv 2 p

aP

By choosing the coefficients 9'~p dynamically, for in-
stance, through variational calculations such as

5(~o
I
(a)D~ „I ~o) =0

subject to appropriate constraints, where (H)D is the
Dyson boson image of some shell-model Hamiltonian in
question, the present approximate projection method
given by (12)—(15) can be used very efficiently to con-
struct the approximate physical ket states in the boson
space such as ~ „IAp), M„

I
Xkkp '), etc. These approxi-

mately projected ket states, together with the unprojected
boson bra states (A,o I, (A,kk, o

'
I, etc. , may then provide

a useful non-Hermitian basis for describing the low-lying
collective spectra in not only vibrational nuclei but also
rotational nuclei. The transparent relations of the various
states in this non-Hermitian basis to the original fermion
states can be easily seen from the mappings given in (2)
and (3).

When using the non-Hermitian basis such as that
described above, there is one important thing to note.
Namely, with 1$„) representing the boson states defined
in (16), although we have used the normalization condi-
tion (P„ I

M,
I
P„)=1 in (13), this still leaves the bra and

ket states, ($„1 and W,
I P„) undetermined up to a con-

stant y, i.e., (P„ I y and y 'M„
I P„) also satisfy the same

normalization condition. Thus, as stressed in I, in calcu-
lating matrix elements, it is necessary to require

M=(P„ Iy(0), M 1$„')
1

y'

~i
I P„)=(cp+ciz) 1$„),

obtained from (12) by suppressing the argument n in the
cq(n) coefficients, can be quite accurate in producing
physical quantities. In this order of approximation, (13)
can be easily solved for cp and c i to yield

&Z &
—2n(2n —1)&Z&

&z'& —&z&'
(15)

=(O'
I
)"(0 )D

—~.14")',
y

which yields

I

~
I
=[(4"

I
(o)+~ ~10' )(4' I

(0')D~ 14")']'"

(19)

(20)

2n(2n —1)—&Z &

&z'& —&z&'

for which the notation &Zq&=(p„ IZq1$„) has been
Used.

The present approximate projection method is particu-
larly useful if it is applied to n-boson states

I P„) such as

In (19) and (20), (0)D and (0 )D are Dyson boson images
of some fermion operator 0 and its Hermitian conjugate
O~ in question, and M represents the true matrix element.
Note also that, depending on the structures of (0)D and
(0 )D, the boson numbers n and n' as well as the orders
of approximate projection v and v' can be different from
each other.
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IV. APPLICATION TO A SIMPLIFIED SHELL MODEL
AJM(ab) = g (j,m,jbmb I

IIM)a atl
1

2 m mb

(22)

As a test of the present method of approximate projec-
tion of physical states in the Dyson boson representation,
here we apply it to a simplified shell model defined by the
following pairing Hamiltonian:

H= gh, N, —G g QAaQbAoo(aa)Aoo(bb), (21)

where h, and Xa are, respectively, the single-particle en-

ergy and the particle number operator for the ath j shell
with pair degeneracy 0, =j,+ —,', and the pair operators
are defined by

Note that in (22) the notations a=(j,m, ), p=(jbmb),
etc., have been used, and (j,m,jbmb

I

JM) are Clebsch-
Gordan coefficients for angular momentum coupling.

Corresponding to (22), it is useful to define

PJM(~b)= g (j.m.jbmb I
JM)P p= 1

2 m mb

(23)

BJM(ab)= X (j m jbmb I~M» p.
1

2
ma mb

It follows from (1) that the multipole boson operators
BJM(ab ) satisfy the commutation relations

[BJM(ab),BJM (a'b')] =[BJM(ab ),BJM (a'b')] =0,

[BJM( b) j'M'( b )] z ~JJ'~MM'[~ '~bb' 1) ~ b'~b '1
Ja+Jb+ J

Thus, from (4), one obtains the following Dyson transformation:

[AJM(~b)]lz =PJM «b)
K2 K3 I. K) I. J

=BJM(ab) —2 g KlKzK&L '. . . ' '. . . [Brc, (ctz)X'[Bx, (db)XBk, (cd)]' ']M',
Jc Jb Jd Jb Ja Jc

K)K2K3

[AJM(ab)]D BJM(ab), ——

(N, )g) ——2 y BJM(lzb)BJM(ab),
JMb

(24)

(25)

—G g QQ, QbPoo(aa)Boo(bb),
ab

(26)

where [ X ]M, etc., represent standard angular momen-(J)

turn couplings, the curly brackets denote 6-j symbols, and

the notations K=V2K+1, Bz„(—1) "Bk——z, etc. ,
have been used. Since we are going to use the approxi-
mate physical ket states given in (12)—(15), the physical
projection operator H associated with the above transfor-
mation can be neglected. Furthermore, under the above
transformation, the Dyson boson image of the pairing
Hamiltonian (21) is readily obtained as

(H)D ——2 g h, BJM(ab)BJM(ab)
ahJM

(So
I
=(0I (28)

and the corresponding physical ket state H
I
So). Using

the first-order projection result (14) and (15), the physical
ket state H

I
So) can be constructed approximately as

~ l I
So)= co+2cl 2 PJM(&b)BJM(&b)

I
So)

ahJM

I

culations such as (32) below, one can use So to represent
the Cooper pair of the pairing correlations in nuclei.
Then, the ground state of the pairing Hamiltonian (21) in
the Dyson boson representation can be approximated by
the boson condensate bra state

where Poo(aa ) is given explicitly in (25). Due to the fact
that

Poo(aa )Boo(bb )&[Poo(bb )Boo(aa )]t,
the above boson Hamiltonian is non-Hermitian.

Next, as a special case of (17), we introduce the follow-
ing unitary transformation:

Sk = g a,kBoo(a& ),
(27)

g ~akClal Okl~ g +ak+bk ~ab
a k

By choosing the coefficients aak through variational cal-

n
co ——1 — [1 (n —1)tz—],2R„

1

4R„
where

Z=2 g PJM(ab)BJM(ab)
ahJM

has been used, and

8„=1 tz+ (n —2)(tg t z )—l(1+ tz), —

(29)

(30)
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Writing out (29) explicitly, we obtain

3 2

+2 X Bxi «&)4,«&) ISo ')
Q, Q

Kp

(31)

where Bit& ( ———1) "Bk &, and g' sums only over non-

vanishing values of k, l, or K. In the degenerate limit
where h, =h and a, o

——QQ, /Q with Q= g Q„ it is not
difficult to check that (31) actually gives exactly the first
few (and relevant) components of the exact physical state
H

I So), [cf. Eq. (14) of I]. For nondegenerate multiple j
shells, although the first few components of H

I So ) given
in (31) are no longer exact, in the following we shall see
that they are still quite accurate in producing physical
quantities. Similar approximate projections can also be
used to construct physical states such as
&Bi„(ab)

I So '
), etc.

Having obtained the approximate physical ket state
Mi

I
So), one can evaluate the approximate ground state

energy

Eo(n) =(So
I
(H)DWi

I
So )

by the variational principle

I

to obtain an unitary boson mapping for the monopole pair
operators Aoo(aa) and then apply the resulting boson
mapping to the ground state calculation for the pairing
Hamiltonian (21). This latter approach is described
below.

With the Dyson boson images of Aoo(aa) and Aoo(aa)
given explicitly in (25), (28), and (31) enable one to evalu-
ate straightforwardly

(So+'
I [~oo(«)]D~i I

So)

2na«=&n+la, o 1 — Y, (n) (33)

and

(So I [Moo(aa)]DM&
I
So+ )=v'n+ la, o Y,(n+ I), (34)

where

(So 1(H)DWi I So ) =0
aa. o

2
n —l aao

Y, (n) =1— t2—
R„ 0, (35)

subject to the constraint g, a, o
——1. In (32), (H)D is the

Dyson boson image of the pairing Hamiltonian given ex-
plicitly in (26). Alternatively, one can first use (27)—(31)

I

with R„and t2 defined in (30). Thus, following (19), we
take the geometric mean of (33) and (34) to obtain the true
matrix elements

2

(So+'
I yo(n+1)[Aoo(aa)]D Wi

I
So)=v'n + la, o Y, (n+1) 1 — Y, (n)

'
]./2

V'n +—lf, o(n) . (36)

Similarly, we obtain for k&0
2

(So+'
I yo(n+1)[&oo(aa)]D ~i I So Sk) = —&n (n+ I) =&n (n+1)g k(n),yk«) Q.QZ„„ (37)

where

I
So 'Sk):Sk~o

I
So

In obtaining (37), we have set g, a,yz, k/Q, with k&0
to zero since they vanish exactly in the degenerate limit
and are usually quite small even in the case of nondegen-
erate j shells. Under this approximation, there is no need
to explicitly construct the approximate physical states
Wi I So 'Sk) because only the leading terms

I
So 'Sk) in

them contribute to the result given in (37). Finally, for
the ground state expectation values of the fermion number

operators N„we get

(So
I
yo(n)(& )D ~i ISo)

yon

=(So
I
(Na )DWi

I
So ) =2nugo Yg(n) .

(38)

It is understood here that the yo and yk factors in
(36)—(38) are used to ensure that (So

I
yo" and

yo '(n)Wi
I
So), etc. , represent the correct non-Hermitian

basis in the Dyson boson representation.
Now, to get unitary boson mappings for Aoo(aa) and

N„we first make the following mapping for the states7
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M, ISp)~ Isp),
yo(n)

a& ISo 'Sk)~
I o 'sk), etc. ,

yk(n)

(39)

Apo(aa)= gskf k(n)+ g spspskg~k(n)+
k k~O

= [Aoo(aa)),

N, =2a, ososoY, (n)+

(41)

(42)
and

(So
I
yp(n)~(so I,

(So Sk
I
yk(n)~(so sk I

«c
(40)

where sp and sk =—skip are new s-boson operators satisfy-
ing the commutation relation [sk,st ]=5»t, and the boson
states on the right-hand sides of (38) and (39) are defined
in exactly the same way as their counterparts appearing
on the left-hand sides. Then, by the method of equating
the corresponding matrix elements in the old and new
basis, ' it is straightforward to obtain

where n is the total boson operator gk sksk, and f,p, g,k,
and Y, are functions of n ~n defined in (35)—(37). Since
sk terms with k&0 in (41) will not contribute to the fol-
lowing ground state calculation, the functions f,» with
k&0 are not given explicitly. Furthermore, from the way
they are derived, the above unitary boson mappings in-
volve nonperturbative instead of perturbative expansions.
Thus, in forming the products Aoo(aa)Aoo(bb) to ob-
tain the unitary boson mapping for the pairing interaction
given in (21), we will keep only those terms explicitly
shown in (41). Therefore, for the collective subspace con-
sisting only of the state

I
sp), the boson image of the pair-

ing Hamiltonian (21) is given approximately by

Htt ——2g h, a, pY, (n)spso —G g QQ, QI sp[f, p(n)fqo(n)+spsp g g,k(n)gsk(n )]so, (43)
a ab k~O

where n is equivalent to spsp since, after appropriate normal orderings if necessary, the non-sp bosons have been dropped
in arriving at (43). The above boson Hamiltonian is clearly Hermitian and depends on the parameters a, p (but not u,k
with k&0 due to the summation over nonvanishing k), through the functions Y„f, p, and g,k defined in (35)—(37).

Next, with
I
sp) representing the ground state of the pairing Hamiltonian (21) for the 2n particle system, (42) and (43)

yield the following approximate ground state energy and occupation probabilities:

Ep(n)=(sp
I
Hg

I
so)

r '2
=2n gh, u, pF, (n) nG, g a,—pY, (n)[Q, —(n —1)a,pY, (n —1))'~~ —n(n —1)G(t, —t', )iR„,

u, (n)= (so IX, Isp)=na, pY, (n)IQ, ,2Q,

where R„, t„and t2 are given in (30). As for the parame-
ters a, p appearing in (44) and (45), they are to be deter-
rnined by minimizing the ground state energy (44), i.e., by

Eo(n)=0,
~&ao

subject to the constraint

2cxgp= 1

Note that if Y, (n) and F~(n —1) defined by (35) are set
to unity, (44)—(47) reduce to the one-boson approximation
used by Klein et al. ' for a Holstein-Primakoff —type bo-
son mapping of the pairing Hamiltonian (21). In Tables I
and II, this one-boson approximation (denoted as 1 b)—
together with the present calculation with (44)—(47)
(denoted as PW) are applied to some even tin and nickel

isotopes. There, results of exact diagonalizations of the
pairing Hamiltonian (21) are also given for comparison.
It can be seen from the tables that the present calculation
yields very accurate ground state energies as well as occu-
pation probabilities for all the tin and nickel isotopes
shown, although only the first-order projection of physical
states (14) and (15) has been used. For the tin isotopes,
the one-boson approximation of Klein et al. also gives

reasonably accurate results. In the case of nickel isotopes,
because of the small effective pair degeneracy, e.g.,

&,tt ——g a,piQ, -0.3,

this one-boson approximation breaks down for n )3.
Even so, overall speaking, it is still more accurate than the
number operator approximation (NOA) of Otsuka and
Arima, ' of which a detailed account has been given in
Ref. 16.

Since the accuracy of the seniority-scheme boson map-
ping with Pauli reduction factors derived in I is essentially
at the same level as that of the one-boson approximation
of Klein et al. , the present first-order projection of physi-
cal states (14) and (15) can be considered as an improve-
rnent over the method used in I. However, what is more
important is that, whereas the method used in I is applic-
able only near the seniority-scheme limit, the present ap-
proximate projection method can be applied to not only
vibrational but also rotational nuclei. The main purpose
of the application to the pairing Hamiltonian (21) made
here is to illustrate as well as to test the accuracy of the
present approximate projection method described in
(12)—(20).

It should be emphasized here that the present first-
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TABLE I. Values of the ground state energies and occupation probabilities for the tin isotopes. The
parameters used for the pairing Hamiltonian are the following: h, =0, 0.22, 1.90, 2.20, 2.80 MeV;
6=0.187 MeV; 0,=3, 2, 1, 2, 6.

—2.626
—2.623
—2.624

Ud
5/2

0.3270
0.3249
0.3252

U2

0.2126
0.2143
0.2140

U
1/2

0.0287
0.0287
0.0287

3/2

0.0230
0.0230
0.0230

U2
11/2

0.0157
0.0156
0.0156

1 —b
PW
Exact

—3.11
—3.085
—3.084

0.732
0.712
0.7153

0.592
0.609
0.6070

0.080
0.0789
0.0784

0.061
0.0604
0.0599

0.0386
0.0382
0.0380

1 —b
PW
Exact

—0.807
—0.741
—0.700

0.952
0.913
0.9361

0.876
0.912
0.9095

0.133
0.127
0.1200

0.095
0.090
0.0850

0.053
0.051
0.0481

1 —b
PW
Exact

TABLE II. Values of the ground state energies and occupa-
tion probabilities for the nickel isotopes. The parameters used
for the pairing Hamiltonian are the following: h, =0, 0.78,
1.56, 4.52 MeV; 6=0.331 MeV; Q, =2, 3, 1, 5.

U2 U2 U2
fs/2 ~1/2

U2
g9/2

order calculation with (44)—(47) slightly violates the Pauli
principle for n &2, owing to the fact that the relevant
physical states in the boson space are constructed approxi-
mately with the first-order projection. This violation of
the Pauli principle can become very serious when one goes
beyond the middle of the major shell. To remedy this, one
can switch to the hole formalism and use the boson repre-
sentation for the hole pairs instead of the particle pairs.
Furthermore, one can also improve the present first-order
calculation by using higher-order projections to construct
the physical states. In fact, we have performed the
second-order projection by taking v=2 in (12) and (13)
and have obtained improved results for the pairing Hamil-
tonian (21). Another point to note is that if one uses
(28)—(32) directly for the ground state calculation for the
pairing Hamiltonian, the ground state energies and occu-
pation probabilities thus obtained are only slightly worse
than those obtained from using (44)—(47). Therefore,
(28)—(32) and (44)—(47) can be considered as essentially
the same. The purpose of using (44)—(47) here is mainly
to illustrate how the present approximate projection
method in the non-Hermitian Dyson boson representation
can be applied to derive an IBM-type Hamiltonian from
the shell model.

V. APPROXIMATE CONSTRUCTION
OF DEFORMED STATES

1+X~/v'n (n —1)
C)=

4[X2—(X)) ]
X) v'n(n —1) —g 9'~p9'rs& r9'ps,

apy5

X2 ——1 —g 9' pS'rsvp' 9'ps
apy5

(50a)

In the description of the low-lying collective spectra of
deformed nuclei using the Dyson boson representation, it
is useful to consider the boson states

~

A,o),
~

Xkl,o '), etc. ,
defined in (16) and (17). In particular, in the case of the
boson condensate

l n

I ~o) = „X&.pb.'pn!2" p

where 5' p=8'~p are defined in (17), the first-order pro-(o)

jection (14) and (15) readily yields the following approxi-
mate physical state:

a )
~

A,o) =
~

A,o) —2c(v'n (n —1)

X g P pS'rsb rbps ~
Ao ) —2X& lAo)

apy5

(49)

where

—2.12
—2.09
—2.10

—1.87
—1.77
—1.75

1.44
1.72
1.70

0.635
0.624
0.629

0.847
0.801
0.764

1.06
0.925
0.934

0.194
0.201
0.198

0.354
0.383
0.404

0.784
0.866
0.856

0.081
0.081
0.081

0.144
0.148
0.153

0.379
0.395
0.408

0.014
0.013
0.013

0.020
0.020
0.021

0.031
0.031
0.031

1 —b

PW
Exact

1 —b
PW

Exact

1 —b
PW

Exact

+4(n —2) g 9' rS'ps''rsvp' qS'p 9'q
apyMp

+(n —2)(n —3) g 9'~pS'rsvp'~reps ~ .
apy5

(50c)

It is not difficult to see that in the spherical limit with

o'ao j —m &po9' = 5- =(—1)' '5 . 5&P ~2II aP J+Jb —~~ mb ~2II
(51)
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where

gJM(ab)= g (j,m,jbmb
~

JM)9 13,
m mb

and thus

AM(ab) = —( —1) ' AM(ba),J,+ib+J

(53)

(AP and W& ~AO) given above reduce to the spherical
states (SP and W&

~
So ) given in (28) and (31), respective-

ly. However, by choosing more general coefficients 9' p
than those given in (51), (A,P and W&

~

A,o) can also be
used to represent the intrinsic state associated with the ro-
tational band built on the ground state of a well-deformed
nucleus. For instance, in terms of the multipole boson
operators BJM(ab) defined in (23), (48) can be rewritten as

I
~o)=, g fJM(ab }BJM(ab)

1

ahJM

(L ')Dw
& ~

Ao)~I(I+1)W,
~
Ao), (55)

where (L )D is the Dyson boson image of the angular
momentum operator L, , which yields the eigenvalue
I(I+1) when acting on states with good total angular
momentum I. In the following, we will describe an ap-
proximate method for constructing deformed physical
states with good angular momentum.

First of all, we note that in the original fermion space
the angular momentum operator I. is given as

the only nonvanishing coefficients appearing in (52)—(54).
Here, we will only assume the axial symmetry.

Because of the inclusion of the quadrupole and higher
multipole bosons in (52), the deformed boson condensate
(A,P and the corresponding approximate physical state
u

& ~
A,o) clearly do not possess good angular momentum.

Namely, e.g.,

g AM(ab)AM(ab)=1 .
abJM

(54} L '= —, g j~ jb U,„(aa)U»(bb),
abIJt,

(56)

If axial symmetry is assumed, the original 9'
& coeffi-

cients given in (48)—(50) have to be chosen in such a way
that AM(ab) vanish for M&0. Moreover, if one further
assumes the S-D dominance, then goo(aa) and $2o(ab) are

I

where

and

U&&(aa) = g (j,m,j,p —m,
~
1p)( —1) ' '

aJ aJ
m

(57)

By rewriting (56}as

L '= g [J(J+1)—2j, (j, +1)]AJM(ab)AJM(ab)+ gj, j(,+1)X,
ah JM a

and using the non-Hermitian Dyson transformation (25) for the fermion pair and number operators, we obtain the fol-
lowing boson image of the angular momentum operator L

W'=(L ')

= g [J(J+1) 2j,(jb+1)—]PJM(ab)BJM(ab)+2 g j,(j,+1)BJM(ab)BJM(ab),
ahJM

(59a)

or

E2 K3 E4 K) K4
= g J(J+1)BJM(ab)BJM(ab) —2 g [J(J+1)—2j, (j, +1)]E&K2&3E4 ' .

abJM abcdJM
K)K2K3K4

x[Bx,(ca) x [Bx,(db) xBx3(«)] ' ]M'BJM(ab) .

This boson image of the angular momentum operator L,
is very useful since it has the following properties:

H
~ P„;Iq)=I(I+ 1)H

~ P„;Iq),
but, in general,

~
P„;Iq)&I(I+1)

~
P„;Iq), (61)

where
~
P„;Iq) denotes an arbitrary boson state with good

angular momentum I, and H
~
P„;Iq) the corresponding

physical state. Thus, the construction of a physical state

I

with good angular momentum I simply amounts to find-

ing a simultaneous eigenstate of W and

IJM(ab }BJM(ab }
abJM

with the desired eigenvalues I(I+1) and 2n(2n —1),
respectively, for W and Z.

Therefore, for a given deformed n-boson state
~
P„}

which is axially symmetric and normalized to unity, the
corresponding physical state with good angular momen-
tum I can be approximately constructed as
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p =Oq =0

where the coefficients c~ are determined by the condi-
tions

({{)„I (~ )'Z'~ „ I P„)=[I(I+I )]"[2n{2n—1)]',
{63)

~ ~
'I 0m)={coo+cio~'+c»z)

I {t.), (64)

with the coefficients coo, c,o, and c» to be solved from
the equations

Here, because of the inclusion of the approximate projec-
tion of angular momentum, {62) and (63) are clearly gen-
eralizations of the previous approximate pmj ection
method described in (12) and (13). In the first order of
approximation by taking v= 1, (62) and (63) yield the fol-
lowing approximate physical state with angular momen-
turn I:

the present projection method. The advantage of using
the Qon-Hcrmitlan Hamlltonian boson image in thc
Dyson boson representation has also been emphasized in
RCf. 5.

Before making further applications of the present pro-
jection method given by (62)—(65) for deformed nuclei, it
is important to test, for instance, the accuracy of the
ground state variational calculation described in (66).
This will be done in a future publication. There, the prob-
lem of deriving an IBM-type boson Hamiltonian for de-
formed nuclei will also be attacked. However, we have
been able to apply the present projection method at its
first order, i.e., (64) and (65), together with (66) to a much
simpler problem' namely the SU(3) boson model for de-
formed nuclei. For this boson model, only the angular
momentum projection is relevant and thus one sets the
coefficient c~& to zero in (64) and uses only the first two
equations in (65). It is not too difficult to show that this
kind of first-order angular momentum projection actually
yields the exact result for the ground state band of the
SU(3) boson model. Therefore, there is good reason to be-
lieve that the present projection method in lower orders
may well be adequate for the Dyson boson description of
deformed nuclet.

VI. SUMMARY AND DISCUSSION

The above first-order projection of both physical states
and angular momenta can be easily applied to the de-
formed boson state defined in (52). The resulting approxi-
mate physical state u ~

'
I

A,o) can then be used for vanous
calculations such as the ground state variational calcula-
tion

subject to the constraints given in (54). Because of the as-
sumption of axial symmetry, only g'&~(gb) with ~=O are
kep«n (52)—(54). Furthermore, (H)D appearing in (66) is
the Dyson boso»mage of some shell-model Hamiltoman
such as the pairing-pius-quadrupole interaction given in
the pairing expansion form, i.e.,

(H)D ——g h, (X, )D

+ g &g{~b«)[~1M(&&)]D[~JM(«)]D .

The reason for using the non-Hermitian Hamiltonian bo-
son image (67) instead of the alternative Hermitian ver-
sion implied by (8) is that the forme~ has a less serious
problem with the spurious states in the Dyson boson
space, and thus yields better results for actual calculations
with the various approximate physical states obtained by

In this paper we have developed a new method of ap-
proximate projection to treat the spurious state problem in
the Dyson boson description of nuclear collective motion.
In this method, successive orders of approximate projec-
tion are used to generate the first few relevant components
of the various physical states in the non-Hermitian Dyson
boson representation of the shell model. An important
feature of the present approximate projection method is
that it is applicable not only to spherical nuclei but also to
deformed nuclei. And, in the case of deformed nuclei, the
present approximate projection method has also been gen-
eralized to include the appmximate projection of angular
momentum for deformed states. In general, depending on
what physical quantities one is calculating as well as what
physical system one is studying, higher orders of approxi-
mate projection of physical states may have to be used.
However, for low-lying collective states, usually the first
few orders of the present approximate projection method
should be adequate, as has been clearly shown by the ap-
plication to the ground state calculation for the multi-j
pairing model done in Sec, IV. Further numerical calcu-
lations still have to be done in order to see if the approxi-
mate projection method generalized in Sec. V at its lowest
order will be adequate for the ground state band of de-
formed nuclei.

Although in this paper we have restricted ourselves to
the Dyson boson representation of even-mass nuclear sys-
tems, with only minor modifications, the present approxi-
mate projection method of physical states can also be ap-
plied to the Dyson boson-fermion representation of odd-
mass nuclear systems. Furthermore, Rs has been shorvn
in the application to the multi-j pairing model, the present
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method is also very useful for using the Dyson boson rep-
resentation as an intermediate step to derive an IBM-type
boson Hamiltonian for the original shell model fermion
problem. Further applications in this direction, especially
to the case of deformed nuclei, will be undertaken in a fu-
ture publication. Suffice it to say here that the approxi-
mate projection method described in the text has provided
the necessary tool for tackling the problems.
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