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Six-quark compound state in deuteron
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Based on a recently proposed method of incorporating quark degrees of freedom in nuclei, we es-

timate the probability of the six-quark compound state of deuteron using the experimental data and

quantum chromodynamics prediction for the deuteron form factor, and also using the partial width

of the dibaryon resonance of Kamae et al. Both estimates are consistent with each other.

In this report, we present two independent estimates of
the probability of the six-quark compound state in deu-
teron, the first estimate using the experimental data and
quantum chromodynamics (QCD) prediction for the
deuteron form factor' and the second using the partial
width of the dibaryon resonance of Kamae et al. and
Grein et a/. Both estimates are based upon a recently
proposed theory of the quark degrees of freedom in nu-
clei.'

In our formulation for the np system, the Si deuteron
wave function (we neglect the Di component for simpli-
city) is written as

yg(r)=ItI(Ed)y„yp', (r)Ri)+A(ed)y, (r &R2), (1)

where X(ed) and A(ed) denote the probability amplitudes
of the nuclear part and of the six-quark compound bag in
the deuteron, respectively, and R i &R2. p,

' describes the
lowest six-quark excitation which we identify with the di-
baryon resonance of Kamae et aI. at 2.35 GeV or 0.48
GeV above the deuteron mass. P„and P~ are the three-
quark (3q) colorless nucleon bags of radius R with nor-
malization

X,""(r) ro) is the deuteron wave function generated from
the boundary-condition model (BCM) potential of Fesh-
bach and Lomon ' (FL) and is normalized,
(X,, ~X,, ) =1. p,'(r &R2) with its amplitude A(ed) is

also normalized, (P,' ~
t)),') =1, and represents a quark

compound bag (QCB), consisting of gluons and six quarks
(6q), which we call "soul" and denote by letter s. ro is
the effective radius which represents the transition region
8 ] Q Tp Q R2 between the quark and nucleon domains. A
choice of ro will be made based on our method as dis-
cussed later.

The continuity of QCD and conventional nuclear phys-
ics demonstrates the need for a unified description of nu-
clear charge from factors. The "democratic chain" QCD
model by Brodsky and Chertok' predicts the behavior of a
system of n "valence" quarks and antiquarks for asymp-
totic Q

(2)

where the mass m„ is proportional to the number of con-

F' (Q') -fd(Q')FN(Q'/4»

where

fd(g )=(1+Q /0. 28 GeV')

is the so-called deuteron reduced form factor, and

FN(Q )=(1+Q /0. 71 GeV )

(4)

is the nucleon form factor. The comparison of Eq. (4)
with the experimental data at large Q (-4 GeV ) yields

F'" (Q )/F (Q )=A =12%%u

assuming A (Q )=A (ed). Such extrapolation, however,
is expected to be unreliable. In principle, in Eq. (4) we
have to consider the "running" QCD coupling constant
u(Q ) (Refs. 2 and 9) as an additional factor, whose
behavior is known only at large Q, where a(Q ) de-
creases logarithmically with increasing Q . Apart from
this factor the parametrization (4) is not valid at small
Q . Therefore we can regard A =12% as an uppe~

stituent quark and antiquarks. This limit can be accom-
modated with appropriate weighting factors consistent
with the probability of the soul component in our deu-
teron wave function ansatz (1). Therefore this study may
offer an independent estimate of the same probability
from the experimental data and QCD prediction for the
deuteron form factor.

According to our ansatz [Eq. (1)] for the deuteron wave
function, the deuteron form factor Fd(Q ) can be written
as the following:

F (g2) ~2Fnp(Q2) +2A~Ftnt(Q2) +A 2Fs(Q2)

where F"~(Q ) is the ordinary deuteron form factor calcu-
lated with the nonrelativistic Lomon-Feshbach wave func-
tion, F'(Q ) is the form factor due to the QCB state, and
F'"'(Q ) is the interference term. There is experimental
evidence that at large momenta transfer the deuteron
form factor is in agreement with QCD scaling rules. 's In
the region of large Q the QCB component F'(Q ) is
therefore expected to play a role in explaining the experi
mental data. This expected behavior may allow us to ex-
tract the QCB probability directly from the experimental
data.

Taking the two-nucleon nature of the deuteron into ac-
count, Brodsky and Chertok' proposed the following
parametrization of Fd(Q ):
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r, = 1.2 (GeV fm) Im 6

for Eq. (2) we obtain m6 ——2.45 GeV instead of 1.41
GeV . Using parametrization (2) with the new value m6,
we obtain for the QCB probability A =3—4%, which is
in good agreement with our subsequent determination of
A using a highly excited QCB resonance. Such con-
sistency of our model justifies the use of the boundary
condition model with rp 0 7——fm. . We note that rp 0.7——
fm for the Feshbach-Lomon potential was chosen to give
best fits to the phase shifts.

Now we turn to the second independent estimate of the
same probability using the partial width of the dibaryon
resonance of Kamae et al. and Grein et al. For simpli-
city, we consider the most simple case of' the n-p system
with only one open (s-wave elastic) channel and write our
ansatz (1) as

P„p P„grX(r &R) )+P,——(r &R2), (5)

with R& &ro(R2.
The interior state P, is written as a superposition of

quark compound state functions P, with energy-
dependent amplitudes A ~(E):

y, = gA. (E)g. (6)

The coefficients A (E) describe the enhancement of the
component P, at the pertinent resonance energy and are to
be determined from a dynamical equation. The expecta-
tion value

E, =(g ~HqcD(r &Rz)

describes approximately (up to a resonance shift due to
the coupling to the open channels) the corresponding mass
of the resonance.

Because of the quark confinement, we expect the spec-
trum of the soul state to be discrete in the absence of the
exterior part. It then follows that any compound struc-
ture can be expressed as a superposition of eigensolutions

bound for the QCB probability.
A general QCD prediction for asymptotic form factor

of an object with n quarks, in which each quark is treated
in a democratic way, is given by Eq. (2), where
m„=nP =n(0.235 GeV ). We note that in the case of
pion (n =2} and proton (n =3) which are pure quark
compound bags by themselves, formula (2) fit the experi-
mental data in the entire Q region. It is tempting to gen-
eralize Eq. (2) to describe any genuine multiquark com-
pound state for any range of Q . If we use Eq. (2} for
deuteron (n =6) with m6=6P, we obtain for the six-
quark probability

Fd"~(Q )/F6(Q )=A =20% .

Since 20% seems to be unreasonably large, we conclude
that the relation m„=nP is not valid for the multiquark
compound bag with n & 6.

In order to make Eq. (2) compatible with our model, we
require that the rms radius calculated from Eq. (2) is the
same as our six-quark bag radius given by the Feshbach-
Lomon boundary condition rp ——0.7 fm. Since

with energy-independent amplitudes P, =gbk Pk,
where pk diagonalize the Hamiltonian HQcD in the region
[O,R2]:

HgcD(r &R, )A=e, y, . (7)

we obtain the following set of equations [A(E)=A&(E)
and H(6q) =HQcD]:

+ A(E)(g„gp5X
~
H(6q) E~ P,') =0,—(9)

(y,'
~

H(6q) E~ y„yP )—

+ A(E)(P,
i
H(6q) E

i P,') =0 . (1—0)

From the last equation we can eliminate A (E):

A(E)=- (P,' ~
H(6q) E~ P„PP')—

(P,' ~
H(6q) —E

~ P,')
According to our assumption,

(@A,5X
I
H «q) —E

I 4 AP')

in Eq. (9) goes upon integration of cluster internal degrees
of freedom in the region r & r p into a potential Hamiltoni-
an which can be best represented by the Feshbach-Lomon
boundary condition model (see our discussion below), i.e.,
(T+ VFz —e}X" =0 for the relative motion wave func-
tion 7" . At this point we should note that the boundary
value of BCM, rp ——0.7 fm, was determined as the best
value around the range of two-pion Inass which gives the
best fit to the NN-phase shifts. A single value of rp 0.7——
fm for all channels need not be a final choice if it turns
out that a different value of rp, R& &rp &R2, for each
channel can give a better overall description of the phase
shift, QCB resonances, and bound-state properties. We
note also that the boundary ro is related directly to that of
the multiquark bag considered first in the work by Jaffe
and Low."

The evaluation of the numerator in Eq. (11) gives

It is reasonable to expect that P, may be described by one
or few Pk's which give the dominant contribution. Note,
however, that P, 's do not necessarily form an orthonor-
mal set, whereas Pk's do. For simplicity, we consider only
the first (lowest) excitation, P, -=A~(E)P,'. We assume
that the cluster dynamics in the exterior region can be
described satisfactorily within a static (or nonstatic) po-
tential mode such as the boundary condition model
(BCM) of Feshbach and Lomon. The total wave function
g satisfies

HqcDP=EP (g)

Using the resonating group method, ' we derive a set of
dynamical equations from our ansatz (5) by considering
the test function space

5g=g„gp5X+P,'5A )(E) .

By projecting 5$ on Eq. (8). i.e.,
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with

R~

q) —Elk.k+E)= I drw {")XE{

= (R2 —R ) )w '(r*)XE(r*),
and

IX"'&&XF'I
6'(e) =P 'f

e' —e8

R] &r*(R2,
and projected functions,

w'(r) =(P,'
I
H(6q) E

I

—P„Ppr( &R2))

and

6'(e)= IX,'"+)—(X,"'+
I

.

With these definitions, we can write (e„=e )

(g'
I

6""(e)
I
P') =b, (e)+i ,

' f'(e-)

with

(17)

T+ VFL—, —e X=oe' —e
(12)

Here T is the kinetic energy operator of the n-p system,
VFL is the Feshbach-Lomon potential plus the boundary
condition at ro, e and e' are defined by e=E—e„—ep
and by e'=E' —e„—ep, respectively, where e„(p) is the
nucleon mass corresponding to a QCD solution of
H(3q)tjt'n(p) en(p)0n(p)

We turn now to the derivation of the one-channel reso-
nance formula. The solutions of the Feshbach-Lomon
BCM equation, (T+ VFL —e)X""=0, are known and can
now be used in order to solve Eq. (12) explicitly:

XFL+GFL(, ) I 0 &(0 I
X & (13)

e —e1

Due to the separability of the resonance potential, we ob-
tain for X+:

L++GFL( )
I 0 &(0 I

X +
& (14)e' —e —(g'IG" (e)I&'&

Here 6" (e) is the Green's function of the Feshbach-
Lomon Hamiltonian. Using the operator identity

lim, =P, +irr5(e' e), —1 1

0+ e' —e —ie e' —e

X (.)=(y.y,.(&R, ) Iy.yP &.

Assuming that r* depends only weakly on energy, we can
regard ro=r* as a reasonable approximation and define
the form factor g' as

P'(r)=(((),'
I
H(6q) E

I
P„—gpr &R) )

=c'5(r —r()),

where c ' =(R 2
—R ) ) w '(r * ) depends weakly on energy

and represents the effective coupling strength of H(6q)
between the interior quark and the exterior nuclear phase
of matter.

Thus, the elimination of the six-quark bag gives rise to
an additional potential of a separable form with energy-
dependent strength A,(E)=(e' —e) '. We obtain therefore
from Eq. (9),

r

b(e) =P Jf
(c')'

I X,""(ro)
I

e'

I (e)=-2m(c') IX," (r )
I

/e„. (20)

e ' —e —b,(e)+ ,' i I (e—)

S) exp[——2i51" (e)] e' —e —h(e) ——,
' iI (e)

(21)

The exponential function exp[2i5) (e)] contains the back-
ground phase shift 5( (e) of the Feshbach-Lomon BCM
solutions, i.e., without the knowledge of the six-quark ex-
citation. A generalization of our formulation to the mul-
tichannel and coupled-channel resonances will be given
elsewhere.

We will now give explicit formulae for the bound state
deuteron wave function, from which we can determine the
probability for the nuclear N (ed) and A (ed) parts. We
obtain from Eqs. (1) and (11),

e +Ed1
(22)

1

(c ')'
I X,", (ro)

I

'
1+

(e '+ ed)

(23)

Equations (22) and (23) show that from the knowledge
of the experimental resonance width in the n-p channel
and from the ratio

I
X","(ro)/X," (ro)

I
we can determine

the probability amplitude of six-quark compound bag in
deuteron. Using Eqs. (20) and (23) we can write

c'X," (ro)=[I'(e„)e„/2m]'~ x

In order to extract the S-matrix element for the solu-
tion X+, we use the asymptotic behavior of the Green's
function to obtain for the S-matrix element S) in a state
of angular momentum i

G""(e)= 6 "(e)+inG'(e), . (15)

the non-Hermitian Green's operator 6""(e) can be
separated into a Hermitian and an anti-Hermitian part:

and

—1

~nperx1+-
2m(e„+ ed)2

with where I „p=I (e„) and
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x =y," (ro)/y,""(ro) .

g's are normalized so that, for r~oo, rX,""(r)~e ~" and
rg," (r)~e+'"" with x +—iP .When evaluated from the

coupled-channel 8CM interaction of Lomon' with
ro ——0.7 fm, the numerical values are X," (ro)= —1.2 at
the Kamae resonance energy (2352 MeV), X, (ro) =2.9,
and x =5.86. Using I „~=12—30 MeV, we obtain the

probability of P„

which is consistent with the previous estimate of 3—4%%uo

described above.
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