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Electromagnetically induced nuclear beta decay calculated by a Green's function method
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The transition probability for enhancement of forbidden nuclear beta decay by an applied plane-
wave electromagnetic field is calculated in a nonrelativistic spinless approximation by a Green's
function method. The calculation involves a stationary-phase approximation. The stationary phase
points in the presence of an intense field are located in very different positions than they are in the
field-free case. In order-of-magnitude terms, the results are completely consistent with an earlier,
much more complete wave-function calculation which includes spin and relativistic effects. Both
the present Green s function calculation and the earlier wave function calculation give electromag-
netic contributions in first-forbidden nuclear beta decay matrix elements which are of order
( dRp/g ) with respect to allowed decays, where Ro is the nuclear radius and 4~ is the electron
Compton wavelength.

I. INTRODUCTION

In Ref. 1 (hereafter referred to as I), the acceleration of
nuclear beta decay by application of a plane-wave elec-
tromagnetic field was calculated by a straightforward
wave function approach. In particular, the procedure in-
volves execution of integrations over time at an early
stage, which leads to the appearance of an energy-
conserving delta function. Once this delta function is ex-
hibited, it is then possible to perform the unambiguous
separation of contributions representing allowed beta de-

cay, conventional forbidden beta decay (from "retarda-
tion" or lepton momentum contributions), and elec-
tromagnetically induced beta decay. An alternative pro-
cedure, suggested by Becker, Schlicher, and Scully (here-
after referred to as BSS), is based on the use of Green's
functions. Their procedure involves an early execution of
integrations over momentum states, with time integrations
left for later. Since no energy delta function is extracted,
it is not possible to make simple distinctions between al-

lowed, conventional forbidden, and electromagnetically
enhanced portions of the transition probability. They all

remain intimately mixed in the integrand of the time in-

tegrations. The purpose of this paper is to show how to
carry the Green's function calculation to completion, with

concomitant identification of allowed and forbidden con-
stituents. The relative orders of magnitude of convention-
al forbidden and electromagnetically induced terms with
respect to the allowed term are shown to be in agreement
with the results of I.

II. ANALYSIS

A. Conditions

Since the intent of this work is qualitative and not
quantitative, the simplest approximations introduced by
BSS are adopted here. Spin terms are dropped, the elec-
tromagnetic field is taken to be circularly polarized, the
decay electron is treated nonrelativistically, and the longi-
tudinal part of the electron momentum is neglected.

B. Transition probability

The transition probability per unit time for field in-
teraction with a beta decay system, reflecting the condi-
tions and limitations stated above, is given by BSS as
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In Eq. (1), Eo is the difference between initial and final
nuclear energies in the transition; 6(,) is the neutrino
Green's function, given by

—iE„(t'—t} ik (r ' —r)
G(„)(r',t', r, t)= d E„e " e (2)

where E„=
~
k, ~; R is a spatial displacement parameter

defined by

Eq. (1) will reflect the usual selection rules of beta decay.
In particular, if the rules for Fermi transitions (there are
no Gamow-Teller transitions since spin is neglected) are
not met, then the overlap of the Pf and P; wave functions
will give a zero result. Spatial dependence arising from
parts of Eq. (1) other than (tf and P; are necessary to
achieve a nonvanishing result when the selection rules are
violated.

R(T) = r ' (r—' r)—(t' T)—l(t' t )—;
E(t) is the electric field vector in the long-wavelength ap-

proximation; A(t) is the Coulomb-gauge vector potential
of the plane-wave field, also in the long-wavelength ap-
proximation; the P( r ) functions give the ordinary nuclear
wave functions in final and initial states; and g V
represents the weak interaction. The spatial integrals in

C. Integrals over time variables

The t and t' integrals in Eq. (1) must be done in order
to assess the forbiddenness-removing properties of the r
and r ' dependent factors which occur in Eq. (1). From
Eqs. (1) and (2), the integrations over t and t' are
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3/2
im (r ' —r)

exp[i(Eo —E„)(t'—t )]exp
2 (t' t)-

It
&exp t'e d~R ~ .E w exp

le ~2 1I dT A (~)—, f dT A(~)
2m t' —t. t

4

The analysis of Eq. (4) is expedited if an explicit form for the plane-wave electromagnetic field is specified. The field is
to be treated in the long-wavelength approximation in Coulomb gauge, so the assignments

A=a e cosset,

E=coa e singlet

a«appropriate. When Eqs. (3) and (5) are substituted into Eq. (4), the result is
3/2
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where
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A few notational changes will be made in Eqs. (6) and (7). The variables of integration will be changed from t, t to the
dimensionless variables x,y, where

x =(o(l —t), y =cot .

Then the double integral is
3/2
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with

b, E=EO E—„, Ar =r ' —r,
and with the intensity parameter given by

Equation (19) is entirely adequate to establish the location
of stationary phase points. It yields

*2
Bg bE 1

zf ~ cos(x +y ) ——[sin(x +y ) —siny]
Bx p2 X
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2pl

(12) (20)

Stationary phase points are found from setting Bg/Bx =0,
or, from Eq. (20),

O(EE/m ) = 1 . (13)

Some statment must be made about the field frequencies
to be considered. Suppose that the highest frequencies of
interest are in the visible or near-uv region. This can be
stated as

0 —(10
Pl

Since the r and r' coordinates are bounded by Ro, the nu-
clear radius, and since the nuclear radius measured in
terms of the electron Compton wavelength is

O(mR0) = 10 (15)

for essentially all nuclei, then Eqs. (14) and (15) give the
bound

0(
i
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i
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It will be further presumed that the intensity parameter is
relatively large, so as to be in the most likely region for
electromagnetically enhanced beta decay. This is stated as

O(zf) &1 .

If zf is taken to be large, then a stationary phase point
occurs (as will be shown below) for a value of x such that

x=0(zf '
) . (18)

The end result of Eqs. (13), and (16)—(18) is that the
dominant terms in g(x,y) in Eq. (10) are

D. Stationary phase points

The purpose of exhibiting the factor m/co as a multi-
plier of g(x,y) in the exponential function in Eq. (9) is to
make explicit the presence of a large parameter in the ex-
ponential. The hypothesis is made that the electromag-
netic field which intervenes in the beta decay is a low-
frequency field. The ratio m/m is then an extremely
large number, and so a stationary phase approximation
can be employed to evaluate one of the integrals in Eq. (9).
The integral over x will be evaluated in this fashion.

An important prelude to the stationary phase calcula-
tion is the estimation of the orders of magnitude of the
terms in g(x,y) given in Eq. (10). The magnitude of the
first term is set by the nature of beta decay, which yields

sin(x +y ) —siny b,E/m=cos x+y +
X Zf

' 1/2

(21)

Equation (21) is difficult to solve, but a simple closed
form answer emerges if the assumption is made that

/xi ((1. (22)

From Eq. (18), the implication is that zf »1. With Eq.
(22), the solution of Eq. (21) is

&&/m
y 40(modulo n.), (23)
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E. Forbiddenness removal due to the field

Now that stationary phase points have been located,
they can be used to evaluate the integral over x. However,
all that is really of interest here is to examine the way in
which introduction of the electromagnetic field overcomes
forbiddenness in the beta decay. This can then be com-
pared with analogous terms which arise in the field-free
case from orbital angular momentum contributions from
the leptons emitted in the beta decay.

Upon stationary phase evaluation of the integral over x,
a factor

exp[i(m /co)g(xo, y )] (24)

will emerge, where xo is a stationary phase point, as
found in Eq. (23). As a prelude to substitution of xo into
g(x,y), the small-x form of g(x,y) will be written. This
form is

g(x,y)= x+»zfx sin y
AE
rn

1/2

which justifies Eq. (18).
The proviso in Eq. (23) that y should not be in the

neighborhood of the zeros of siny is to provide consistency
with the constraint in Eq. (22). With zf sufficiently large,
the limitation on y in Eq. (23) excludes only a small frac-
tion of the y space. It will be shown shortly that the out-
come of the stationary phase calculation is to provide a
dependence on the spatial r, r' coordinates which removes
forbiddenness in the nuclear transition matrix elements.
The stipulation in Eq. (23) that siny 40 simply means that
there is a portion of the integration over y which does not
contribute to forbiddenness removal.

Zf 1 ~

g(x,y ) = x — x+ —,sin2(x+y ) ——,sin2y
Zj

2
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2——[sin(x+y) —siny] . (19)2
where the last term in Eq. (10) is omitted because of Eq.
(16). The xo solution in Eq. (23), when substituted into
Eq. (25), yields
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In view of the small magnitude of the argument of the ex-

ponential in Eq. (32), the expansion

exp[i(m/co)g(xo, y)]=1+iv'2mhE
~
r ' —i

~
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The essential content of Eq. (26} is in the dependence on
r and r ' in the last term. From Eq. (13), and the fact
that r and r' are of the order of the nuclear radius Ro,
then

(2mbE)'/ e (r'+r)=O(mRo)

=O(10 ), (27)

exp[i(m/co)g(xoy)]~1+i(2mhE)'~ e (r '+ .r) . (28)

If a beta decay is first forbidden without intervention of
an electromagnetic field, then the first term on the right-
hand side of Eq. (28) will make no contribution, but the
second term veil. This last term introduces a change in
parity into the transition matrix element, as @yell as a Yl
spherical harmonic. It thus gives a nontrivial transition
probability in a first-forbidden beta decay. Expansion
terms of higher order than those exhibited in Eq. (28) will

give contributions in more highly forbidden beta decays.

where the last statement was expressed in Eq. (15). In
consequence of Eq. (27), when Eq. (26) is employed in the
exponential given in Eq. (24), the spatial dependence in
the exponential can be expanded as

is appropriate.
The first term in Eq. (33) is the usual allowed term in

beta decay. The second term in Eq. (33}is the retardation
term of ordinary (i.e., not field-induced) forbidden beta
decay. It does not have quite the customary form because
the sequence of operations in this Green's function ap-
proach differs from the conventional approach. Ordinari-
ly, the correction term to allowed beta decay has the form

i(p, +k, ) (r' —r),
where p, and k„are the momenta of the beta particle and
the antineutrino, respectively. However, here an integra-
tion over all the components of p, has already been done.
One way to establish the identity of the second term in
Eq. (33) is to note that if p, and k„are neglected at an
early stage in the (field-free) calculation, then the second
term in Eq. (33) never appears.

A very important result is that the conventional forbid-
den beta decay term in Eq. (33) is of exactly the same or-
der of magnitude as the term examined in Eq. (27). That
is, the conventional retardation term in forbidden beta de-
cay and the electromagnetic-field-induced term in forbid-
den beta decay are of the same order of magnitude.

F. Field-&ee case

Bg AE 1 (cour)2
Bx m 2

(30)

The stationary phase point is found from equating Eq.
(30) to zero, which yields

coiner

f
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[This stationary phase point location was presumed by
BSS to apply both to the field-free case and to the situa-
tion where a field is present. That presumption is in-
correct. Equation (23) gives the stationary phase point lo-
cation in the presence of a field. ] Equation (31), inserted
into Eq. (29), gives a value to Eq. (24) of

exp[i(m/co)g(xo, y)]=exp(+i&2mbE
~

r ' —r
~

) . (32)

The field-free case can. be treated very simply by setting
zf equal to zero. Equation (10) then has only the two
terms

g(x,y)= x+ 2 (cob, r) —,AE ) 21
Pl X

which yields

It has just been shown in Eqs. (28) and (33) that the
electromagnetic enhancement term and the conventional
retardation term play exactly the same role in the nuclear
matrix element of forbidden beta decay. There are some
quahfications to this parallelism which must be made.

In the foregoing analysis, the explicit spin term in the
Volkov solution for the beta particle was neglected. The
spin term will make an additional contribution of the
same order of magnitude as the scalar Volkov term re-
tained here. Furthermore, the longitudinal contribution
from the beta decay electron has been entirely neglected.
As shown in I, this contributes an additional amplitude of
equal magnitude to the transverse term treated here. Al-
together, the electromagnetic contribution to the nuclear
matrix element of forbidden beta decay will be larger than
that provided by the retardation term. However, in elec-
tromagnetically enhanced beta decay, the field occurs in
other factors which lie outside the nuclear matrix element.
[See Eq. (6) of Ref. 3.] Overall results for elcx:tromagneti-
cally enhanced decay can then either exceed or fall short
of ordinary forbidden beta decay transition probabilities.
The actual comparison depends on the particular nuclear
beta decay, and on the parameters of the electromagnetic
field.
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