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The elastic scattering of protons from *He is calculated with a microscopic, momentum space op-
tical potential which incorporates the full spin dependence of the NN and p *He interactions. The
theory includes antisymmetrized NN amplitudes, realistic neutron and proton distributions, nucleon
recoil and binding energy shifts, Lorentz invariant angle transformations, ¢ matrices with on-shell
behavior from NN phase shifts, and off-shell behavior from a realistic separable potential model.
Qualitative agreement is found with differential cross section and polarization data for 100< T},

< 1000 MeV.

I. INTRODUCTION

Although the idea of using proton reactions to probe
the nucleus is not new, the different energy dependence of
the spin, isospin, and exchange parts of the nucleon-
nucleon interaction illuminates different facets of the re-
action at intermediate energies than at low and high ener-
gies. In particular, recent experimental study of spin ef-
fects has led to extensive refinements of the NN effective
interaction and the p-nucleus optical potential.!

Simultaneous with the above developments has been the
fundamental progress made in understanding the pion-
nucleus system?>—particularly the momentum space opti-
cal potential. In this paper we join some of these 7->He
techniques® to those used in proton scattering.*~® This
union is interesting since the nature of the two projectiles,
and the techniques, are quite different.

By studying the p-°He interaction we test multiple
scattering theory and unravel a fascinating reaction mech-
anism in which nucleon, N*, and deuteron exchanges all
contribute.” ! We also wish to advance the theory so that
the hadron experiment may provide information on the
3He nucleus. Specifically, large angle, intermediate energy
proton scattering is sensitive to the nuclear wave function
at momentum transfers considerably higher than the
current electron measurements and without the annihila-
tion problem inherent with pions. Although exchange
currents also contribute to proton scattering, their effect is
relatively smaller since the first order proton term is much
larger. And since the spin of the *He nucleus resides
on ~ 5 of its nucleons (the two protons’s spins are essen-
tially paired to zero) there is the promise of utilizing the
high spin dependence of the NN interaction to deduce the
spin distribution.

The existing!' ~2! and new?? p->He cross section and po-
larization data are unusually complete in that they scan an
energy range from ~1—1000 MeV in both the forward
and backward hemispheres. At low energies (T, <10
MeV), resonating group?> and variational®* calculations
succeed in reproducing the data and find that large an-
tisymmetrization effects can be modeled by an effective
potential having opposite signs for even and odd orbital
angular momenta.”> By 20 MeV, good phenomenological
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fits are possible if the optical potential contains an ex-
change term.® As the energy gets higher, diffractive
features appear and a distinct, backward peak is evident
by 400 MeV. At 1 GeV the cross sections are diffractive
and Glauber or multiple diffraction theories should pro-
vide the best descriptions.?6—2°

The medium energy backward peaks are somewhat of a
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FIG. 1. Processes contributing to p-*He elastic scattering
(Ref. 8). (a) The “direct” scattering of projectile nucleon i with
target nucleon f, the core ¢ is passive; (b) The “exchange” part
of the single scattering term in which the projectile and struck
nucleons interchange; and (c) heavy particle “c” exchange or
stripping, the final nucleon f has not been struck.
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mystery. The momentum transferred is too large for the
direct term [Fig. 1(a)] or any of its multiply-scattered
iterations to be significant. Although the Pauli principle
would indicate that NN exchange [Fig. 1(b)] is as likely as
direct scattering, this is difficult to include reliably in a
practical multiple scattering calculation. Consequently,
more exotic effects, such as heavy particle® and N* ex-
changes™'° [Fig. 1(c)] are postulated, and often shown to
be significant. Definitive conclusions, however, must
await a more reliable evaluation of Figs. 1(b) and (c) and a
more systematic theory for the entire process.

At present many more studies of the simpler p-*He sys-
tem exist; some are microscopic optical potentials,’! some
are diffraction theory,?° and some are phenomenological
fits with both the Schrodinger® and Dirac® equations. Up
to 1 GeV, spin and exchange effects remain important.
At the higher energies, evidence exists 32 that intermediate
isobar states are contributing.
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In Sec. II we formulate a mlcroscoplc first order opt1cal
potential for p°He scattermg The major complication is
handling the full spin X 3 dependence of NN and p°He
interactions, and the four possible nuclear form factors.
Since this is our first paper on this theory, we give some
specifics in Sec. II and some details in Appendices A and
B. In Sec. III we examine the sensitivity of our theory to
various assumptions and then compare the predicted
do/dQ and P(0) to data for 100 < T, < 1000 MeV. Sec-
tion IV provides a summary and our conclusions.

II. FORMULATION

The most general form for the scattering amplitude of
two spin 3 particles consistent with rotational invariance,
parity conservation, time-reversal invariance, and the gen-
eralized Pauli principle (isospin invariance) is

L[4 +B)+(4 —B)G'RTyA+(C +D)G "Gy +(C—D)7 [0y T+ E(5 4+ &) A+F(&— )R], 2.1
where 7, m, and Tare the unit vectors,
S LAk B ﬁ'+af , L 2.2)
| kixky| | K+ K/ | |k, —k;|

where (k,,k £) is the (initial, final) center of mass (c.m.) momentum, and the amplitudes 4 —F" are functions of k s and
k but not spin.>* For identical particles (e.g., two nucleons) the F’ term vanishes via the generalized Pauli principle.

A. Optical potential

We describe p->He scattering via an optical potential constructed from nucleon-nucleon amplitudes having the full
structure (2.1) in the NN c.m. The lowest order optical potential is the expectation value of the proton-nucleon ¢ matrix
in the nuclear ground state. In the factorization approximation it has the form

UK’ [ K)=UNK | K)=(t | PN |¢hy) = N (2"

B Pl @)+ [ p Ty RO A+ O A+ tE p Oy Ty 1

1B 5y [ G T+ 1B (G Gy T+ Gy 15y o)

+£'0y ipm(9)} +

The t4_p,tc_p,..., terms are proportional to linear
combinations of the 4, B, C, D, E, and F terms of (2.1)
and are given explicitly in Egs. (2 10) (2.13).

We remind the reader that U'" is complex (absorptive)
only because the elementary t matrices are complex. In
turn, "N is complex whenever the energy is physical, i.e.,
total energy greater than twice the rest mass. Thus, the
absorption in U‘" accounts for the presence of nucleon
knockout or quasielastic scattering® with the elastic tN
And indeed, with the three body choice of energy [Eq
(2.15)], U'Y becomes real if the projectile energy is lower
than the nucleon separation energy Ep. Of course we also
include pion production as an open channel by using NN
phases which become complex at the elementary 7 pro-
duction threshold. This is, however, a less direct contribu-
tion to the reactive part of our potential.

The off-energy-shell, proton-nucleon ¢ matrices in (2.:2
are functions of projectile and target nucleon momenta k

N—-Z
n—p

(2.3)

T
and Po momentum transfer =

e.g.,

— —

k '—Xk, and subenergy o,

2" p=(K",Bo—7 | 5" 5(@) | K,B0) - 2.4)

Here, P is a choice for the target nucleon momentum

A—-1_,
+—9,

Po=— 24

NIE

which optimizes the factorization approximation used to
derive (2.3).%% In this approximation the nuclear structure
enters only via pp(q) and py,(g), the form factors describ-
ing the distribution of nucleon matter and spin within the
nucleus. Although the techniques we outline here are also
valid if actual wave functions were used to describe the
three nucleon system, the simpler equation (2.3) permits a
direct utilization of the measured electromagnetic form
factors.



29 PROTON-’He SCATTERING WITH ANTISYMMETRIZED . . .

It is possible to hypothesize the off-energy-shell
behavior of a ¢ matrix in any reference frame. We believe
it best, however, to do so in the two-body c.m., where po-
tential theory can serve as a physically motivated guide.
For this reason, we relate the ¢ matrices of Eqs. (2.3) and
(2.4) (in the p-He c.m.) to off-shell ¢ matrices (in the NN
c.m.) via

(K',B'| 1) | K,B)=yLpr( R’ | {@) | R} , (2.5)
E,(k)Ey(k)En(k)Ex(x’) "2

— , 2.6
YLPT= | (K)E, (K Ex(p)Ex(p’) 20

where kK and k' are the pN c.m. momenta appropriate to
the p4A momenta (ﬁ,f)’ ) and ( l?',f)’ '), respectively, and
yrpr arises from (on-shell) probability conservation.**
The off-shell variation of the ¢ matrices are now described
by a separable potential in each eigenchannel a =(J,L,S):

oy ~ 8a(K')gq(K)
R T

X (Ko | to[@(Ko)] | ko) YRR,

2.7

where (ko |t4[@(ko)] | ko) is the on-shell amplitude. For
this off-shell extrapolation we use the Graz potential®®
generalized up to K waves; the parameters are given in
Table I. Although the NN potentials are fit to NN data
for T, <300 MeV, they should provide a physical off shell
variation for a much wider range.

The on-shell NN amplitudes, 4 —E in Eq. (2.1), are cal-
culated from the Bystricky et al.3¢ phase shift tabulation.
The details are in Appendix A. Our basic two-body input
contains full spin dependences, independent variations of
the momenta, and energy variables as required by the
Schrodinger theory, and is valid for 10< T, <750 MeV
and all scattering angles. These features are incorporated
directly into the momentum space potential.

TABLE 1. Graz potential parameters
gL =[B3+x’]"", L=0;

L+1

gL (k)= (14+yk?)

1
I (1+B,,K2)J , L£0.
n=0
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We include the Pauli principle by using an antisym-
metrized NN amplitude (e.g., tPP is symmetric about 90°).
This is equivalent to including direct scattering [Fig. 1(a)]
and the exchange of the projectile and struck nucleon
[Fig. 1(b)]. It does not, however, include antisymmetriza-
tion with unstruck nucleons (as in resonating group calcu-
lations), which can lead to heavy particle exchange (or
stripping) [Fig. 1(c)]. Sherif et al.%® have emphasized the
importance of heavy exchanges for back angle scattering.

Our calculation does not include any second order
corrections to the optical potential such as intermediate
double charge exchange and NN correlations. Of this
same order, and as emphasized by Gurvitz,”’ the optical
potential which appears in the kernel in our Lippmann-
Schwinger equation [Eq. (2.24)] should have the exchange
part of the NN removed (a rather model-dependent pro-
cedure).

The NN c.m. momenta K and ' are determined via a

covariant, on-mass-shell, “angle transformation”:?

®'=b"0)K +c'(0)k ,

—

®=b(0)K+c(O)k', (2.8)

where b(6) and c(0) are functions of the scattering angle
in the p4 system. The details are given in Appendix B.

Consequences of these transformations include the in-
crease in the pN momenta « and «’ (and pN subenergy
@—see Fig. 2) as the p-’He scattering angle increases and
the mapping of backward p-’He scattering (cosf=—1)
into backward pN scattering (cos@=—1). In addition,
when we form the three unit vectors 7, /7, and [ in the NN
c.m. (analogous to #, #i, and f[Eq. (2.2)] in the p4 c.m.),
these will be linear combinations of # and /:

i=—20f, (2.92)
| KXK' |

m=—2"K _46)h+eO), (2.9b)
' —K |

All parameters in fm?. F—K waves are the indicated generalization of the >D, potential.

Eigenchannel % Bo B, Bs Ba Bs

38, 0 1.43
1S5 0 1.152
p, 1.0297 4.2965 0.0506 0.0493
3p, 4.3036 4.0351 0.7292 4.3036
3p, 0.9055 3.6475 0.0446 0.0412
’p, 0.1514 0.4266 0.0634 0.0634
p, 0.4897 5.0341 0.1589 0.0705 0.0169
’D, 0.7544 6.7807 0.1583 0.1583 0.0738

all F 0.7544 6.7807 0.1583 0.1583 0.0783 0.5

all G 0.7544 6.7807 0.1583 0.1583 0.0783 0.5 0.5
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FIG. 2. The effective NN laboratory kinetic energy as a func-
tion of the p->He scattering angle for incident proton energies of
200 and 515 MeV. The solid curves result from the three-body
choice of subenergy [Eq. (2.15)], and the dashed curves from the
two-body energy [Eq. (2.14)]. The arrow indicates the highest
energy for the BLL phase shift tabulation (Ref. 36).

= KK fo)+g (0N .
| K+K"|

[The functions d(0)—g(@) are derived in Appendix B.]
This mixing implies that (¥'|z | K) has the form [Eq.
(2.1)] in the NN c.m., only now with #, /i, /, and, conse-
quently, the &#i-0"*# and & -f&+1 terms in the pA4 c.m.
derived from mixed terms. The ¢ matrix elements which
appear in the optical potential [Eq. (2.3)] are given by

d¥6,)(C +D)+g46,)(C —D)

(2.9¢)

te+p=—yrpr/2pE) (2.10a)
f264)(C —D)+e*6,)(C+D),
(2.10b)
th=—(yLpr/2pE )bb' —cc')E , (2.11)
thsp=—(yLpr/2pe)(A£B), i=pp,pn, (2.12)
tep = —(vLp1/20£)[d(0)e(6)(C +D)
+f(0)g(6)(C—D)] . (2.13)

Here, —(4,B,C,D,E)/2py are the amplitudes in the NN
c.m. and we do not include any relativistic (Wigner) spin
precession.

Of particular interest is the tCDE-f o terms of Egs.
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(2.3) and (2.13) since it is of the form usually excluded by
time reversal invariance. This seems peculiar since it ar-
ises from expressing the time-reversal-invariant & ok
and &-# o m parts of the proton-nucleon amplitude in
the proton-nucleus momenta variables. However, the full
amplitude still obeys the time reversal condition,

T(k'X,0)=T(—k,—k',—&),

since tcp reverses sign upon time reversal, (d,e,f,g)
—(d,—e,f,—g). A further concern with this mixed term
is that it leads to a very small mixing of the singlet and
triplet states in p°He scattering. It is small since tcp =0
both for on-shell scattering and for the very important
“diagonal” | E'] = | §| scattering. Since this mixing
complicates the reduction of the Schrodinger equation, we
ignore its small effect on this initial study.

We need to still specify the NN subenergy @. We
evaluate #(w) with the two- and three-body choices>*® for
. o,p is the four-momentum of the initial projectile k,,
and the active nucleon Py. w;p is the four-momenta of
the projectile proton plus target nucleus (k,) minus that
of the passive core (P).

w3 =so=(kk+p§)?
=2m% +2E,(k)Ex(po)—2K B0 »
wip=(kb+k—Pk_,)?
=[Ey(ko)+E4(ko)—E4_(P)— | Eg | P—P?, (2.15)

Pl=| —k—Po—P|?
2
[k*+q%/4+pf+q-k].

(2.14)

A-—1

1 (2.16)

~

w3p arising naturally in a three-body model of the optical
potential’ is important in ensuring elastic unitarity at
lower energies, and is our preferred choice. py is a Fermi
momentum which we choose as 185 MeV/c—appropriate
for a nucleon in the nuclear surface, and Ej is an effective
nucleon-core binding energy (we take it as “only” 5 MeV
since nucleon-core interactions are known to partially can-
cel the naive three-body energy shift).

The difference between w,p and wip is shown graphi-
cally in Fig. 2. w3p is always at least 40 MeV less and in-
creases less rapidly with 6. Consequently, since our input
tNNs are valid up to 750 MeV, and since we reach this
limit for 550 MeV p-He scattering at 180°, our back angle
results lose validity above that energy. Fortunately, multi-
ple, smaller angle pN scattering is dominant at large pA
angles, and there may be some validity to our results up to
~900 MeV.

B. Three nucleon form factors

We use the four form factors shown in Fig. 3 to
describe the neutrons’s and protons’s matter and spin dis-
tributions.’® If we follow the anlaysis used in our pion
study® and ignore exchange currents, we can relate them
to the experimentally accessible charge form factors of
3He and *H and the magnetic form factor of *He:
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FIG. 3. The neutron and proton, matter and spin form fac-
tors for *He as deduced from EM form factors of *He and *H.
The lower axis is momentum transferred squared, the upper,
scattering angle for a 200 MeV beam. Note that Fg, appears un-
physically large for high g2 and is not used in the calculations.

phtq)=F.,(*He,"H)/f¥(q) , .17
4
P1e(@) =26 | 2F g CHe) + 32 Foy(*He)
_ 3
3,u,,F°h( H)l , (2.18)
PRoq) = E[ Frag (*He) — 5 F oy CH) + 5 F, CH)] , (2.19)

where p,, and p, are the nucleons’s magnetic moments,

Hn
 20pp 202

pp=2.793, p,=—1.913,

3
(2.20)

and fP(q) is the elementary proton’s form factor

fig)=

-2
2
1+—1 — ] ) 2.21)

18.2 fm—2

For “small” g* ( <20 fm™2), the *He form factors are tak-
en from McCarthy et al.,*®

F o, mag"He) =exp( —a%q?) —bq%exp(—c’q?)

2
q—%]
p

) (2.22)

+dexp

gm =(0.675,0.654),

be rn =(0.366,0.456) fm ,

¢.,m =1(0.836,0.821) fm,
dym=(—6.78%1073,0) ,
go=3.98 fm~!, p=0.90 fm~!,

and for large g2 (18 < g2 < 80 fm~2) from Arnold et al.:*
FonCHe)=[(14+7)/(1+7uf)]' 24"
A2 =aexp(—Bg?),
a=0.034, $=0.1059 fm?,

(2.23)

r=¢*/4m%,, p=-2.1.

Unfortunately, some of the assumptions used to deduce
these form factors become weak at very large momenta
transfers’® and further choices are needed. pb, (solid
curves in Fig. 3) is thus quite realistic and reliable. If we
take the *H charge form factor of Collard ef al.,*' and ex-
trapolate it for 2> 15 fm~? with the three nucleon wave
functions of McMillan,* we obtain p},, (dot-dashed curve)
which is less reliable beyond 15 fm~2 If we substitute
these two charge and one magnetic form factors into Egs.
(2.17)—(2.21) we obtain pg, (dotted curve) and pf, (dashed
curve). We see that pg, appears unphysically large in the
extrapolated ¢g?>> 12 fm~? region probed by large angle
proton scattering and consequently we set pg,=pp,. Like-
wise, since the deduced proton spin form factor only be-
comes significant for g>> 12 fm~2, i.e., where the empiri-
cal input used to derive it becomes unreliable, we decrease
noise by setting pf,=0.

To proceed we must make these choices regarding the
nuclear form factors. After our basic calculation is under-
stood and perfected, we will deduce these form factors
from the proton scattering data or 3N wave functions, and
remove meson exchange current effects.

C. The Lippmann-Schwinger equation

We wish to solve the Lippmann-Schwinger equation
with relativistic kinematics,’*

UK'|BIR(B|K)
E(ko)—E(p) ’
(2.24)

- - — 3
RE|K)=UE [+ [P

E(ko)zEp(ko)+EA(k0)

=(m2 k32 4(mf +k3)?, (2.25)

for a potential with the general spin dependence of Eq.
(2.3). Although this seems not to have been previously ac-
complished, the framework can be found in the very use-
ful NN study of Haftel and Tabakin.*’ They indicate the
appropriate partial wave expansions of the potentials or
amplitudes in terms of spin-angle functions:
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ME )= U 'k)] 2 S MEK | RFMEHIME) . (2.26)
R(K'|K) T oL, LM
After substitution into (2.24), for each J value there results five partially coupled, integral equations:
o dp p?U&(Kk' | p)RE(p | k)
REL (K | k)= UG (k' | k) + = zpf pp ULk’ |PRii(p | (2.27)

E(kg)—E(p)

For S=1, L =J +1 and J —1 are coupled by the tensor forces as indicated in Tables II and III. The numerical tech-
niques used to solve these equations are similar to those in Ref. 43 and the computer code LPOTT.*

Since the proton and *He nucleus are not identical, there is no generalized Pauli principle to eliminate the coupling be-
tween p >He singlet and triplet states. However, since we use a first order optical potential proportional to the elementa-
ry NN ¢ matrix [Eq. (2.3)] there is still no singlet-triplet coupling.

The on-shell values of R matrix are related to the pA phase shifts (Blatt-Biedenharn convention) via

Ry _17_1—Rj11,741

tand7 _j+1=—prer |R7—1,71(ko | ko) + R4 1,541 7F

2R} 1,5 41(ko | ko)

tan2e,=— p ,
F—1,7-1—Ry11,741

prer=2koulko) ,
ko) =E (ko E, (ko) /LE, o)+ E4 k)]

D. Partial wave matrix elements

To solve the Lippmann-Schwinger equations [(2.27)] we
need to evaluate the partial wave elements of ¥ and R for
a completely general spin dependent potential. While it is
possible to evaluate directly the elements, e.g.,

Ug, (k' k)

=—’2-’—iL‘~Lfd1€d1€'@’”M<k WK | K)#@ME),

(2.32)

an advance in our approach (which reduces complications
and errors) is the realization that the p°He R, and UW
must have the same expansions as the NN amplitude®
[Egs. (A8)—(A14)]. Schematically, this is

w(K'|K)=S BIY.Uf (k' | K)PM(cosh) ,
LL'J

(2.33)

which permits direct projections for U7y (k' | k).

In Fig. 4 we plot ReU,,(K'|Kk) for k=Fk'=465
MeV/c (T, =200 MeV) as a function of scattering angle
6. The zeros seen in U'! reflect those in NN and p*(q).

TABLE II. Spin + X + amplitude codes.

Nipin s My Stapp
1 0 M£EM£L al
2 1 M alLL
3 1 ML o
4* 1 MEHL  oFNL'=L+2)
5 1 MiHis: app—(L'=L+2)
6 1 Miti, o
T -—
*MEH L =MEFL, MY=Mg'=Msi,=M]_=M=0

/ 2, (2.28)

(2.29)

cOs2€,

(2.30)
(2.31)

r

For example, at 90° the form factors vanish (for illustra-
tion we set py=p5,=ph), and near 60° and 120° different
parts of tNN vanish. The dots indicate the precision of
our numerical projections at reproducing these data. The
only noticeable inaccuracies occur at large angle zeros in
U,,, which ultimately get filled by the nonzero potential
contributions and multiple scattering.

III. RESULTS

We solved for all possible spin observables for
10< T, <1000 MeV. In Sec. III A we examine the effects
of different theoretical assumptions, keeping the energy
fixed at 200 MeV. In Sec. IIIB we present a comparison
of predictions for do/d) and P(6) at nine energies for
which data are available.

A. Sensitivity

One of the fundamental questions for this initial study
is how the spin structure of U(k'| k) and NN influence
p 3He scattering. In Fig. 5 we answer this for do/d ) and
in Fig. 6 for the polarization P(6). On the left-hand sides
of these flgures we alternately employed (i) spin 0®0; or
(i) spin 0®+; or (iii) spin 3® 3 forms of the Lippmann-

TABLE III. NN coupled channels, 2S+1, " M,
=MI=1, Mpnz%(M’=‘+M'=°).
I=0 I=1
3 3 3 3
S1+°D, 3 3 P,+°F,
I;+°K
M +M T
F4+°H,
*D3+3G; 3 3 3 3
Gs+°1 He+J,
M, +M, s+71s 6 6
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180°

o° 60°

FIG. 4. Some p°>He momentum space optical potential ele-
ments in the spin basis for | K’ | = K| =ko. The dots indicate
the precision of the numerical partial wave projections in repro-
ducing these potentials. The universal zero at ~90° occurs since
all nuclear form factors are set equal here and vanish at this g.

Schwinger equations, i.e., potentials with (i) only the cen-
tral term, ¢4, p in Eq. (2.3); or (ii) with central plus spin
orbit (t5&-#); or (iii) full spin dependence. As witnessed
by the difference of the 0X0 curve from the others (and
from the data), spin effects are large [P(8)=0 for 0X0].
If we describe the scattering as 0X =, the spin dependence
only arises from the spin-orbit, E, term of the NN ampli-
tude. Yet since both the beam and target have spin we
must choose how to turn off one of them. If we set o,
the target spin equal to zero [keep only the t5 &, fipp, in
(2.3)], we obtain the dashed curves. This clearly does not
produce enough scattering—but does predict a P(6) of the
same shape as the full calculation. If, as an exercise, we
set target and projectile spins equal, o0; =0, then both the
matter and spin distributions of the nucleus contribute to
the spin-orbit term, and we obtain the dot-dashed curves
in Figs. 5 and 6. The do/dQ so produced is surprisingly
similar to the full calculation, yet the P(8) is rather poor
at larger angles. Evidently the spin-orbit potentials are
crucial, with the tensor potentials also playing a signifi-
cant role—particularly at large angles.

2273
]02 T T T ' T 3 T/ T T 3
I | P He, 200 MeV, do/df) ]
N\ T=(A+B)+(A-B)G R T, W
RN \ |+ (C+DIG NN +(C-DIT 20,2 | |
0 F N\ \“\’3& +EG+5) R =
- '\\'
L SPIN EFFECTS  \ "i\,\ TN errecTS ]
s L —1/2x1/2 \x \ E=0 i
% r=——0x1/2(g,>0,) \ \ ——— A+B=0
N 100 -==0x1/2 (d,=0) — — A+B=E=0
a 107 2 \
€ L — 0x0
S
el |
®
S 10
L
2
10
=3 1
107ge B0

FIG. 5. Spin dependence of the predicted p-*He differential
cross sections at 200 MeV. The curves on the left result from
progressively decreasing the number of spin variables in the
Schrédinger equation (o1~~0, treats projectile and nuclear spins
as identical and is obviously unrealistic). The curves on the
right-hand side result from selectively suppressing various terms
in the elementary NN ¢ matrix [Eq. (2.1)]. The data are from
Hasell et al. (Ref. 22).

On the right-hand sides of Figs. 5 and 6 we show the ef-
fect of selectivity including different parts of the elemen-
tary nucleon-nucleon amplitude (2.1) while still perform-
ing the full 3 X 5 calculation. Again the E term in NN is
large in the midangle do/dQ and crucial in P(6). The
pure tensor terms produce strong mid-to-large angle
scattering (dashed curves). In fact, do/dQ with just ten-
sor plus spin orbit is larger than with the full calculation
whereas P(6) is somewhat smaller.

The large strength of each spin term indicates that the
rather smooth cross sections are actually the sum of five
highly oscillatory terms (much like the potentials of Fig.
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FIG. 6. The same as in Fig. 5 except now for the polarization
P(06).
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4), with the deep minimum in any one filled by the others.
By upsetting this somewhat delicate balance quite dif-
ferent results are obtained.

While some of the midangle structure is caused by spin
scattering, we see in Fig. 7 that some is caused by multiple
scattering (MS). The single scattering (SS) contribution,
i.e., the Born term of (2.27), contains the zero of the *He
form factors (we have set pp.=ps,=phy» and pf,=0 here).
The zero is filled predominantly by double scattering
(DS), with the remaining MS sill significant even at small
angles—a structure quite different from the Glauber
theory. The dotted curve in Fig. 7 shows the effect of us-
ing the Kerman-McManus-Thaler** (KMT) rescaling
which reduces all multiple scatterings by (4 —1)/4 =
This effect will not change any conclusions.

It is also possible to notice in Fig. 7 that the relatively
large back angle cross section—which at higher energies
turns into an actual peak—is present even in the single
scattering term. This reflects their origin in the antisym-
metrization of the elementary NN amplitude.

It is all too evident in the preceding figures that agree-
ment with these 200 MeV TRIUMF data?? is not very
good at small angles (unless we turn off the spin—in
which case the large angle cross sections are too small).
While this is not surprising for our first attempt with an
unadjusted theory, we need to examine the variations in
our results at other energies and to theoretical assump-

>
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FIG. 7. The contribution of single scattering (SS), double

scattering (DS), and multiple scattering (MS). The dotted curve
is MS with the KMT (4 —1)/4 reduction of multiple scattering.
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tions before drawing conclusions. For example, we see in
Fig. 8 that the choice of the three-body (preferred) or
two-body energy [Eqgs. (2.14) and (2.15)] produces a rela-
tively minor variation, whereas the angle and momenta
transformation [Eq. (2.8)] does produce a major increase
in back angle scattering, as compared to the naive ap-
proach (solid curve).

In the upper part of Fig. 9 we see the effect on do/dQ)
of assuming different forms for those *He form factors
not well determined at these large g values. A similar
study is given in Fig. 10 for the polarization. The solid
curves in the upper part of Fig. 9 refer to our preferred
choice, pi,=pm7#pht- The dashed curve in Fig. 9 and the
dot-dashed curve in Fig. 10 are obtained when indepen-
dent forms [Eqgs. (2.17)—(2.19)] are used for these three
form factors. As expected in this latter case, where the
large g behavior of pg, is not realistic, peculiar behavior in
do/dQ and P(0) is predicted [the P(8) behavior is even
qualitatively incorrect]. We see how proton scattering can
extend our knowledge of the 3N form factors. We also
note in the upper part of Fig. 9 (dot-dashed curve) that
unphysically small cross sections would be predicted if we
did not divide out the elementary proton form factor from
the *He form factors.

In the lower part of Fig. 9 we note that an increase in
the nuclear size [“a” parameter in (2.22)] can bring the
forward 200 MeV peak into agreement with the TRIUMF

102 T ' l '
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FIG. 8. The importance of the choice of two-body subenergy,
5,035, and of angle transformation for 200 MeV scattering.
The light solid curve is the naive choice, w,p and Onn=06py. (nO
angle transformation).
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FIG. 9. The importance of the cﬁr(;;ée of nuclear form factors
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at 200 MeV. The upper solid curve is the preferred,
Fg,=Fp,#F},, F%=0; the upper dot-dashed curve results if
the elementary nucleon form factor is not removed from the 3He
form factors; and the upper dashed curve results if the spin
form factors postulated in Eqs. (2.18) and (2.19) are employed
(these are unrealistic at large g?). The size parameter varied in
the lower curves is that in Eq. (2.22).

data—but only at the expense of the midangle region. Yet
since agreement is found at other energies, further study
(e.g., other ¢ matrices) is needed.

B. Energy survey

In Figs. 11 and 12 we show theoretical and experimen-
tal do/dQ for energies varying from 100 to 1000 MeV.
The large energy and angular regions covered by these
data!!=?0 are clearly impressive, as are their quality. The
new TRIUMF data?? fill in the intermediate energy re-
gime. The solid curves are our full calculation with dif-
ferent form factors for the neutron and proton distribu-
tions, the dashed curves have the three nuclear form fac-
tors equal. The differences in these curves set the scale
for nuclear structure sensitivity as a function of energy.
The dotted curves are the (antisymmetrized) single scatter-
ing contribution and indicate the relative importance of
multiple scattering.

In general, the quality of agreement is not as good as
found in p-heavy nucleus scattering at T, > 500 MeV .4
Apparently, the physics for very light nuclei is quite dif-
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FIG. 10. The same as in the upper part of the Fig. 9, except
now for P(9).

ferent and the impulse approximation for U'" does not
work well until 7,~300 MeV [i.e., the region where the
Bystricky, Lechanome, and Lehar (BLL) phases®® cause
RetP" to change sign]. Yet the reader should also note
that a tremendous energy and complete angular range is
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being presented and that no adjustments are made—even
in the four nuclear form factors which contain consider-
able uncertainty.

Intriguing features in Figs. 11 and 12 are the back angle
peaks present in both the data and predictions. Although
a first order optical potential must be suspect at such large
momentum transfers, these peaks are somewhat of a re-
flection of our forward peaks in that they arise from the
projectile struck-nucleon antisymmetry contained in tNN
(which explains their presence in SS too). Indeed, at 600
MeV we predict a back angle “diffraction” peak reminis-
cent of the backwards peaks in p-*He scattering.

Back angle proton peaks have been identified with
antisymmetry effects for at least thirty years. In a
modern setting, Gurvitz et al.*° postulated their origin in
a back-peaked "N, and Alexander and Landau®! calculat-
ed a similar peaking for p“He. However, several authors
have also suggested their origin in N* and/or heavy parti-
cle exchange [Fig. 1(c)] in which the final proton is a spec-
tator. Indeed, the recent distorted-wave Born approxima-
tion calculation of Sherif et al.® has shown that heavy
particle exchange (stripping) is significant near 150 MeV.
Since this exchange requires correlations, it is a necessary
supplement to our U'!) calculation.
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Another feature of interest in Figs. 11 and 12 is the gra-
dual buildup of “diffractive” features with increasing en-
ergy. Yet since the minima arise from zeros in the He
form factors and the NN amplitudes, they cannot be iden-
tified with the interference of successive orders of multi-
ple scattering—as Fig. 7 also makes clear.

For T, <100 MeV the microscopic U'" is madequate
This agrees s with the good description of low energy p *He
scattering by resonating group methods?? which are sensi-
tive to high order correlations (e.g., compound nucleus
formation and heavy exchange). Indeed, since at low ener-
gies the p>He singlet and triplet states mix,?! and since
this mixing must arise from a term in the scattering am-
plitude (and thus optical potential) which behaves like
F(&'— &) A, and since a term of this sort cannot occur
in the first order potential [(2.3)], this proves that higher
order corrections are important at low energies.

In the middle angle region, fair agreement is obtained
from 156 to 415 MeV. From 500 to 700 MeV, the posi-
tions of the diffractive structures are predicted well, but
not their magnitude. At 1000 MeV (which is beyond the
limit of validity of our two-body input) a strikingly good
fit is obtained out to ~60°. It appears that better agree-
ment here may be obtained by using more correct nuclear
form factors (e.g., some proton spin flip contribution may
well raise the minima at 500—700 MeV), or possibly with
intermediate isobar contributions.’?> Indeed, we can see a
much greater sensitivity to our modest variation in form
factors (solid versus dashed curves) at 600 MeV than at
200 MeV.

In Figs. 10 and 13 the predicted polarizations as a func-
tion of energy are shown. For 6 <60°, the shape of P(6)

3
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varies smoothly with energy (it is essentially just a func-
tion of ¢ here) and the agreement between theory and ex-
periment!*?2 is at least qualitative. At larger angles the
predicted P(6) becomes a highly oscillatory function, is
much more sensitive to changes in the theory (e.g., tensor
forces), and does not agree in any detail with experiment.
Yet we can notice that there is much interference [P(6) is
the small difference of two large numbers] and that the
experimental P (6) varies least when the theory shows can-
cellations (e.g., 90° at 415 MeV).

Finally, in Fig. 14 are given the predicted total cross
section for unpolarized target and beam (upper solid
curve). The dashed curve shows the nonfolded, single
scattering, impulse approximation result

o(p-*He) ~20PP 4 oP" |

Clearly, there is significant shadowing at the higher ener-
gies. The lower curve shows the predicted spin depen-
dence of the total cross section.

IV. SUMMARY AND CONCLUSIONS

We have developed and applied a microscopic, first or-
der optical potential for p-’He scattering. The theory in-
cludes the full spin X+ dependence of the antisym-
metrized NN amplitude,’®33 off-energy-shell behavior
based on a realistic, nonlocal, separable potential model,’
realistic form factors for the distributions of neutron and
proton matter and spin within the *He nucleus, and a
three-body model for the optical potential which naturally
incorporates important unitarity constraints? and nucleon
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FIG. 14. p-*He total cross sections for no polarizations
(upper curves) and with polarization (lower curve). The dashed
curve is the single scattering, impulse approximation result
20PP 4 oPn,
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binding and recoil. After developing new procedures, we
are able to solve coupled Lippmann-Schwinger integral
equations with relativistic kinematics in momentum space
and thus include all orders of multiple scattering in which
the nucleus remains in its ground state (presumably the
dominant terms for coherent elastic scattering). This
formulation thus includes all the theoretical nonlocalities,
and energy, angle, spin, and momenta dependences (“angle
transformations and energy shifts”) in such a way that
predictions are possible for all the p->He spin variables
over the entire angular range and for energies between 100
and 1000 MeV.

In comparing our predictions with the challenging
number of complete and accurate data,''~2? we find that
our use of tensor forces and antisymmetrized nucleon-
nucleon amplitudes provide partial explanation of the oc-
currence, the energy dependence, shape, and magnitude of
the back angle p-*He peaks. Yet since this simple applica-
tion of the Pauli principle only amounts to the exchange
of the projectile and struck nucleon, there are other ex-
changes which should be included. For example, heavy
particle exchange is known to be significant in p-*He
backward scattering,®® whereas N* exchange and con-
stituents have also been postulated.>'® Furthermore, a
higher order understanding of nucleon exchange requires
the decomposition of ™V into direct and exchange
pieces’’—a difficult task to accomplish in a model in-
dependent way at intermediate energies.*®

Our analysis of the data also shows that the differential
cross sections and polarizations display quite different
physics. For example, the backward hemisphere’s P(0) is
sensitive to tensor forces. The forward slopes of do/dQ
are not reproduced well until T}, > 200 MeV, possibly sig-
naling the onset of validity of the impulse approximation
or some shortcoming in the low energy nucleon-nucleon
phase shifts* (different ones are currently under investiga-
tion).

Essentially, all predictions show a high sensitivity to the
elementary neutron and proton matter and spin distribu-
tions. Yet since intermediate energy proton scattering ex-
plores these functions at very high momentum transfers,
g*>100 fm~2, only the proton matter (or >He charge®?)
form factors can be considered known. This naturally
leads to several interesting possibilities. One is to “use”
proton scattering to measure form factors—which of
course assumes the theory is up to the task. Another is to
employ theoretical three nucleon wave functions to gen-
erate the needed nuclear structure information. In any
case, serious comparisons need to account for meson ex-
change currents in both the electromagnetic and strong
form factors.

Although our calculation is just a first, elementary step,
we believe the generality of this approach is quite promis-
ing and with improvements will be valuable for much of
intermediate energy nucleon scattering. Indeed, other
workers are independently applying similar formalisms to
scattering from heavier nuclei.*” To maintain this pro-
gress, some of our present work includes examinations of
the *“He(p,p) and *H(p,n)’He reactions, the use of other,
nucleon-nucleon phases, use of other off-shell models, and
the incorporation of heavy particle exchanges.
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APPENDIX A: SPIN 4 X 3 AMPLITUDES
FROM PHASE SHIFTS

We follow the formalism of Stapp et al.,*® extended by

Bystricky, Lehar, and Winternitz,>3 for the NN ampli-
tudes, A—E of Eq. (2.1). In the singlet (S =0) state, J =L
and there is only one amplitude. In the triplet (S =1)
state, J =L +1,L and we need five amplitudes. In Table
II we enumerate amplitudes, relating Stapp’s amplitudes
a;;, Haftel and Tabakin’s (Ref. 43) M,{ L, and LPOTT’s
(Ref. 44) Ng,. In Table III we indicate some of the cou-
pled states for NN scattering consistent with the general-

ized Pauli principle (L +S + T =odd).
|

M*=2C 3 'PL(0)2L + DM[ ,
L

M“—_‘——CE”PL(G)
L
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For each eigenchannel the Stapp amplitudes are the fol-
lowing:

2i8 2i8
e L _ L

ap= 1, agp=e E—1, b
arr+1=Qj31,j =COSZGj32i8i4:1,j

+sinzeje2"51 _1, )

=00826j92isi¥1,j_1 ’ o~

al—l=qi= %Sinzej(eﬁ&i _o2%%F) "

=i sinzeje"<5++s_ 3 e

where for coupled channels the &’s refer to the Blatt-
Biedenharn convention, and the &’s to Stapp’s “bar”
phases.

We use the Bystricky, Lechanoine, and Lehar®® § —K
wave phase tabulation, smoothed to produce continuous

amplitudes over the energy range 10—750 MeV. The am-
plitudes M{;. are first calculated in the eigenchannel a
basis directly from the phases. These are then converted
to the spin basis amplitudes,

(S,;mg=v'|M |S,mg=v)=M,,, S=0(=s),1, (A6)

via the expansions

(A7)

(L +2)ME '+ QL + 1)ME, +(L —OME —[(L + 1L +2)1V*MEH, — (L — VL) 2MEL, |,

(A8)
L+2 172 L—1 172
M=V2C 3 "PL(0) \Mi —M[ "+ _L_+_ - | B ME ] , (A9)
T +1 L
, 1 L4 2L+1 0 1. 1
M,_;=C 3 "P}(6 MET — =M+ M
1-1 % 2(6) L1 i LL+1) LL+L LL
— (L + 1L +2)17 VM —[L(L — 1)]“2MLLL—_121 , (A10)
npl L+2 L+1 2L+1 L—1 L—1
= — —e —_— = - M
M(n 1/5.(:'% PL(G) L+1 MLL + L(L+1) LL+ L LL
L+2 2 | L—1
+ | | M | T METL L, (A1)
Mgy =2C 3"P1(0) {(L + DM+ LMET +[(L + 1L +2)1* Mg, +[(L —DLY M J , (A12)
|
where the ""'" indicates two times the sum over even L for NN
. ar scattering, and the """’ "’ two times the sum over odd L for
m _ ’
Pr'(cos6)=sin"0 x ™ Py (cos0) , (A13) NN scattering. Note that for the “nonidentical” p4
scattering, there is no restriction to even or odd L and no
L;: for Stapp NN amplitudes factor of 2. The Coulomb amplitude gets added to the
C= 2ik , (A14)  singlet M° and M;,My, amplitudes.
—17: for pA V or T expansions The A—E amplitudes are calculated as the linear com-
4 binations:
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A=5(M+Myp—M,_,), (A15)
B=5(M;+M +M,;_,), (A16)
C=3(M;—My+M,_,), (A17)
D=1(Mu+M,_—M,;)/2c0s6 , (A18)
E=i(My—My)/V2. (A19)

APPENDIX B: REFERENCE FRAME RELATIONS
WITH SPIN

We consider the scattering of two particles in an arbi-
trary frame of reference
K+B—K'+5’ (B1)

where three-momentum—but not energy—is conserved:

K'=k+d, B'=p—1, (B2)

E(k)+E(p)#E(k')+E(p') . (B3)
P is given by the “optimal” choice [Eq. (2.5)],

Po= —_A—k + %A?—l* : (B4)
We wish to relate these momenta in the c.m.

K+—K—K'+—K'. (BS)

The Aaron, Amado, and Young*® (AAY) prescription is

—

®=Q—akK , (B6)
where
a=a(K,K")= a'ﬁqq , (B7)
Ko[Ko+sin(k, k)]
K =(Ko,K)={[E,(k)+Ex()],K+F5}, (B8)
Q=3[K—B—K(mp—m¥)/su] »
(B9)

=[(34 +1)Kk—(4 —1)k"]/44 ,
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Sin="(k*4p*)?
=2m2+2E,(k)Ex(p)—2KB . (B10)
Similar relations hold for ¥’, e.g.,
a'=a(k",K). (B11)

If all substitutions are now made, we can express K and K’
in the simple forms

K=bK+ck', ©'=b'kK'+c'k, (B12)
34 +1 A—1
= == —_— I= ! Bl
b=b(a) Y a YR b'=b(a’), (B13)
(4—-1) A—1
=c(a)=— - '=c(a’). (Bl4
¢c=cla) ad a YR ¢'=c(a’) (B14)

These relations then permit us to relate the three unit vec-
tors in the NN and pA4 frames

o KXK' s KK o KK
= - = N = = = ’ m= = = =q,
[Kxk’| | kK+Kk’| |K'—K |
(B15)
F=—KXE _ao (B16)
<l
m=—L"K__eof+dom, (B17)
| k'~
I=—Xt5 __ po)fteorm (B18)
|K+K"|
e(@)=1(c'—c+b'—b) | K'+K|/|R'—F&| , (B19)
d@)=5b+b'—c—c)|kK'=k|/|R'—F] , (B20)
fO@=%5(b+b+c+c)|K'+K|/|R'+&], (B21)
gO)=5(c—c'+b'—b) | K'—K | /| R'+K], (B22)

Further study regarding spin transformations with the full
Breit-to-c.m. Wigner spin rotation can be found in the
work of McNeil, Ray, and Wallace.®

*Present address: Departamento de Fisica, Universidad de An-
tioquia, Medellin, Colombia.
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