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Vertex function for pion-deuteron-dibaryon coupling
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We calculate the pion-deuteron 2+ dibaryon vertex function and the influence on ~d elastic
scattering of a strong baryon-baryon interaction in the intermediate state. The general results of our
investigation are the following. Near the hN threshold, the contribution to the md Bz vertex func-
tion is largely dominated by the bN intermediate state. The vertex function falls off rapidly for en-

ergies above the hN threshold. The coupling of a possible 2+ dibaryon resonance at 2.15 GeV to
the md system occurs mainly in an l =1 wave. We evaluate the contributions to n.d helicity scatter-
ing amplitudes due to explicit hN interaction in the intermediate state.

I. INTRODUCTION

The recent investigations on dibaryon resonances have
brought additional motivation to the study of pion deute-
ron processes, where dibaryonic states of appropriate
quantum numbers can be formed. The m-d system pro-
vides a convenient laboratory for investigations about the
existence and properties of dibaryonic states, while, on the
other hand, the properties of these states may become
essential ingredients of the basic m-d three-body calcula-
tions.

Among the dibaryon candidates with isospin 1, the one
with quantum numbers J =2+ and mass 2.15 GeV (Ref.
1) is the most intriguing one, and has had a remarkable in-

fluence in the interpretation of polarized proton experi-
ments. ~ The proximity between the hN threshold and the
mass value attributed to this state makes it difficult to dis-
tinguish between threshold effects and structures expected
to arise from the existence of a resonance. Coupled chan-
nel analyses ' of the NN, b,N, and b,b systems indicate
that this dibaryon state is a true resonance and not an Nb.
threshold effect. The analysis of Ref. 3 also provides the
important information that this dibaryonic state is strong-
ly coupled to the bN channel. Our investigations show
that the influence of a state near b,N threshold is kinemat-
ically enhanced in m.-d scattering, and therefore in this pa-
per we concentrate on this J =2+ state at 2.15 GeV.

The possibility of a strong hN interaction near thresh-
old and its kinematical enhancement shows how impor-
tant hN dynamics may be in the treatment of the m-d sys-
tem. As long as the 5 resonance is not treated indepen-
dently and explicitly in the description of the m-d system,
but only enters therein through its effects on the ~-N in-
teraction, some possibly important contributions of the
b,N interaction are being left out. To recover at least part
of the loss, contributions representing the b,N interaction,
which should account for the formation of dibaryon reso-
nances, must be added directly to the amplitudes obtained
in the three-body calculations of the m.-d system (hereaf-
ter referred to as "background amplitudes" ). In attempts

to improve the description of m.-d data, several papers
have discussed the contributions of dibaryon resonances to
be added to the background three-body amplitudes. In
these attempts, arbitrary point interactions are assumed to
couple the m.-d and the dibaryon systems. The coupling
strengths are chosen so as to fit the experimental data op-
timally. Despite the ad hoc procedure and the arbitrari-
ness of the coupling constants, the success of these at-
ternpts is not impressive.

A dynamical scheme for these couplings is certainly
essential for the progress of our understanding of the in-
fluence of dibaryon resonances on m-d observables. If di-
baryons are states like the deuteron, consisting of two fair-
ly defined baryons, the skeleton diagram of Fig. 1 gives an
adequate description of the coupling of the m-d system to
the dibaryon state. The present work aims at the study of
the consequences of this coupling mechanism, which de-
scribes the pion-deuteron-dibaryon (Bz) vertex in terms of
the deuteron wave function and of the m NN, ~Nh,
NNB2, and N~2 vertices.

In Secs. II—IV we study the rrdB2 vertex function de-
rived from this model. In order to exhibit some major
features determined by the structure of the triangle dia-
gram and by the values of the masses involved, we first
study in Sec. II a model where all particles have realistic
masses, but are treated as scalars. This simple model cal-
culation already shows the important result that the dia-
gram where line 3 of Fig. 1 represents a b, propagator is
strongly enhanced near the hN threshold (ca. 2.17 GeV),
and dominates over the corresponding diagram where line
3 represents a nucleon propagator, by more than one order
of magnitude. We note that this suppression is due to the
D wave coupling of -the two intermediate nucleons to the
dibaryon state. The kinematical effects show also that,
for reasonable magnitudes of their couplings to the hN
and NN systems, other dibaryon states of higher masses
lead to mdB2 vertex functions of smaller magnitudes.
This agrees with the results obtained by Matsuyama and
Yazaki in a different approach.

In Sec. III we develop the complete formalism which
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FIG. 1. Skeleton diagrams for the pion-deuteron-dibaryon

vertex functions, which are evaluated for the J =2+ dibaryonic

state. The diagram with the intermediate 5 state is shown to be

dominant over the diagram with nucleon lines only.

M4NLH

FIG. 2. Skeleton diagram for the contributions to ~d elastic
scattering due to the AN interaction in the intermediate state.

leads to the evaluation of the n.dBz vertex function, where

82 is a J =2+ state, assumed to couple to the AN system

in an S wave. In that section the deuteron is described by
an S- and D-wave function determined by the five-pole fit
of Ref. 8.

In Sec. IV we give the result for the vertex function in
the case where the dibaryon is coupled to a 'D2 two-
nucleon state. Since in the energy range of interest the
contributions of this diagram to the full vertex function
are much smaller than those with an intermediate 5, we

use here only a pure S-wave deuteron wave function.
In Sec. V we study the consequences for elastic ~-d

scattering of the strong b,N interaction in the intermediate
state. The same considerations leading us to the vertex
functions of Secs. II—IV show that the contribution of the
J =2+ dibaryonic interaction can be represented by the
skeleton diagram of Fig. 2. The evaluation of the ampli-
tudes corresponding to this diagram is based on the results
of Sec. III. As explained before, as long as the md interac-
tion is not treated through four-body equations including
the 4 explicitly, these contributions have to be added to
the amplitudes obtained in a conventional three-body cal-
culation of the ~-d system. This procedure does not lead
to a strong violation of unitarity, since the added contri-
butions are comparatively small. We must remark that
the evaluated contributions take into account the full 5-
wave J=2 interaction, independently of the existence of a
dibaryon resonance in this state. However, if the J =2+,
2.15 GeV resonance exists, its influence is enhanced due to
the proximity of the b,N threshold.

The main results of this paper, namely the ndBz vertex.
function and the correction amplitudes to m-d elastic
scattering, are self-contained. Phenomenological applica-
tions to the evaluation of md observables will be presented

I

in a subsequent paper. A first application to the forward
elastic amplitude has already been made.

II. SCALAR MODEL FOR THE
m d8g VERTEX FUNCTION

The present work is based on the assumption that the
dibaryonic states are directly connected mostly to two
three-quark hadronic states, which can be 5's or N's. The
coupling of m-d to the dibaryon system then dominantly
occurs through the skeleton diagram of Fig. 1, and Bz for-
mation takes place after absorption of the pion by one of
the nucleons. If the dibaryon mass happens to be near the
threshold for one of the directly coupled channels, thresh-
old effects implied by the diagram (generalized unitarity)
become particularly important. The characteristic energy
dependence caused by these threshold effects is superim-
posed to the energy dependence induced by the resonance
formation (the Breit-Wigner form, e.g.). In this section we
wish to exhibit these threshold effects in a neat way,
without complications arising from spin variables, and
therefore we present the results of a simplified calculation
of the triangle diagram in which all particles are scalar.
We are thus able to discuss separately some important
characteristic features of our treatment of the mdBz ver-

tex. In the following sections we present the complete and
realistic calculation.

We write the amplitude as a sum of two parts,

(2.1)

where the last superscript indicates the nature of the
baryon which is produced after pion absorption (the line
with momentum q3 in Fig. 1).

In the nucleon case we obtain

~ 3

2mN 2mN 2mN
. &(qi+q~ qd q~+q —q3, —

q&
—mN+iE q2 —mN+iE q3 mN+lE

(2.2)

where qd and q„denote the "deuteron" and pion four-
momenta, respectively; s is the Mandelstam variable
s =(q +qd); and the quantities I (q f,qz),
r (qp q3), and I (q&, q3) represent the dNN,nNN 2 2 —NNB~

m.NN, and NNB2 vertex functions, respectively. We take
care of the fact that the dibaryon in the realistic case is

—NNB~ NNBg 2 2
(q&, q3)=&z(cos8&)r '(q~, q3), (2.3)

where cos8& is the angle between q~ and a fixed axis (later
to be identified with the direction of pion momentum) in

coupled to the two nucleons in a D state, and therefore
make for the NNBq vertex function the ansatz
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the 82 rest frame. P2(cos8) is the second order Legendre
polynomial. It turns out that this angular dependence,
which comes out automatically in the realistic case, leads
to a strong suppression of the md82 vertex with an inter-
mediate nucleon. The evaluation of Eq. (2.2) is done using

dispersion techniques. ' The nearest singularity is given
by the singularities of the propagators corresponding to
lines 2 and 3 in Fig. 1. %e neglect the more distant singu-
larities due to the momentum dependence of the vertex
functions. The absorptive part is then written

3
&bsM ' (s)= —.

4 (2rri)'(2m„)'
2i (2~)'

Vd
—9] I Qd

—O'I 9'd —g I +g~

[ql {qd ql+q ) ]@qi™N)8{qio+[(qd—qi+q ) —mN]

1
X8(qdo —qio+q~)P2(cos8i) 2

(qd —qi ) —m N +Ec

For the demonstrative purpose of this section we take as
an ansatz that the dNN vertex is determined by the pure
S-wave Hulthen wave function. We thus write I qd1 =

I q. 1

{2.5a)

where for I d we chose, for easier comparison with the
realistic case, the constant

3
-1/2

2m.ap(a+ p)'

1
I[& —(md+m ) ] [s —(md —m )i]) (2.7)

is tlM ceiitei' of mass momentum of the ~-d system.
hat

1 qd1 is imaginary for 4m N &z ~ {md+m )2.
The quantities Ap, A I, and 8 are determined by

Ap ——m d
—2EdE(,2

a =[m„(2m„—md)]'~', p= 7a

Since the nearest singularity of & (m N, q2) i»oca«d
at q2 =(mN+m~), this vertex fuilc'tloil cail be appi'oxl-
mated by its on-shell value I . The 5 distributions in
the integrand of Eq. (2.4) restrict the contributions of

Ai ——Ao —2(p —a ),
~ =21qd1

I qi I

Ed (s+m——d
—m )

1 2 2

2 s

(2.8a)

(2 8b)

[qi (qd —qi+q ) ]
NN82to its on-mass shell value I

The absorptive part of the nucleon case can now be
evaluated expllcltly yleld1ng

~bsM '"(s)=r "Nr ""~bsMN(s), {2.6a)

is the deuteron energy in the md c.m. system and 1q, 1

and E] take the values

{2.8c)

The full amplitude is given by

2' (s) P1PNNF 2[ D' M N(

AbsM (s)= —(2m&)N 3

64 (P' — ') 1q, 1v&
+i AbsM (s)], (2.9a)

where the dispersive part is given by the principal value
integral

Ap Ap+8 Ap
& 'I'2 log' 8 'A. -B '8 l y~ AbsMN(s') d,

4mN S —S2 I (2.9b)

y, 8(s —4mN), (2.6b)

mdB2, h,In the evaluation of the amplitude M ' for the dia-
gram with an internal 5 particle, we follow the same lines
as in the nucleon case. We approximate the effects of the
6 unstability by using a propagator with a complex pole.
We thus write
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rdNN( 2 2 )rn'Na( 2 2 )r 2( 2 2
)

M '()= d d d (2 )2 91~92 92~93 9'1~93
4 0& 92(2~)' (q i —m N+i &)(q2 —m N+ le)(q3 —m g+ lmpl a)

&@qi+q2 —qa)(3(q2+q —q3» (2.10)

where m~ and I ~ are the 6 mass and width, xespectively. Here we have taken an S-wave NL82 coupling.
As for the nucleon case, we take into account only the absorptive contributions due to the singularities of the propaga-

tors for lines 2 and 3 in Fig. 1. We cut the imaginary part of the 6 propagator at the N-~ threshold, i.e., we use for the
imaginary part of the b, propagator the expression

2 2 mgI g
e[q3 (mN+m~) ]

(q3 —ma) +myra

Then,

(2.11)

AbsM ' (s)= —.
q (2ni)(2mN) 2m'

2i (2m. )'
2iI ()m)) 8[(qg —qi+q~) —(mN+m~) ]

d q, 5(qi —mN) 2 2 2 2 2
[(qs —qi+q ) —ma] +mary

r' [q'„(q,—q, )']r" [(q —q )'(q —q +q )']r" '[q' (q q+q —)']
X 0(qio)

(qg —qi ) —m N

I pm'/m
. (2mN) 2m)i ~ (27ri ) 2dp

(27r) (mN+m~) (p —m g ) + I gm g

8 g) gg —g1+g~ —p $1 —PPlN 8 g)p

rdNN[m 2
(q q )2]r1rNA[(q q )2 pz]

X 2 2
(qg —qi )

NA$2Xl '(mN, p ) . (2.12)

An auxiliary variaMc p has bccn 1ntiodUccd 1n thc 1ast
part of Eq. (2.12) through the identity

&[(qs —q)+q~)' —(mN+m~)2]

AbsM (s) = «(P' — ') ~q, ~v-.

I amp/m.

(mN+m ) (p m~) +m~ra

=
J( )2dp &[p (qa —q)+q ) ]— (2.13)

Ap+8
X 1n

Ap —8

rnNE rnNK(m2 m2 )/PEN, Pl g

NhB2 NhB2( 2 2
)

(2.14)

Performing the integrations over q i, we obtain

AbsM ' (s)=r "'r 'AbsM'(s)

with

(2.15a)

We ag»n use Eq. (2.5) to fix the form of I ~NN[mN2,

(qq —qi ) ], and approximate r"N~[(qs —q, }2,p2]
I '(m N, p ) by their "on-shell values, "NM2

(2.15b)

The functions Ao, A» and 8 are defined by Eq. (2.8), but
for Zi and qi in the intermeidate b, case we have

S +Pl
2&s

(2.16)

The upper hmit in the p integration is due to the fact
that for fixed p the absorptive part starts at
s =(mN+p) . We observe that the above integral
represents a smearing over the 6 mass distribution. The
integration over p is performed numerically. The full
amplitude is again written as
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M ' (s) =1 I '[ DispM (s)

+i AbsM (s)], (2.17a)

with

DispM~(s)= —g, , ds'. (2.17b)
00 AbsM (s')

77 (2mN+ m~) S —S

(2.3)] of the nucleons to the dibaryonic state.
(2) Figure 4 shows a strong enhancement of the ampli-

tude for the b, case near the b,N threshold. Since the
J =2+ dibaryon candidate has a mass value resting in
this region, we can predict that dibaryon resonances with
higher masses would be more weakly coupled to the m.d
channel.

III. THE mdBp VERTEX FUNCTION:
INTERMEDIATE 5, CONTRIBUTION

We now perform the complete calculation of the vertex
function, taking into account the spin variables and using
a complete and more accurate wave function for the deute-
ron. Since, in the energy range of our interest, the contri-
bution of the diagram with an internal 6 line is much
more important, we start with the treatment of this case.

The amplitude for the diagram in Fig. 1 is written (dou-
bly occurring indices are to be summed aver) as follows:

In Figs. 3 and 4 we display the absorptive and dispersive

parts of M (s) and M (s).
We now note the main features of the vertex functions,

which will not be essentially modified in the next section,
when more realistic wave functions are used and spin vari-
ables included.

(1) The contribution with an internal nucleon line is
suppressed, as compared to the contribution with an inter-
nal delta line, by more than an order of magnitude in the
energy region of our interest, i.e., s=(mN+m~) . This
suppression is mainly due to the D wave co-upling [see Eq.

I

~~2~& l 4 sg~A, dNN
~ 3 rp'«q~ ONE, J & ei4

' ~i:.a~ei, qd VlI g 2 . ~y:Sl~qd 'Pl'ld qi+q. ~

(2m ) (qz —q&) —mN+iE

&R(qd —qi+q ) X~~(q ] ) NEB~ po', sg
X ~...~(qi q. qi+q )—& ''

(qd —q&+q ) —m~+imqP~ q&
—mN+is

(3.1)

0.020—

(Gev)

(GIV)

O.OI 5
0.2—

0.0 l0—
Q. I

0.00 5
I I

s (Gev~)

Disp M

I

9
(GeV )

FIG. 3. Absorptive and dispersive parts of the vertex func-
tion in the scalar model calculation for the diagram of Fig. 1

with nucleon lines only. The plotted quantities are defined
through Eqs. (2.6)—(2.9).

-0 i—

FIG. 4. Absorptive and dispersive parts of the vertex func-

tion in the scalar model calculation for the diagram of Fig. 1

with a 6 resonance in line 3. The plotted quantities are defined

through Eqs. (2.15)—(2.17).
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where g represents the deuteron polarization vector; Xrp(q& ) and A,'g(q3) are the usual numerators of the spin —,
'

and
3 ~ dNN ~NWpropagators, respectively; while I,I, and 1 ' are the reduced dNN, AND„and N~z vertex functions,

respectively. These vertex functions are related to the corresponding full vertex amplitudes through

dNN dNN Sd, A,

M....,,, (q~, qz)=1"~. p(q&, q2)u (q&)u p(qz)g

eNh, mNh, @$3 '2
M*,*, (qz q2+q )=I',;s,(q2 q2+q. )us (q2+q )u, (qz),

NM2 S) &$3 p~ S~
M...,.,' (q),q3)=l p

.,~(q),q3)u„ (q))u, (q3)&

Here u' (q) is a Dirac spinor, u~s'(q) is a spin —, Rarita-Schwinger spinor, and R~ "represents the polarization tensor of
a spin-2 particle. In each of these cases the superscript s denotes the magnetic spin quantum number.

md82, 5
We express M...' (s) in terms of the full vertex amplitudes, which are assumed to vary slowly when extended off

their mass shells. For this purpose we use the relations

+1/2
X p(q)=2mN g u'(q)u p(q), (3.3a)

S =—). /2

+3/2
A"p(q) =2m', g u f(q)u p (q) . (3.3b)

S = —3/2

We then combine the spinors with the vertex functions to form the invariant amplitudes, and obtain

M, , ' (s)= (2mN) 2m'(2~)'

4 dNN m'Nh NET~d ql y Ms s s (ql~qd ql)MS s (qd qliqd ql+q1r)~s | 5 (q|~qd ql+qlr)

1

(q) mw+—ie)[(qd q)) —mN+—ie] [(qd -q)+—q ) md+iI —dms)
(3.4)

Similarly as in the preceding section, we take into account only the absorptive contribution of the singularities due to
the internal Ones 1 and 3. We then obtain

i3 (2ni)
AbsM, , ' (s) = — (2mN) 2m'sdss 2. (2 )4, N

I dms/nxf
(ItlN+ttl~) (p —m a ) + I am a

X d'q q' ™'eq6q-q+q-'-p'
(qd —q) ) —m N

sd;s, s~(qi ~qd —
q1 )Ms2s, (qd —q'1 ~rqd —qt +q~)~dNN m'Nh

$)Sp$3

NM2
&&Ms, s, ;s~(qi qd —qt+q~) . (3.5)

We extract M a(qd —q&, qd —q&+q ) from the integral at the values (qd —q&) =mN and p =ma and then introduce
explicit expressions for the vertex amplitudes. For the dNN vertex amplitude we use a generalization of the Hulthen
wave function including S and D waves:

r

M. ..,, [mN, (qd —q~) )=7 ' E,[(qd —q&) ](o"g ')

+ +D[(qd-qi) ) —-(- g ') X'(o"q ')(q '
g ')

~ -sd s
(3.6)

Here all three-vectors refer to the deuteron rest frame, with q
' representing the nucleon momentum.

The m NA coupling is of the form
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M, , (mN, md. )=g~Nd( —,'1;T2T
~

—,'1;—,
' T3) g ( —,'1;s's"

~

—,'1;—2s3)X'X '(g q+) .
$$

(3.7)

Here the three-vectors refer to the rest frame of the b, . The quantities T1, T, and T3 are the third components of the

N, ~, and 6 isospins, respectively. The Nh coupling to a S2, I=1 state is written as

3, a(mN mQ) gNaB2( 2 2 T1T3
~ T 2 ITB)+4/3Q ( 1 1 ss

~ g 1 gs3&[&"(—ia2)trkx']pl ~kl
SISII

(3.8)

where now the vectors refer to the hard rest frame. The factor &4/3 is introduced for convenience; Rkl is a traceless sym-
metric 3 &&3 tensor describing a spin-2 particle in its rest frame. We observe that, due to the spin 2 of the dibaryon state,
only the spin —', part of the product X'gl contributes, and therefore the Clebsch-Gordan coefficients in (3.7) and (3.8)
can be ignored when the spin sums are performed.

Performing the spin and isospin summations in Eq. (3.5), we obtain

i (2n.i)
AbsM, , '(s)= — (2mN) 2m'» (2m. )'

00

I"amp�/m

X z"~ 2 2 21~N+~~1 (p —ma) +I d,mg
2 2

5(q1 —m N) 2 2 4d ql 2 2 @qlp)~[(qd q1 +quar) 8 ]gwNagNaB2 Y~kl
(q.—q1)' —m N

F,((q —q1)') — FD((qd —qt )') (q+ )kg'I'

Sd

+ FD«qd —q1)') (q')kql (3.9)

We must remember that q
+ is the pion momentum in the b rest frame, while q

' is the nucleon momentum 1n the

deuteron rest frame.
Convenient expressions for Fz and Fz are given by the pole fit of McGee, namely,

n

Fs(q')= —Nd g, , (q' —mN),
g

og'

m; =mN+2(P'; —Pp),

Pp
——a, cp ——1, (3.10a)

16m
d

md k l —Q pk+pl

FD(q ) = pNd Q —2, 3 (q —m N),
0 9' —ms

(3.10b)

m =mN+2(p, ' —po), cI1 =1 .

Numerical values for c;, c, p;, p,', and p from Ref. 8 are given in Table I.
We insert these expressions for Fs and FD into Eq. (3.9), perform the integration over qlo and

~ q1 I
» the ~-d c m.

system, and obtain

TABLE I. Parameters of the McGee wave function. pp
——pp

——0.04613 GeV, cp ——cp ——1;p =0.0269.

S state D state

5.733Pp
12.844Pp
17.331Pp
19.643Pp

—0.63608
—6.6150
15.2162

—8.9651
0.0

4.833Pp
10.447Pp
14.506Pp
16.868Pp
21.154Pp

—20.34
—36.60

—123.02
305.11

—126.16



i ( —2vri)
AbsM, , (s)= —. -(2mN) 2m', —,g Nggwgs

(2m )

mal g/m
I qi I1

(hatt N + Pl ~) (p —m g ) +m a I i 4ll' g

X fdQ ( —+d)g,
;=0 (md~mN —m; )—2EiEs~2I qillqdl cos8

~2 (md+m~ —m )—2EiE.+2 I qillqdl cos8

&&(q+ )kki" +
2 (m d ~m N

—mi' ) —2E i Ed ~2
I q, I I q d I

cos8

(3.11)

(&+mN —v'»
I qi I

=«i —mN)"'
2 5

Ed = (s +md —m~), I qd I
=(Ed —md)

2 s

(3.12)

Since we are interested in a kinetic energy region which is small compared to the nucleon mass, we may safely use
Galilei transformations between the different frames of Eqs. (3.7) and (3.8), i.e., we may use

(3.13a)

Inserting these relations into Eq. (3.11), we obtain six different types of angular integrals. We write

%682 (~$ —
NIN) I ~mi /~ 6

&bsMs, s (s)= 3g~NagNm —Rki', dp z 2 z 2 2 g ~ki(p»)
(lllN+1tl~) (p —mi„) +m g I g

with

~ki(V'»)=~(q )kki' Q c- f
0 3 +8cos8

z 2
E s„& qtkBd cos8k" gc;

O AI' +8 COSH

(q.)kki'pc f
0 3j +8 COSI9

2 & E ~, &, qikBdcos8
~~xi(u'») =I' k'

0 A; +Bcos8

(3.15)

ski(p»)=p ~ (q )k g c f
i=O

-+g

2
Bd cos8

Pd

2 l

[A; ~Bcos8] [A'+B'cos8]

~ii(p»)=~ g c f2Ea, 0'

qd qd pd
2 f 2

[A; +Bcos8].[A'+B'cos8]
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In the above expression insert

1P =NdmgmN
s

I qual

2; =md+mN —2EdE) —m;,S 2 2 2

=m d +Nl N
—2EdE (

—mD 2 2 & 2

8 =21 q, I I qd I, 8'= —8/2,
A'=

I q) I
'+

4 I qd I

'

E~/Ea ——(s+m~ m—d)/(s+m~ —p~) .

(3.16)

~k) is by far the most important of these terms. Wk) reflects the influence of the Fermi motion on the n.NZ coupling,
and ~kl» ~kl» ~kl» ~kl a«proportional to the D-state admixture of the deuteron. After having performed the angular
integrations, the absorptive part takes the form

AbsM (s)= 3g~N&gN~ 2RkI AbsM ' (s)(rI~)kf& +AbsM ' (s) (q ~ g ) (3.17a)

where we have introduced the two independent vertex functions M '(s) and M ' (s) for the b, diagram Th.ey are given

by
(Ws —»»»N)~ 1"am ~/~

AbsM 'J(s)= ——,
' I,dp z z z GJ(p, s), j=1,2,

(»»»+N»»» ) (p —m g) +f gm g

With

G'(p~, g) =I' g c;Ip(A;, 8)— c Ip(A;, 8)+ D
—+—

I q) I

p 3p 2C ) ) E

(3.17b)

X [ Ig(A» 8)+Ip(A—»,B)+Ip(A ' 8') —Ip(A ',8')]

c;I)(A;,8)—+ c I)(A»»8)+ —

D I q) I

X [I3(A;,8)—I) (A;,8)—I3(A', 8')+I)(A', 8')] ~ (3.18)

and

G&(p& s)—P
I q I g ', —,

' [Ip(A~, B)—Ip(A', 8')]+ 1+

y [3Ip(A;,8)—Ip(A;, 8)—3Ip(A', 8')+Ip(A', 8')]

D1+— [I,(A;,8)—I)(A» )]

+ —[—5I3(A;,8)+3I) (A;,8)+5I3 (A ',8') —3I3(A '8') ] . (3.19)

The expressions

Ip(A, B)=log, I) (A, B)=2 ——Ip(A, B),A+B A

A —8 ' ' B

I,(A,B)= —,I,(A,B)—2

3
A

I3(A,B)= —— Ip(A, B)+2 (3.20)

result from the angular integrations. The integrations over )M are peformed numerically.
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Finally we obtain for the full vertex amplitude with an intermediate 5

md82', 4 4 sa a I sd a 2 (q&s)k(q&s)l
Ms, s (s)=2Tg NagNRS &kl, M ' (»(e )kk +M ' (s) (q g ') I. (3.21)

M 'l(s) consists of absorptive and dispersive parts,

M '(s)=DispM '(s)+iAbsM '(s) j=12 (3.22R)

CO Ab Mal '
(3.22b)

(2m&+m ) $ —g

In Figs. 5 and 6 we display the absorptive and dispersive parts of M '(s) and M ' (s). In the energy region of interest
the amplitude Ma'(s) is larger than M ' (s) by an order of magnitude. This implies that the coupling of 82 to an l = 1
Ir-d wave is much larger than the coupling to the l =3 2r-d wave.

IV. THE md82 VERTEX FUNCTION: INTERMEDIATE N INTRIBUTION

In this section we present the mdB2 vertex function for the case where line 3 in diagram 1 is a nucleon line. Since this
amplitude is strongly suppressed kinematically, we give the results for a pure S-wave deuteron wave function. The ex-
pression corresponding to Eq. (3A) is now

$)$2$3

m'NN NNBXMs s (9a 9»Cd W—I+9»)M—s s .s (VI&fd VI+9~)—

I

(It I
—III N+I c)[(la—Ci ) —III N+I a]'[(Vd —9i+I ) —III N+I el

(4.1)

Here we are interested in the coupling of the two nucleons in a D2 state; hence, we use

NN82 1 1, 1. $) . $3 $~
Msiss'ss ( 11&93) gNNII2 ( 2 2 & Ti T2 I 2 2 & 1TB )P ( I ~2)~ lmel~kl (4.2)

where q is the momentum of a nucleon in the NN c.m.
fIR111c; Rkl Is thc polRrlzRtloll tcIlsol' of R sp111 2 particle;
and TI, T3, and TII denote the isospin components of the
two nucleons and of Bz, respectively.

With similar approximations and algebraic manipula-
tions as for the intermediate b, contribution, we obtain at
the end

S
gNNa

(e )k(e )I

I q-I'

s (GGV~)

with

AbsMN(s) =—.P8(s —4m 2N)
2i

X g c;[3I2(318)—Io(A;,j)] . (4.3b)

FICx. 5. Representation of the part of the vertex function for
the diagram with an intermediate 6 resonance which corre-
sponds mainly to I'-wave coupling of the md system. The plot-
ted quantities are defined through Eqs. (3.21) and (3.22).

The quantity g NN is the usual mNN coupling constant;
the other quantities are defined as in the preceding sec-
tion, except for
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O. OI0—

tGeV)

0-00 5

AbsM~ '

4m~ g —g

The quantities AbsM (s) and DispM (s) have practi-
cally the same values as AbsM (s) and DispM (s) of
Sec. II. Their general behavior can be observed in Fig. 3.
%'e stress that the large suppression of the nucleon graph
as compared to the 5 graph is mainly due to the angular
integrations implied by the D2 coupling of the two inter-
mediate nucleons to the J =2+ dibaryon state. Due to
this effect, the D-wave part of the deuteron wave function
may become more significant for the case of two internal
nucleons than it is for the case with intermediate A.

V. CONTRIBUTIONS TO m-d AMPLITUDES

-0.0 0 5

El ~s~2,
I qj I

=(Et —IN

8=m~
2~~ qd~~s

Ag ——m d
—2E)Ed —2(p —po)

2 2 2

&=2
I qdI I qt I

The full amplitude is given by

(4.4)

s N $~ gm.NN Ss,s (s) Rkl 2 gNNB ~Nd' 8 2@i~ 4

(4.5)

where

M (s) =DispM (s)+i AbsM+(s), (4.6a)

FIG. 6. Representation of the part of the vertex function for
the diagram with intermediate 6 line which corresponds to F-
wave coupling of the m.d system. The plotted quantities are de-
fined through Eqs. (3.21) and (3.22). Notice the difference in
scales between Figs. 5 and 6.

As a consequence of the preceding discussion, we can
expect that the intermediate state AN interaction notice-
ably affects the md amplitudes and consequently the md

observables. In particular, dibaryonic resonant states cou-
pled to the hN system may be observed through their ef-
fects on the intermediate state in md scattering. The con-
tribution of the AN interaction to the elastic md scattering
amplitudes is mainly determined by the skeleton diagram
of Fig. 2. In treatments which deal with the ~-d system
as a system of coupled md, NN~, and NN channels, the b.
particle is not fully treated. Therefore a strong b,N in-
teraction, which is suggested by the analysis of Refs. 3
and 4, is not properly taken care of in the existing calcula-
tions, and therefore the contribution of diagram 2 should
be added to the background amplitudes evaluated in the
conventional treatments.

As shown in the preceding sections, at intermediate en-
ergies the contributions of triangular diagrams with inter-
nal nucleon lines coupled to a J =2+ state are strongly
suppressed. Their effects could therefore be neglected in a
fair approximation to m-d scattering at these energies.
Therefore the inclusion of the 2+ resonance of two nu-
cleons in the three-body treatment of m-d scattering will
not give rise to significant signals of their presence. Ob-
servable dibaryon signals, however, may arise from a 5-N
interaction. This results from the enhancement of the b
graph near the AN threshold, which is clearly shown in
Fig. 5.

A crucial input to the a-d amplitude corresponding to
the diagram in Fig. 2 is the matrix element describing the
hN interaction in the S-wave J=2, I =1 state, which we
write as

M, , (s)= g .Rk, g [(1—,';ss
~

1 —,; —,sa)[X'( iopok)X g—( ]Rk(
s

$g $$

I

)& g [(1—,';s"s"'
~

1 —,'; —,'sa)[X' (okioz)X ]g ] .M (s) .
ss sit

The notation is as in Fq. (3.8), with sums over k, k', i, I' indices assumed. The quantity M (s) is related to the b,N par-

tial wave amplitude T~~ through
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with

mNrng 2
l q~ l

(5.2a)

TI =i =o(s) = —(n.~e
1 2 2i5~

L

where q~ is the c.m. momentum of the hN system.
We evaluate the matrix element corresponding to Fig. 2 with a b,N interaction in a S2, I =1 state. We then find

products of expressions already obtained for the vertex functions in Sec. III. The result is

(e )k(e )IMm'1', n'd'a(
) = g MEN(s) g ~ R s

( ) g 1M''1(s)+ME'2(s) ( ' g d)

Rk ) (q' )k g( 'M '(s)+(g 'q '
) M (s) (5.3)

where q~ and q ~ are the n. momentum in the c.m. frame in the initial and final states, respectively.
We sum over the 3-components of the spins of the J=2+ amplitude, using the following normalization for the polari-

zation tensor:

S~ S~ 2g Rkl Rk'I' Skk'~!I'+'4l'~k'I 3 ~kl~k'I' i

Sg

and obtain

(5.4)

I 1

M ' ' (s)= 9 g'N~M "(s) (q .q„')(g 'g ")(M '(s))'+(g 'q )(q' g ')(M '(s))'
SgSg

/

——, (g 'q' )(q .g ')[M '(s)+M ' (s)] +2(g 'q '
)(q g ') (Ma ~(s))~

I

+2l:(E 'q.')(q.' 4 ')+(4 'q. )(q. 0 ")l ", M"(s)M"(s)
l q- I

' (5.5)

For the evaluation of md observables we require the contributions of this matrix element to the helicity scattering am-
plitudes fk k(8), where A, , A, represent the final and initial helicity, respectively, and 8 is the scattering angle in the c.m.
frame. These contributions are the following:

f++(8)—— &+ IM,",; ' (s)
I + &

= g'N~M (s)
I q. I

'(M '(s))'d'„(8),
8m s Ci Ci 9m s

f~(8)= &O
l M,",;"'(.) la& = g'.N,M' (s)

l q. l'-', (M"(s)+M"(s))'dm(8),
817 s 9~ s

f+ (8)= &+ lM, ",, " (s)
l

—&= g'NaM (s)
l q l'(M '(s))2d' „(8),

8m s SgSg 9m s

f o(8)= &+ lM, ", " (s) lo&= g' M (s)
l q l' M '(s)(M '(s)+M"(s))d,', (8) .

Sm s SgS g 9m s 3

(5.6)

We have thus given expressions for the corrections, due
to the hN interaction in the intermediate 7 =2 state, to
the helicity scattering amplitudes of md elastic scattering
in terms of known quantities and of the Sz, I= 1, bN
partial amplitude. We stress that the results expressed by
Eqs. (5.6) are independent of assumptions about the ex-
istence of a J =2+ dibaryon resonance, which would
enter through a specific structure to be given to the quan-

tity Ma (s). With these expressions at hand we may test
the consistency between the coupled channel analyses
which determine M (s) and the hard scattering data.
These applications require further investigation.
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