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Dirac single-particle wave functions in inelastic electron scattering
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We formulate inelastic electron scattering using Dirac single-particle wave functions to describe
the nuclear states. The lower components of these wave functions are much larger than those ob-

tained assuming a free space relation with the upper component taken to be a Schrodinger single-

particle wave function. We note that the impulse approximation to the nuclear current operator is

ambiguous in the present case. However, one of the two possible forms yields an explicitly con-
served current in the single particle limit. We identify an inelastic amplitude which is linear in the
lower components and is therefore very sensitive to the "relativity" of the bound nucleons. This
amplitude is found to be dominant for transverse isoscalar transitions.

I. INTRODUCTION

Electron scattering has long been recognized as one of
the most important probes of nuclear structure. Because
the fundamental interaction (one photon exchange) is
presumably well understood, one can focus on the nuclear
structure aspects of the problem without complications
arising from uncertainties in the reaction mechanism. In
addition to providing valuable nuclear structure informa-
tion itself, electron scattering also serves as a means of
calibrating more versatile probes (such as hadrons) whose
fundamental interactions are less well understood.

The standard formulation of electron scattering is, at
the outset, relativistic. The electron-nucleus S matrix is
proportional to

where j", is the electron four current and

Jj";—Id r exp( i q r ) (f ~ y—J"
~

i )

is the nuclear transition four current. The nuclear wave
functions in Eq. (2) are implicitly Dirac spinors consisting
of upper and lower components. Almost without excep-
tion in the existing literature, the upper component is tak-
en to be a standard Schrodinger wave function and the
lower component is obtained by assuming the free space
relation between upper and lower components. The rela-
tivistic modifications of the nuclear wave functions due to
the nuclear potentials are generally treated (if at all) by
calculating corrections in powers of u/c. Since the po-
tential energies encountered in the usual Schrodinger
treatment of nuclear bound states are small on the scale of
the nuclear mass, the corrections are also small and can be
treated in powers of u/c.

Recently a new approach to the nucleon-nucleus in-
teraction based on the use of the Dirac equation has been

developed. This approach has provided a very appealing
description of infinite nuclear matter ' as well as finite
nuclei using the Dirac-Hartree ' or Dirac-Hartree-Fock
methods. Proton-nucleus elastic scattering has also been
shown' "to be very well described via the Dirac impulse
approximation. ' All of these treatments are character-
ized by the fact that nucleons interact with nuclei (or,
more generally, nuclear matter) via scalar and timelike
vector potentials with strengths on the order of the nu-
cleon mass. This implies that the nucleon-nucleus prob-
lem is fundamentally relativistic and that it cannot effec-
tively be treated via v/c corrections.

The upper components of Dirac single particle wave
functions are generally quite similar to the corresponding
Schrodinger wave functions. However, the lower com-
ponents of the Dirac wave function are quite different
from those obtained from the Schrodinger wave function
(assuming the free space relation between upper and lower
components). Since the lower components of nuclear
bound state wave functions appear explicitly in electron-
nucleus inelastic scattering, it is of interest to formulate
the problem using Dirac wave functions and to identify
quantities which directly reflect the properties of the
lower components and, hence, might be very different in
the Dirac and Schrodinger approaches.

Miller' and Serot' have investigated the role of Dirac
wave functions in exclusive electron-nucleus elastic
scattering. Miller restricted his inquiry to elastic scatter-
ing from spherically symmetric spin-zero nuclei and
found only very small relativistic effects. Serot'4 exam-
ined the consequences of using a Dirac 1 h9&2 proton sin-
gle particle wave function in calculating the magnetic
contribution to e + Bi elastic scattering. He found
large differences between Dirac and Schrodinger calcula-
tions, but unfortunately these differences occur only in a
region of momentum transfer where no data exist.

In the present work, we present the first calculations of
inelastic electron scattering form factors employing Dirac
single particle wave functions. As will be seen below, the
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extension to inelastic scattering allows us to identify vari-
ous types of transitions sensitive to several different as-
pects of the calculations. Furthermore, reasonable experi-
mental data exist for such transitions in just the range of
momentum transfer where such differences are appreci-
able.

II. THE NUCI EAR CURRENT OPERATOR

%'e wish to evaluate thc nuclear transition current of
Eq. (2) using initial and final nuclear wave functions ex-
panded in a Dirac shell model basis. Assuming J"to be a
s1ngle particle operator, we write

' 1/2
2'+ I J J.

&f I
y'J"

I
( &

= &Jfltdf I
y'J'I JI; & = X~—JJM™

I Jf~z)X —
~~(ff'(, )&4(,. l I I &(,{y'J")II(, &2J+1

where (y J")J is the Jth multipole of e '«'"yoJ('. The
usual one-body spectroscopic amplitude is defined by

~J((,'j; )= & .(tJI I I I A, f(((,b.(',. bj i, &

u„(((r)Y(j~(r )

iw„(((r)Y(( (r)

Y(, (r")= f Y((r")Xi)2]; (8)

and where l'=l+1 for j=l+ —,'. Using Eq. (6), we find
that the radial piece of the large component, u, is related
to that of the lower component, w, by

1 d
w„(((r)= 5'(r)+M(r) dr

KIj
u„(((r),r

l for j=l+ —,
'

KIJ = —l —1 for j=l——,
' .

(10)

In the preceding we have used

and where the g( are Dirac single particle bound state
wave functions, with (2 and b being the associated parti-
de and hole creation operators, respectively. We use the
gamma matrix notation of Ref. 15 and the following
definition of the reduced matrix element:

& pJfM, I Tx« I p~, M, &

=(J,rem, q I Jfmf &(q,,III', .T I,, & . (5)

The single particle wave functions are assumed to be
time-independent solutions of

[p —m S(r) —yV(—r) jP„( (r)=0,
where S and V are (real) scalar and timelike vector poten-
tials. These wave functions then have the form

I

standard nonrelativistic formulations of electron scatter-
ing, the Schrodinger wave function is identified with the
upper component of a Dirac wave function and the lower
component is obtained from it via the relation

t

(Sch)
w„(, (r)= E+I dr

(( (Sch)(
)

r Q~I) r

which follows from the free Dirac equation. To the ex-
tent that the large components of our Dirac single particle
wave functions can be identified with the usual
Schrodinger wave functions, the main difference between
our relativistic treatment and standard formulations lies
in the nature of the small components. Comparing Eqs.
(9) and (12), we find

(Dir)( )
E +I (Sch)( )E+m —V{r)+S(r)

In most relativistic models, V= + 350 MCV and
S=—450 MeV in the nuclear interior. ' Therefore, the
lower components of the Dirac wave functions are
enhanced by a factor of about 1.7 in the nuclear interior.
This is a direct consequence of the large potentials which
characterize the 111odcl and 1s d1rcctly rclatcd to thc IHRg-

nitude of the nucleon-nucleus spin-orbit potential. In
fact, this enhancement of the lower components also im-

phes an enhancement of the nucleon-nucleus spin-orbit in-
teraction in the nuclear interior and has been shown to be
partly responsible for the success of the Dirac impulse ap-
proximation for proton-nucleus elastic scattering men-
tioned above. ""

Before going further, we must decide on the form of the
nucleon current operator. Since we do not have a com-
plete relativistic quantum field theory of nuclear structure
for which a consistent, conserved electromagnetic current
can be identified, we use the impulse approximation and
take J(' to be the free nucleon current operator. In the
present case, however, even the impulse approximation is
an ambiguous pl cscr1pt1on. Thc RIIlb1gulty Rr1scs be-
cause the free nucleon matrix elements of the free current
operator can be written, using the Gordon decomposition,
in two equivalent forms which are both consistent with
the notion of minimal coupling. Specifically„we have' '

5'(r)=E —V(r),

M(r) —=m+S(r),

J"{1)=F)(q)y"+ F2(q )a" q„,
2m

J "(2)=F3(q )y"+aF'i(q )Q", (15)

where E is the asymptotic total energy of the bound nu-

cleon and m is the free nucleon rest mass. Note that, in
where Fi and Fz are the usual free nucleon form factors,
x is the nuclear anomalous magnetic moment, and where
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F3 F—, +aF3 and Fi
—— ~F3/(2 m) .Also, we have used

qt =(pf p—; )t' and Q"=(pf +p; )I', where p; (pf ) is the in-
itial (final) nucleon four-momentum. The equality

u (pf, sf )J"(1)u (p;,s; ) = u (pf,sf )J"(2)u (p;,s; ) (16)

QfJ"(1)g;&ffJ"(2)g (18)

in general. We can use a generalized Gordon decomposi-
tion (see Appendix A) to recast the transition current
given by J&(2) so as to facilitate comparison of the two
currents. Assuming the initial and final (real) bound state
potentials to be equal (Sf,——S;, Vf ——V;; see Appendix A),
we find

PfJt'(2)P;=gfF(q )I [1 zS(r)/m—]y"

zV(r)/mP' —+isn't'"q, /(2m)]g;,

(19)

obtained by the Gordon decomposition depends on the
fact that the free spinors satisfy the free Dirac equation,
viz. ,

(p rn—)u(p, s) =0 .

Since our single particle wave functions instead satisfy
Eq. (6), we have the inequality,

The two currents become equal in the limits S =0, V =0,
or ~=0, as we expect. In Appendix A, we show that,
again assuming initial and final state potentials to be
equal, the transition current obtained with J"(1) [Eq.
(19)] is conserved while that given by J"(2) [Eq. (20)] is
not. While this property is not particularly relevant ex-
cept in the extreme single particle limit (i.e., no residual
interactions in the nuclear Hamiltonian), it nevertheless
leads us to prefer J"(1). We note that in the usual non-
relativistic formulation using Schrodinger wave functions
and Eq. (12) to generate the lower components, the transi-
tion current obtained using Jp(1) is not conserved when
the wave function is generated using velocity-dependent
potentials such as the spin-orbit interaction. '

III. EVALUATION OF TRANSITION FORM FACTORS

In order to evaluate electron scattering form factors, we
rewrite J& in such a way that the spin dependence and the
upper/lower component dependence are separated. We
define matrices which operate only in component space:

1 0 1 0
0 1 ' Iz—

0 —1

(21)

where we have also assumed Fi(q ) =Fz(q ) =F(q ).
(This approximation can be easily removed. ) This is to be
compared with

0 1r3=, 0, r4- 0 1

—1 0

QfJ&(1)g;=QfF(q )Iy"+i~o""q„/(2m)JIQ; .
We then have from Eq. (20), where cr is the usual Pauli
spin matrix,

J "(1)=F(q )II 3+v/(2m)a qI 3, oI 4+re/(2m)qoo I 3+is/(2m)o Xql, j . (22)

A similar expression is obtained for J"(2) using Eq. (19).
Transition form factors evaluated using J"(1) are given
explicitly in Appendix B.

Since the major difference between the standard non-
relativistic formulation and our present relativistic one is
in the magnitude of the lower components of the bound
state wave functions, electron scattering amplitudes which
are linear in the lower components should be most affect-
ed by use of Dirac single particle wave functions. Such
amplitudes correspond to terms of J" [Eq. (22)] involving
f 3 or I 4. Two of these terms are multiplied by factors of
1/2m and therefore are generally negligible. The third,
proportional to y = o I 4, can be dominant in certain tran-
sitions. Specifically, this term contributes to transverse
excitations and competes with the 0.g q term. This latter
term connects upper components to upper components
and thus is not strongly affected by using Dirac wave
functions. It is also linear in the anomalous magnetic mo-
ments. Since ~~=1.79 and ~„=—1.91, we have

&r=i/&x=0=3. 70/ 0. 12=—31 . —

This implies that the importance of the o. )&q term is
strongly isospin dependent and that the effects of using
Dirac wave functions are likely to be most pronounced for

isoscalar transverse transitions where the o. &(q term is
relatively small.

We have calculated transverse form factors for the
transitions to the 4.44 MeV 2+ T=O, 12.71 MeV 1+
T =0, and 15.11 MeV 1+ T =1 levels in ' C using the
current operator J&(1) of Eq. (22). The single particle
wave functions were obtained by numerically solving Eq.
(6) with real scalar and vector Woods-Saxon potentials
which are the same for the initial and final states. The
potential strengths and Woods-Saxon geometries were
chosen (1) to be qualitatively consistent with Dirac low-
energy, proton-nucleus elastic scattering potentials, ' (2)
to reproduce the experimental Os&/g Op3/p and Op&&z nu-
cleon binding energies, ' and (3) to be consistent with
e + ' C elastic scattering. The fit to the elastic scattering
data is shown in Fig. 1. The resulting potential
strengths are V(0) +361 MeV and S(0)=—430 MeV,
while the radius parameter is R =1.275X(11)'~ and the
diffuseness parameter is a=0.635 fm.

It is well known ' that the nuclear structure of these
levels is not simple. Since no nuclear structure calcula-
tions using a Dirac single particle basis exist, we adopt
one-body spectroscopic amplitudes [Eq. (4)] obtained f=om
standard nonrelativistic nuclear structure calculations.
Specifically, we have used the amplitudes of I,ee and
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FIG. 1. The fit used to fix the ' C bound state potentials is
compared with the e +' C elastic scattering data of Ref. 20.
The charge density is computed using the proton Os~~2, Op3/2,
and Op &~2 Dirac single particle wave functions determined by the
potentials described in the text.
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Kurath. For the 2+ level, we have also used the project-
ed Hartree-Fock basis (PHFBA) amplitudes of Amos and
Morrison. Since the amplitudes and the single parti-
cle basis we use are inconsistent, comparison of our results
with data may not be meaningful. We nevertheless in-
clude relevant data in Figs. 2 and 3 where our calculations
are presented in order to set a scale by which to judge the
magnitude of the effects we find. We also note that using
multiconfiguration transition amplitudes destroys the ex-
plicit current conservation discussed above and in Appen-
dix A. It can be recovered only when a consistent rela-
tivistic formulation of the relevant nuclear structure ex-
ists.

Calculations for the 15.11 MeV 1+ T =1 level appear
in Fig. 2. The nonrelativistic result was obtained by set-
ting the potentials appearing in the upper/lower com-
ponent relation [Eq. (9)j to zero as discussed above. This
result is quite consistent with conventional nonrelativistic
calculations, e.g. , the dashed curve in Fig. 1 of Ref. 21.
The relativistic calculation (dashed line) differs only very
slightly from the nonrelativistic one. This is because the
cr &( q term [Eq. (22)] is dominant for isovector transverse
transitions and this term is little affected by the nature of
the lower components, as discussed above.

Calculations for the 12.71 MeV 1+ T =0 level appear
at the bottom of Fig. 2 and again our nonrelativistic cal-
culation (solid line) is very similar to conventional results,
e.g., the nonisospin-mixed dashed curve in Fig. 3 of Ref.
25. In this case, the relativistic result (dashed line) is sub-
stantially different, being about a factor of 2 larger in the
region of the second maximum (q=1.7 fm '). In this re-
gion of momentum transfer, the amplitude is dominated

by the y term in Eq. (22). This term is off diagonal in

IO
0 I,2

q (fm')

upper and lower components, hence the amplitude is
linear in the lower components. Thus the factor of 2
enhancement in

~

I',s ~

at q=1.7 fm ' is a direct reflec
tion of the enhancement of the lower components of the
baund nucleons due to the strong scalar and vector poten-
tials which bind them. We also show an isospin-mixed
relativistic calculation (dashed-dot line) using the T =1
mixing matrix element of Flanz et al.

Calculations of the 4.44 MeV 2+ T =0 transverse (elec-
tric) form factor are displayed in Fig. 3. We have calcu-
lated the electric form factor directly and have not at-
tempted to make it consistent with the longitudinal form
factor in keeping with current conservation. ' ' Our non-
relativistic results using the Lee and Kurath p-shell am-
plitudes (solid line) are again very similar to conventional
results (see, e.g. , the solid line, Fig. 6 of Ref. 23 or Fig. 1,

FIG. 2. Calculations are compared with experimental form
factors (Ref. 25) for the first 1+ levels in ' C. The relativistic
calculations for the T =1 level use the two forms of the current
operator given in Eqs. (19) and (20). The nonrelativistic calcula-

tions are the same as the J i"(1) relativistic calculations, except
that Eq. (12) is used to compute the lower components of the
bound nuclear wave functions. The spectroscopic amplitudes of
Ref. 22 are used. A relativistic isospin-mixed calculation using

J"(1) is compared with the 12.71 MeV data using an isospin-
mixing element of 140 keV (Ref. 25).
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forms of the current operator should be small. However,
the y terms are

/
I
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,
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J(2)=F(q )y[1 3.7—S(r)/m]

~F(q ) y &(2.8 at r =0, (26)

Ref. 27). Our nonrelativistic calculations using the pro-
jected Hartree-Fock basis amplitudes (dashed line) are
roughly a factor of 2 lower than, but similar in shape to,
the conventional calculations (i.e., the dashed curve, Fig.
6, Ref. 23) and therefore reproduce the shape of the exper-
imental form factor reasonably well. The relativistic cal-
culation using these amplitudes is uniformly about a fac-
tor of 2 larger than the nonrelativistic one, again due to
the dominance of the y term for isoscalar transverse tran-
sitions.

We have also examined the consequences of using the
alternative form of the free nucleon current operator,
J"(2). Since the two terms constituting the difference be-
tween J"(1)and J"(2) [Eqs. (19) and (20)] are proportion-
al to Ir, it is apparent that the difference arising from the
use of J"(2) will be greater for isovector transitions. For
longitudinal form factors, the leading terms of J"are

and

J (1)=F(q )y (23)

J (2)=F(q )[y ( 1 —aS/m ) —a V/m ) . (24)

Given the typical values of S(r =0) and V(r=0) quoted
above, the quantity in Eq. (24),

~

z/m(S+ V) ~, is about
0.4 in the nuclear interior for T =1 and less than 0.01 for
T=0. Thus for isoscalar longitudinal form factors, the
two terms of the current operator will give nearly identi-
cal results.

For isouector longitudinal form factors, substantially
larger differences are anticipated. However, calculations
of the longitudinal form factor for the transition to the
16.1 MeV 2+ T =1 level in ' C using the amplitudes of
Ref. 22 show that the J "(2) result differs uniformly by
only about 20%%uo from the J"(1) calculation, the former
being larger. This suggests that such differences may gen-
erally be small compared to other uncertainties in the cal-
culations.

The last two terms of J"(1)and J&(2) are identical. To
the extent that these terms are dominant for isovector
transverse transitions, the differences arising from the two

2
q(fm ')

FIG. 3. Same as Fig. 2 using J"(1), but for the transverse
form factor of the 4.44 MeV 2+ T=O transition. The solid
curve was calculated using the amplitudes of Ref. 22; those of
Ref. 23 were used for the other curves.

which reflects a substantial enhancement of this term for
J"(2). The short dashed curve for the 1+ T = 1 transition
shown in Fig. 2 uses J"(2) [Eq. (19)] rather than Jp(1)
[Eq. (20)] which was used to generate the long dashed
curve. This comparison indicates that the differences in
the form of the contribution from the y term in the
current operator can have non-negligible consequences for
transverse isovector transitions even though this term is
not dominant. Calculations of the 1+ T=0 form factor
using J"(1)and J"(2) are nearly identical, in keeping with
the arguments presented above.

IV. SUMMARY AND CONCLUSIONS

%e have evaluated directly the relativistic nuclear ma-
trix elements which determine electron-nucleus inelastic
scattering transition form factors using Dirac single parti-
cle bound state wave functions. These wave functions are
calculated using real scalar and timelike vector potentials
which are consistent with recently developed relativistic
descriptions of infinite nuclear matter, ' finite nuclei,
and proton-nucleus elastic scattering. ' ' The major
difference between the present approach and standard
nonrelativistic treatments of inelastic electron scattering
(e.g. , Ref. 1) lies in the nature of the lower components of
the bound nucleon. Specifically, they are nearly a factor
of 2 larger in the nuclear interior for our Dirac wave
functions.

Lacking a consistent relativistic treatment of the nu-
clear structure, we must approximate the nuclear current
operator. We apply the impulse approximation but find
that the two "equivalent" forms of the free nuclear
current operator which are consistent with the idea of
minimal coupling are not equivalent for nucleons bound
by strong vector and scalar potentials. However, we find
that, under the condition that the binding potentials are
the same in the initial and final states, the more common
form~ of the current operator [Eqs. (14), (20), and (22)]
yields an explicitly conserved current and is therefore
preferable.

In evaluating the nuclear matrix elements using this
current operator, we find that only transverse isoscalar
form factors are strongly affected by the use of Dirac
shell model wave functions. This is because the transverse
isoscalar amplitude is dominated by the y term of the
current operator which implies a linear dependence on the
lower components of the bound state wave functions. All
other amplitudes are insensitive to the nature of the lower
components.

The factor of 2 increase in transverse isoscalar form
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factors which results when Dirac shell model wave func-
tions are used is a direct reflection of the unique relativis-
tic properties of bound nucleons in relativistic treatments
of nuclear structure. The effect of using the alternate
form of the impulse approximation nucleon current
operator [Eqs. (15) and (19)] is found to be very small for
isoscalar transitions and substantial only for isovector
transverse excitations.

It is difficult to assess the significance of the present
calculations by comparing with data since they have been
performed without the benefit of a consistent relativistic
description of the relevant nuclear structure. It is, howev-
er, encouraging that they appear to provide a more con-
sistent description of e +' C inelastic scattering (espe-
cially for the isoscalar transverse form factors) than do
standard nonrelativistic calculations ' ' employing the
same impulse-approximation nucleon current operator. In
any case, the present work makes clear the need for the
extension of currently existing relativistic descriptions of
the ground states of spin-zero nuclei to include ground
states with spin as well as excited nuclear levels. Surely
inelastic electron scattering will provide important tests of
such a relativistic shell model. Furthermore, such shell
model wave functions might also shed light on the reasons
for the apparent failure ' of the Dirac model to repro-
duce the magnetic moment of ' N in the single particle
limit. The explicit current conservation in the single par-
ticle limit which we have demonstrated suggests that the
thorny problem of how to generate a general, self-
consistent, conserved transition current may be easier to
address within the framework of a relativistic shell model.
Certainly it is within such a framework that ideas about
relativistic medium modifications of the nucleon current
can best be tested.

The present treatment of inelastic scattering can easily
be extended to include the (e,e'p) reaction ' and the
single-nucleon model of the (p,y) reaction. In fact, the
use of Dirac bound state and continuum wave functions is
likely to be important in instances where nonorthogonality
effects are large. This is because most of the strong en-

ergy dependence of the Schrodinger central and spin-orbit
potentials is explicitly accounted for in Dirac
phenomenology. Put another way, the energy depen-
dence of the Dirac scalar and vector potentials is much
less than for the Schrodinger potentials. Therefore the
nonorthogonality of Dirac bound and continuum wave
functions can be expected to be much less than for their
Schrodinger counterparts.

Finally, we note that, by using relativistic wave func-
tions, we evaluate relativistic matrix elements "as they
stand, " without reductions to nonrelativistic forms which
often throw out some of the physics and may obscure the
structure of the amplitude. This should therefore be the
ideal framework to use in further establishing the relation-
ships among electromagnetic, weak, and hadronic probes
of nuclear structure. ' Furthermore, if the current relativ-
istic formulations of nuclear phenomena with their strong
scalar and vector nucleon-nucleus interactions are valid,
the use of relativistic wave functions as we have done here
is almost certainly the most economical calculational pro-
cedure.
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functions satisfy the same Dirac equation containing real
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(p:m —S—y V)/=0, (Al)

where p = i(BO, —V ). The adjoint equation is
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transition current
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B. Current conservation

We first examine the four-divergence of the Dirac tran-
sition current,

a„zy;(D) =a„—yjy"q; .

We can write

(A9)

Using II) = ip—and Eq. (Al), we have

(A10)

a„Jj;(Q)=a„pjQ"—p; =a„pj( p "+p—")p; .

This can be rewritten as

(A12)

a„Jj";(Q)= ~'p„pj( —~p "+p"—)p;

a„Jf,(D)= i gj[(S—; sj)+—y (v; vj)]Q—; . (Al 1)

For real potentials which are the same for initial and final
states,

a~Jj";(D) =0. .

We now examine the four-divergence of the current
arising from the second term of J"(2) [Eq. (15)],

apJjj (q) =i gjcr (pzp, +p~p&+ pzp„+ p&p, )g; . (Al 8)

Since the quantity in parentheses is symmetric under in-
terchange of indices while o." is antisymmetric,

a„JP(q)=0, (A19)

which taken together with Eq. (All) implies a„Jj,.(1)=0
for Sf —S' Vf —V, .

APPENDIX 8

Z +M

[1+2(E/MT)sin 8/2]
(81)

where F is the total form factor, E is the electron energy,
Z(MT) is the target charge (mass), 8 is the scattering an-
gle, and o.M is the point Mott cross section given by

a cos 8/22 2

(82)
4E sin 8/2

We now write explicitly the electron inelastic scattering
form factors evaluated using J"(1) [Eqs. (14) and (22)].
In terms of these form factors the electron scattering cross
section is

i'( ——p +p )'tj,

We now use Eqs. (Al) and (A2) to show

p2$;= (m+S —y'V)(m+S+y'V)

(A13) where, in turn, a is the fine structure constant. The total
form factor is given by'

F'=( —q'/q')'
I
Fi

I

'+ [—q'/(2q')+ tan'8/2]
I
F

I

'

and

+2E; V+i y rS' iy y r V'—

pjp =fj —(m+S—+y V)(m+S —y V)

(A14) where q (q') is the four- (three-) momentum transfer and
Fl (FT) is the Coulomb (transverse) form factor.

We now define' the following Coulomb and transverse
multipole operators:

2EjV+i y.r—S'+iy y rV', (A15)

where the primes indicate radial derivatives. We then
combine Eqs. (A13)—(A15) to obtain

aqJg7(Q)=2ifj (Ej E;)V i y rS—'—g;, (A16)

which implies Jg(2) is not conserved in general. Finally
we consider the four-divergence of the current arising
from the second term of J"(1) [Eq. (14)],

(84a)

(84b)

where

d r ~'(qr»J(J))M(" ) (84c)

YJ(1 ))M(r )—= [ YL e) ]&~

MJ~ (q
' )—:f d rj~ (qr ) YzM (r )J ( r )

T J~(q')=q ' f drI VXjz(qr)YJ(J))M(r)I. J(r)

a„Jj";(q)= —a„Pja" (P„+P,)g; .

Again using 8&
———ip&, we have

(A17) with e&M the spherical unit vector.
The Coulomb and transverse transition form factors

can then be written as

(85a)

I
FT I'= IF.)+F .s I'

oo=4~z-' g I
&q,,IIy'[q J, (&J'+TJ")]J,) I',

i J=]
(85b)

where 4 is the total nuclear wave function. Note that' T JM and T J~ have opposite parity so that one of these opera-
tors gives no contribution for a given J transfer. In deriving the cross section [Eqs. (81) and (83)] in terms of these
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form factors, current conservation has been invoked to eliminate the longitudinal contribution in favor of the Coulomb.
We can now write the explicit forms for

~
FL ~, ~

F,i ~, and
~
F~,s ~

. It will be convenient to define the following

quantity:
' 1/2

~n;JILs}(q')= —g ~ 1
JIJ(,JJ, )&AJJJ(")IIf'.Ir(q'r)IAJ(r)[ L«)mrs]JIj & .JJJ, , jf + JJJ,.

lf1;jfj,
(B6)

In Eq. (B6), gtJ. (r) is a Dirac single particle wave function with total angular momentum j and upper component orbital
J

angular momentum I; 3J(j j ) is the one-body sPectroscoPic amPlitude defined in Eq. (4); I „ is one of the uPPer/lowerJfJi
component matrices defined in Eq. (21};and the "bra" in the reduced matrix element is the Hermitian conjugate wave

function, i.e., (P
~

=g =fy . We then have

2

F(q 2) 2Jf + 1

~
FL, (q')

~

=4' W] ~ J(Jp)+lq K/(2m )
Z 2J;+1

1/2J+1
2J+1

J
~4;J(J+1,1)+

1/2

~4;J(J—1,1)

2

' 1/2 ' 1/2J+1
~3;J(J+1,1)+ 2J 1

~3;J(J—1, 1)

' 1/2

~4;J(J—1, 1) tq K/(2m )~2;J(J1)+ qpK/(2m )

2
F(q2) 2Jf+1

~
F,i(q')

~

=4~ i+ J=1 +
1/2 J+1

4;J(J+1,1)+ (B8)

~2;J(J—1, 1)

L

2

F(q 2) 2Jf + 1

I
F ~ (q')

I

'=4~ g ~3'J(J11+qpK/(2m)~4;J(J1)i+ J=1
1/2 ' 1/2J J+1+ iq'K/(2m } 2J+1 2J+1~2;J(J+1,11+

2

(B9)

where qp is the timelike component of the four-momentum transfer. In Eqs. (B2)—(B9), the dependence of the W's on

Jf, J;, and q' is implicit.
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