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The properties of deep inelastic electron scattering from '?C are analyzed in the context of rela-
tivistic y scaling. A large enhancement of the transverse response relative to the longitudinal
response is observed in the quasielastic region which is in contradiction to impulse approximation
predictions assuming a free one-body current. Scaling behavior is recovered when a relativistic ef-
fective mass is included in the nucleon current operator. The first two moments of the longitudinal

scaling function are also evaluated.

I. INTRODUCTION

The reaction mechanism of electron scattering at the
quasielastic peak is usually described in the impulse ap-
proximation (IA) as a one-step process with the virtual
photon coupling to a free nucleon current. The in-
coherent scattering limit is valid because, at the momen-
tum transfers relevant to quasielastic scattering, the wave-
length of the probe is less than or equal to the nucleon’s
dimensions. Energetic constraints on the reaction process
are small when the excitation energy is large compared to
the single nucleon knockout threshold. These assump-
tions imply that the longitudinal and transverse response
functions should exhibit y scaling.!”™® The scaling
behavior (or absence thereof) is a direct measure of the va-
lidity of the impulse approximation. Modifications of the
nucleon properties, internal nucleonic degrees of freedom,
the presence of exchange forces, and two-body correla-
tions in the initial state are possible scale breaking mecha-
nisms.

We have performed a scaling analysis of the separated
12C(e,e’) data from Saclay* and have found substantial de-
viations from scaling behavior. We have treated the prob-
lem in a fully relativistic manner since errors introduced
by a nonrelativistic reduction of the current operator can
be as large as many of the nuclear modifications to the re-
action.

The longitudinal and transverse response functions each
behave as a function of a single variable in the region of
the quasielastic peak consistent with the scaling hy-
pothesis. However, the peak positions and widths
disagree with those predicted assuming free kinematics
and, more seriously, the relative strengths of the longitu-
dinal and transverse response functions deviate by more
than 50% from calculations employing a nucleon current
unmodified by the nuclear medium. This latter type of
scaling violation is totally unexpected and indicates that
complications in the reaction mechanism extend
throughout the quasielastic region and not just in the high
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energy-loss “dip” region as previously thought.’

We have found that scaling behavior can be recovered
by introducing a relativistic effective mass based on a
Dirac phenomenological model. In particular, the shift,
broadening, and relative strengths of the response func-
tions over the entire range of momentum transfers can be
successfully accounted for in terms of this single parame-
ter. We emphasize the fact that we found it necessary to
treat this effective mass as a truly dynamical effect, modi-
fying the nucleon current as well as kinematical factors.
We feel an unambiguous interpretation of the recovery of
the y scaling behavior of the '2C(e,e’) response functions
by this parametrization cannot be justified at this time
due to the number of possible modifications to the basic
reaction process.

II. QUASIELASTIC ELECTRON SCATTERING

Figure 1 shows a diagrammatic description of quasi-
elastic scattering. The four-momentum transfer to the
nuclear system by the exchanged virtual photon is denoted
by g =(®,q), and the photon is absorbed on a single nu-
cleon of initial momentum k=(ko,E) in a one-step pro-
cess. At high momentum transfers the photon in-
coherently samples the nucleon momentum distribution
n(K). There is no necessary implication that a nucleon of
final momentum E+Z1’ is actually emitted from the nu-
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FIG. 1. Quasifree electron scattering kinematics.
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cleus since the recoiling nucleon will suffer a number of
final state interactions (FSI) as it propagates through the
nuclear medium. Rather the diagram is usually under-
stood to imply closure over all final states.® Implicit in a
quasifree analysis is the assumption that the reaction
channel sampled by the virtual photon is sensitive only to
the local properties of the medium and that the reaction is
relatively insensitive to the details of the final state propa-
gation of the nucleon. We note, however, that this is not
a universally accepted point of view.” This means that for
the quasifree hypothesis to be valid one must also require
that the excitation energy be significantly higher than the
single nucleon separation energies in addition to requiring
high momentum transfers. This ensures that the density
of final states is large enough so that energetic constraints
on the reaction process can be ignored.

The nuclear response to longitudinal and transverse vir-
tual photon absorption can be written in terms of dimen-
sionless structure functions, f; and fr, as
141z
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where A is the number of nucleons, M is the nucleon
mass, Gz and G, are the mean nucleon electromagnetic
Sachs form factors in the medium, and R; and Ry are
the usual electron scattering response functions (see the
Appendix). If one neglects a small component of the re-
action mechanism proportional to (k X§)*/M?, the nu-
clear structure functions can be expressed as functions of
a single dimensionless variable in the high ¢ limit
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The factor (M /kg) in the integrand arises from the rela-
tivistic contraction of the three-volume element. The
nonrelativistic form of this scaling variable is given by the
limit v—1. Nonrelativistically, energy-momentum con-
servation requires that E-Zj be a constant for fixed q and
o so that the y scaling variable is the constant initial pro-
ton velocity component along §. Relativistically, the
relevant constant quantity is k,q¥= —q?%/2. The
response function in the scaling limit should form a peak
which is symmetric and whose maximum is at y =0, cor-
responding to the quasielastic peak at w = —g2/2M.

One immediate result from this scaling analysis is a
data-to-data relation between the separated response func-
tions in terms of the elementary nucleon response

Ry > 42 Gy
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One can see that the reduced nuclear structure or scaling
functions cancel in the ratio. This result is independent of
the choice of the scaling variable and is more general than
the impulse approximation analysis might indicate.

The results of the relativistic scaling analysis of the
Saclay data are shown in Figs. 2 and 3 assuming free
kinematics and the free nucleon one-body current. For
the sake of clarity, only data for w > 30 MeV are shown.
In the vicinity of the quasielastic peak the longitudinal
and transverse data individually exhibit g independence.
The rapid increase of the transverse response at large o
(large positive y) is due to the opening up of the A(3,3)
isobaric resonance channel. There is a net shift of the
quasielastic peak to positive y, a result which is well
known if not well understood. The most striking feature
is the large relative enhancement of the transverse
response relative to the longitudinal response at the
quasielastic peak, a 50% effect over the entire momentum
transfer range (200—600 MeV/c¢) of the available 2C(e,e’)
data.

Final state interactions by themselves cannot explain
such an enhancement, because the final state interactions,
insofar as they factor from the initial reaction channel,
cannot depend on the polarization state of the virtual pho-
ton. This will be the case for most optical potential calcu-
lations of the FSI. The explanation for the relative
enhancement must therefore lie in the nature of the reac-
tion mechanism.
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FIG. 2. The scaling function f; for free kinematics and free
current operator for '*Cle,e') is shown at ¢ =250 MeV/c¢ (cir-
cles), g =350 MeV/c (squares), g =450 MeV/c (triangles), and
550 MeV/ ¢ (diamonds).
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FIG. 3. The scaling function f7 for free kinematics and free
current operator for >C(e,e’) is shown at g =250 MeV/c (cir-
cles) , ¢ =350 MeV/c (squares), ¢ =450 MeV/c (triangles), and
550 MeV/ ¢ (diamonds).

III. EFFECTIVE MASS APPROXIMATION

The IA with free kinematics fails to describe the data
except in a qualitative sense. This is shown in Figs. 4 and
5, which compare the data at 4 =550 MeV/c to a calcula-
tion using a Hartree-Fock momentum distribution® and
free kinematics (dotted curve). Neglecting the absolute
normalization for a moment, the observed peak position is
shifted to higher excitation energies and the momentum
distribution is broadened due to media effects.

A phenomenological way to account for modifications
due to interaction effects is to introduce a relativistic ef-
fective mass. This shifts the quasielastic peak to an ener-
gy loss w=—g2/2M* while simultaneously broadening
the peak by approximately the right amount.

The relativistic effective mass approximation (REMA)
can be given a physical interpretation in terms of an in-
teracting Dirac particle in the mean field limit. In the
Dirac phenomenological approach, spherical symmetry
and other requirements are used to reduce the interaction
to a scalar, s, and the fourth component of a vector poten-
tial, v, (Ref. 9). Replacing these potentials by their mean
values gives the Dirac equation the momentum space
form

Y=k —y)\W=M*V=(M —s)¥ . (5)

Rosenfelder'® has pointed out that in taking energy differ-
ences the vector component of the interaction cancels.
Thus the net effect is a renormalization of the Dirac wave
function, giving the particle an effective mass M*. The
nonrelativistic reduction of this equation generates a
Schrodinger-type equation with an energy-dependent po-
tential.!%1!
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FIG. 4. Calculated quasielastic longitudinal response func-
tions are shown using the Hartree-Fock momentum distribution
(Ref. 8) with M* =M (dotted line), M* =0.82M with unmodi-
fied current (dashed), and M*=0.82M with modified current
(solid) for ¢ =550 MeV/c.

A fundamental problem arises in extending the IA to
interacting nucleons in the medium in that the nucleons
are composite objects whose electromagnetic structure ar-
ises from strong interactions. In the absence of a com-
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FIG. 5. Same as Fig. 4 except the transverse response is
shown.
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plete theory of nucleon structure it is impossible to predict
how the nucleon’s properties are modified by the sur-
rounding medium. A variety of prescriptions!>~!* are
available for treating the off-mass-shell behavior of the
nucleon form factors. We have assumed that the Dirac
and Pauli form factors are unchanged in the medium.
However, it is unclear whether the effective mass should
also be used in the current operator [Eq. (A1)]. Making
this minimal replacement in the current has the effect of
enhancing the transverse scattering which is proportional
to G 3,/M*? and to a lesser extent reducing the longitudi-
nal scattering via the Darwin-Foldy correction. An un-
modified current fails to reproduce the relative amplitudes
for these response functions as can be seen in Fig. 6(b).
Incorporating M* in the current produces excellent agree-
ment for the relative strengths of the longitudinal and
transverse '2C data [Fig. 6(c)]. This latter case corre-
sponds to a replacement of M by M* in all expressions.
The intermediate case where the current is unmodified
can be achieved by this same prescription and by simul-
taneously replacing the anomalous moment « by
k* =k(M* /M). One can reconcile the separated '*C data
with the one-body IA only if the nucleon current is modi-
fied, a result independent of any assumed nucleon
momentum distribution.

Rosenfelder,'” using essentially the same method of
analysis, finds a clear preference for an unmodified
current operator in the unseparated *“’Ca data of Whitney
et al.’> Brieva and Dellafiore,® using a momentum
dependent optical potential, obtain results similar to
Rosenfelder. It is interesting to note that the '2C data of
Whitney et al. can be fit equally well with either prescrip-
tion for the current and that these data are consistent with
the Saclay results. It appears that there might be signifi-
cant differences in the nuclear physics of these two nuclei.
However, Whitney’s data consist of only a single incident
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energy and angle on several nuclei. Without the addition-
al information inherent in a longitudinal-transverse
separation, one cannot distinguish between nuclear struc-
ture and reaction mechanism effects. The situation with
respect to the separated “°Ca data of Deady et al.!” is un-
clear: The data at 4 =330 and 370 MeV/c exhibit a simi-
lar relative enhancement of the transverse response over
the longitudinal response. The large systematic uncertain-
ties in the 410 MeV/c¢ data preclude any definitive state-
ments. The early inferences that the nucleon current
operator is unaffected by the medium need to be reexam-
ined in light of the new separated data on >C.

Model calculations employing two different momentum
distributions are displayed in Fig. 7. The Fermi gas and
Hartree-Fock® momentum distributions both underesti-
mate the high o longitudinal response of the carbon data
at 550 MeV/c. For these models, the scale breaking term
in the IA proportional to (Kx§)*/M? is found to be
about a 3% effect and is greatest in the vicinity of the
quasielastic peak. The high energy loss tail observed in
the longitudinal response may be due to high momentum
components in the initial nuclear wave functions produced
by ground state correlations or by photon induced dynam-
ical correlations. Incoherent pion production and contri-
butions from the E2 component of the A(3,3) resonance
are also expected to contribute to the high energy loss tail.

Since pion production and meson exchange currents
(MEC’s) are known to be nonscaling processes and contri-
bute primarily to the transverse response,” it is reasonable
to use the longitudinal response as a calibrator for the
one-body part of the reaction process. The fr—f; differ-
ence spectra shown in Figs. 8(a)—(c) provide a measure of
the nonquasielastic component of the reaction mechanism.
With the assumption of a modified one-body current this
difference maps smoothly into the A(3,3) resonance, and
there is no remnant of the quasielastic peak.
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FIG. 6. Free kinematics and free current operator. (b) M replaced by M* =0.82M in kinematics, free current retained. (c) Re-
placement of M by M* in both kinematics and current. The longitudinal data are shown for 'q =400 MeV/c (circles) and 500 MeV /¢
(squares). The transverse 400 MeV/c data are shown by diamonds and the 500 MeV/¢ data by triangles. Note that the vertical scale

is different for each figure.
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FIG. 7. Influence of the nucleon momentum distribution
model. Shown are the calculated scaling functions for q =550
MeV/c and M*=0.82M with modified current. The dashed
line represents the relativistic Fermi gas model with kz=220
MeV/c. The result using the Hartree-Fock distribution (Ref. 8)
is shown by the solid curve.

IV. SUM RULES

One can define two sum rules for the longitudinal scal-
ing function f; (y) analogous to the non-energy-weighted
and energy-weighted sum rules. These are the integrated
longitudinal strength,

S(@)=[ frdy,

and the mean value of the scaling variable,

(6)
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y@=S@" [ pfr(dy . (7)
These sum rules are model dependent quantities since they
depend on the specific IA model and ignore competing re-
action processes. There is also dependence on the
kinematics used to define y and on the choice of nucleon
form factors. Although similar sum rules can be defined
for the transverse scaling function, it is difficult to mea-
sure them accurately because of the large contribution
from the A(3,3) resonance. The free impulse approxima-
tion predicts that S(q)=1+&(k?/M?) and y; =0 at
high g.

Figure 9 shows S(q) for §=250—550 MeV/c. As the
data are not known for all w, the integrations were cut off
at y =0.5(M* /M), though for sufficiently large y the re-
sults are relatively insensitive to the choice of cutoff. The
size of the error bars results from assuming that systemat-
ic errors are dominant. At the highest § more than 80%
of the sum rule is observed using the free IA analysis.
This increases to greater than 90% when M* and the
modified current are employed. Viollier and Walecka'®
estimate that two-body correlations reduce the sum rule
by 1—10%. Making the common assumption that the
Pauli and Dirac nucleon form factors are equal, although
theoretically convenient, results in an artificially small
value of the calculated sum rule at high §. Such an in-
correct parametrization was used in earlier evaluations®!’
of the integrated longitudinal strength of 'C and *“’Ca
which indicated nearly total agreement with the IA using
the free nucleon current. We have used a recent
parametrization (fit 8.2 of Ref. 19) for the free nucleon
form factors.

The mean value of y has been related by several authors
to the presence of various scale breaking processes includ-
ing exchange forces and two-body correlations in the nu-
clear ground state. In Fig. 10, y, for both the free and
REMA cases is shown. When the free nucleon mass is
used y; remains nearly constant at 0.08. The REMA
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FIG. 8. (a)—(c). The difference fr—f; for the same conditions as in Fig. 6(a)—(c). The data difference at =400 MeV/c is

shown by unfilled circles and at 500 MeV/ ¢ by filled circles.
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FIG. 9. The integral of the longitudinal scaling function
versus . The results for M*=M (filled circles), for
M*=0.82M with the modified current (unfilled circles) are
shown. The IA prediction using the Hartree-Fock momentum
distribution (Ref. 8) and assuming M* =0.82M is shown by the
solid curve. The calculation is not particularly sensitive to the
value of M*.

causes y; to decrease with increasing q, paralleling the
IA predictions and healing to zero for § greater than 500
MeV/c. This is further confirmation that the complica-
tions in the reaction process are being successfully ac-
counted for by the REMA. Theoretical predictions for y;
from Tornow et al.?° and Rosenfelder?! are also shown in
Fig. 10. Rosenfelder used Cohen-Kurath correlation
functions with the two-body effective interaction from
Gillet,?? while Tornow et al. used the Reid soft-core in-
teraction and correlated wave functions from Ref. 23. A
qualitative estimate by Suzuki’* based on p and 7 ex-
change is also shown. All these authors used the nonrela-
tivistic form of the scaling variable. Tornow’s calculation
is in good agreement with the data treated with free
kinematics except at the lowest momentum transfers
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FIG. 10. Mean value of the relativistic scaling variable for
the longitudinal response function versus §. The data assuming
M?* =M are shown as filled circles and with M*=0.82M as un-
filled circles. The curves show the nonrelativistic calculations of
Rosenfelder (Ref. 21) (dotted), Suzuki (Ref. 24) (dash-dot), and
Tornow et al. (Ref. 20) (dashed). The IA prediction for
M*=0.82M is shown by the solid curve.
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where it underestimates the mean shift. Rosenfelder’s re-
sults fall below this same data treatment for all q.

Nonrelativistically, a shift in y requires either the intro-
duction of nonlocal interactions or of an energy-dependent
potential.> These two alternate approaches are operation-
ally quite similar since a nonlocal interaction can be re-
placed by an equivalent energy-dependent potential.
However, in the first case the local medium properties
dominate the modifications since the nonlocal effects are
conceived as originating in short range meson exchanges,
while in the latter the energy-dependent potential can also
be associated with the final state interaction. For exam-
ple, one can attempt to identify the energy shift directly
with the mean separation energy of the knocked-out nu-
cleon. The difficulty with this latter interpretation is that
the time scale of the electron-nucleus interaction is much
shorter than the evolution time of the nuclear system.
The Dirac phenomenological approach presents a third al-
ternative in that the static mean field provides most of the
observed shift. These various approaches need to be
reconciled with each other,?” and a consistent framework
for treating the various components of the reaction mech-
anism must be developed.

V. SUMMARY

Substantial deviations from the IA are observed in the
separated '2C data when analyzed in a relativistic scaling
formulation using a free nucleon current. On the other
hand, 4 independence of the individual response func-
tions sets in at lower momentum transfers than might be
expected. We have shown that the data can be reconciled
with an effective one-body current in the relativistic effec-
tive mass approximation. This indicates that a Dirac
phenomenological approach may form an appropriate
framework for further theoretical developments including
higher order processes in the reaction mechanism. The
separated response functions demonstrate considerably
greater sensitivity to the dynamics of the quasielastic pro-
cess than has been hitherto apparent from the unseparated
data. y scaling has been shown to provide a powerful tool
for studying the systematics of the quasielastic region.

Data of the same quality and dynamical range as the
12C results should soon be available from *’Fe and iso-
topes of calcium.?® These will provide insight into the A
dependence of the media effects. Studies of the energetics
of nucleon knockout by coincidence (e,e’p) measurements
will be useful in discriminating between one-, two-, and
many-body contributions to the reaction process. A
longitudinal-transverse separation of the coincidence data
will be especially helpful in determining if the one-
nucleon current is indeed being modified by the medium
as indicated by our analysis. A program of coincidence
reaction measurements to be performed at the MIT-Bates
Electron Linear Accelerator has been initiated to explore
questions related to the microscopic character of the nu-
clear electromagnetic current.?’
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APPENDIX

Assuming one can treat nucleons as Dirac particles, the
nucleon electromagnetic current operator can be written
as

/u(q)=F1(q2,M,q°km+—Fz(q M,q°ka,g",

(A1)

where F; and F, are dimensionless structure functions; M
is the nucleon mass; « is the anomalous magnetic mo-
ment; 0,,=i/2[¥4Y4], ¥, are the Dirac matrices; and k

4(1 (P%)I/Z

do=2o" _de dk’

[(S “Pr) _SZPT]VZP ko ko

— |#|(1=Z
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is the initial nucleon four-momentum. For k’?=k2=M?,
one can replace q-k by —¢%/2. Isospin indices have been
suppressed. The quasifree scattering approximation con-
sists of treating the nucleus as an incoherent ensemble of
noninteracting fermions with a spectral distribution
B E,ko) and treating the reaction as an impulsive
transfer of four-momentum ¢ in the one photon exchange
approximation. If the nucleons are on the mass shell one
obtains a scalar occupation density 7 ( K) defined by

F(K,ko)=2Mn (K)8(k3—K2—M?) ;
(A2)

[ Flkko)d*k = f n(K)\dk=A=Z+N .

The invariant cross section for quasielastic scattering can
then be written as

Pn(K)8%s +k —p —k'), (A3)

where « is the fine structure constant, units are #i=c =1, and Z( E, E-f— q) denotes the Pauli-blocking operator which an-
tisymmetrizes the fermion wave functions. Here one can also define a nonrelativistic occupation density
A(K)=M /kon (K) which has the usual normalization encountered in the literature. The metric is such that a four-
vector @ =(ao,d) has a norm a’=aj—a?% In the above equation, s and p denote the initial and final electron four-
momenta, k and k' denote the initial and final nucleon four-momenta, g=s—p=(w,q) is the four-momentum
transferred to the nuclear system, and Py is the initial four-momentum of the nuclear system. The invariant matrix ele-
ment of the transition is given by

|l #|| = T5(q%, M) (k-s)(k-p)—%e)—Mz +MAs-p) Ty (gL M) ; (A4)
Tipm = | F1+&F3 | {on) » (A5a)
2
Tyom= | |F;|2——4—|F,|? (A5b)
2(p,n) l 1 | aM? | 2 ! o)
It is useful to define the mean nucleon Sachs form factors in the medium
@ N kg |
2 Kp n
G (q M2) Flp 4M2F2p +7 Fln—{—'zlu—zen (A6a)
and
6 (q MZ) |F1p+KpF2p| + |F1n+KnF2n12 (A6b)

For a self-conjugate (Z =N) nucleus like '2C, one can assume as a good approximation that the proton and neutron
occupation densities are the same. If one further assumes for simplicity that the occupation densities are spherically sym-
metric, then the inclusive electron scattering cross section can be reduced to

do T™ e = o | M —q¢* = q* ~» 6
-0 — dk*(1—Z)n(k) |— T— G jstan’—
dﬂedpo MOTT |,ql ftznin k ( la|2 2M2 Mmltan )

’]
tan®>—
[1—q?/(4MP)] tany

= ], (A7a)
2|q|
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where
=_|g2__ 4" &2
o _a* cos’6/2 cos0=(5-9) (A70)
MOTT™ 4502 sin‘60/2 ° ’
emin=[M2+kfnm]‘/2=Mv—§ , (A7d)
k[ terorr g2 | 1Kxg|?
M? (Emin+@/2)? 4M? M?
(A7e)
a2 5 12
y= [ 12 , (A7)
—q 4M
and
kminzMy='_ |q‘ 1— 20 My (A7g)
: 142

If one ignores a small term proportional to k1 /M2,
where k, is the component of k perpendicular to the
momentum transfer direction g, and if Pauli-blocking ef-
fects are negligible, then the reaction scales as a function
of the single dimensionless variable y, i.e.,

do Oep
=A ), (A8a)
dQ.dpg 1q|
where
2 2
Oey=0 T ——1—G jtan”*— (A8Db)
ep MOTT I a I 2 2M2 M 7

Equation (A8) can be interpreted as an operational defini-
tion of f(y). The cross section in terms of longitudinal
and transverse photon components in the laboratory
frame is

_do  __
dﬂe dpo MOTT

q4

14

2
tanzi -1

2 204

Ry + T

(A9)

Assuming quasifree scattering dominates the reaction
mechanism at large § the integrated structure functions
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should satisfy the sum rule
ki

fdy=1+0 |— |, (A10)
M2

which, however, is invalid for the transverse scattering
due to the large contributions from the A(3,3) isobaric
resonance channel. The cross section is maximum at
y =0 which corresponds to = —g?/2M and vanishes at
the photon point g?=0 as y — + co.

The above formulation neglects energy-momentum con-
servation on the total nuclear system and thus cannot be
expected to reproduce the details of the structure at low
excitation energies where energetic constraints on the final
nuclear system play a major role. Pauli blocking effects
which are most important for small excitation energies
(<30 MeV) can be neglected at high energy transfers. A
simple approximation for Pauli blocking contributions
can be derived by assuming that the scattering is linear in
occupation density. Since an impulsive momentum boost
relates the momentum distribution at k and l—{-}—?j, the
Pauli principle can be satisfied by antisymmetrizing the
density at k and E+q’

n(X)—n(k+9) >0

(1—Z)m(K)= o (A11)

w<0’
where

| K+ | =[(e+w)—M?]"2,
(A12)
6=(k2+M2)1/2 .

The restriction to o >0 reflects the fact that the initial nu-
clear system is in its ground state. Nuclear recoil has been
ignored. The above prescription is equivalent to assuming
that the nucleus can be treated as a superposition of Fermi
gas momentum distributions. A similar result is obtained
by Rosenfelder'® based on the analytic properties of the
response functions.

Although the above results are well known in gen-
eral,'%282% the above formulation is new in the sense that
the description in terms of the Sachs form factors makes
the appropriate definition of the relativistic scaling func-
tions transparent. We have also corrected a persistent
though small error in the normalization of the occupation
density.
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