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The free propagator for the spin 2, isospin 2 (delta) particle is discussed, comparing the Rarita-

Schwinger formalism and another of Hayward. Its use in the calculation of resonant graphs in
pion-nucleon scattering, photon-nucleon scattering, and pion photoproduction from nucleons is ex-
emplified using explicit formulae and numerical results. Predictions using the two formalisms are
shown to be in significant disagreement.

INTRODUCTION

A theoretical description of fields corresponding to par-
ticles of nonvanishing'mass with spins greater than one-
half leads to numerous difficulties: nonuniqueness of the
fields, particularly when interactions are considered, has
been a problem of some theories; complexity seems inevit-
able; and gauge freedom produces another level of possible
confusion.

For fermions, whereas the spin —,
'

seems well described
via the Dirac equation, the next most complicated case,
spin —,, still contains ambiguities. Nuclear physics of the
1980's, as well as theory-based prediction of single nu-
cleon scattering and reaction, seem to require considera-
tion of the delta resonance: spin —,', isospin —', baryon reso-

nance of mass 1232 MeV and decay width 110 MeV. The
broad width of this state precludes its direct detection —it
is known by its decay products, or by more subtle effects
upon cross sections and decay rates. The calculation of
these processes then requires the appropriate propagator
for the delta resonance, but not the individual free fields.
The purpose of this paper is to examine, compare, and
contrast the properties of the free delta propagator from
two different theories.

RARITA-SCHWINGER FORMALISM

At present, the most frequent choice for the relativistic
spin —, propagator would seem to be that which re-

sults from the Rarita-Schwinger' equations:

(y~B~+M)+a=0,

Xa+a =0
where the %a (a=0, 1,2, 3) are four separate four com-
ponent Dirac spinors, the yz are the standard 4&&4 ma-
trices of the Dirac theory, M is the mass of the spin —',
particle, and repeated indices are assumed summed. The
second of the above equations represents supplementary
conditions needed to eliminate the redundant spin —, solu-

tions possible in the first equation. The propagator in this
theory is not without ambiguity. The following form,

2M
p' —M'+ie

PP 3'V —PV'VP

3M
(3)

where g& is the metric tensor. The conventions are
those of Bjorken and Drell, and when a specific represen-
tation of the y matrices is needed, that of Appendix A of
Bjorken and Drell will be utilized.

The form of the Rarita-Schwinger equations and the
propagator derived therefrom is compelling in its similari-

ty to the Dirac spin —,
' results. The Rarita-Schwinger

state vector 4„can be seen to consist of, in the nonrela-
tivistic limit, a four-component Dirac spinor and a four-
vector coupled in such a way as to produce a total angular
momentum of —,'. The first of the Rarita-Schwinger (RS)
equations is simply the Dirac equation on the spinor in-
dices. Nevertheless, the fact that solutions to these equa-
tions violate causality has been shown in detail by Velo
and Zwanziger. The equations of the RS theory are all
covariant, the free propagator shown above is causal, and
for that reason perturbation calculations using the theory
are causal to all orders. An exact calculation in a situa-
tion where there is a quantized external field turns out to
be noncausal and Lorentz frame dependent, even in the
limit of weak external fields. Velo and Zwanziger show
that the problem exists already in the free field equations,
manifested by a class of solutions which propagate at
speeds exceeding that of light.

HAYWARD FORMALISM

Presented in contrast to the spin —,
' formalism of Rarita

and Schwinger is that from the work of Hayward. This
work reports to ".. . develop a relativistic theory of
higher spin fields employing the variational methods of
classical Lagrangian field theory. The chief aim is to
present an unambiguous method for constructing a
dynamical description of a field having any discrete
spin. . . ." Hayward is successful in that he presents a for-

(where 6„„is the energy projection operator, e is a posi-
tive infinitesimal, and p =E p is—the square of the
delta four-momentum), is appropriate for situations where
the delta can be considered as comprising a one body in-
termediate state. The form of the projection operator is

pay +M, 2pppv
tv 2M gpv 3 Vp Vv 3M2

29 2222 1984 The American Physical Society



FREE DELTA PROPAGATOR 2223

malism similar for all spins, without supplementary con-
ditions, and unique except for the possibility of differing
internal symmetries. The price paid for this includes a
Bleuler-Gupta-type indefinite metric and high dimension-
al state vectors, subject to gauge invariances for spin & —,',
in full analogy to spin 1 QED. The spin —', state vectors
representing a free massive particle consist of 12 com-
ponent vectors (six representing positive energy states and
six representing negative energy states): Choice of a par-
ticular gauge leaves only eight linearly independent solu-
tions.

The Hayward theory starts from a Lagrangian density

W = —y(x)a„y„y„ay(x) —M'y(x)y(x),

minimization of the action integral of which leads to the
equation of motion

(a„a„—M')y(x) =0.
Here P(x) is the position space wave function; the y„
form a four-vector of square matrices of dimension
appropriate to the spin of the particle (12&& 12 for spin —', )

which obey anticommutation relations of a Clifford alge-
bra

[y, y.l+ =2&~. '

and the adjoint wave function is defined as

&4rt .—

rl is +1 except for states which have M&0, and which
have timelike components non vanishing in their rest
frame. This is the indefinite metric, which allows a
theory second order in time derivatives nonetheless to
yield positive definite probability densities. Gauge invari-
ant coupling of the P particles to a vector field Az with
coupling constant g is done via the minimal coupling sub-
stitution

Bp~Bp —EgAp

The Feynman propagator in this formalism is

D (x,x') = —, (0
~

T[P(x)P(x')]
~

0),

FIG. 1. Feynman diagram for pion-nucleon scattering with
intermediate s-channel delta; momentum and energy variables
as labeled.

delta excitation vertex is a four row by twelve column ma-
trix, and the decay vertex is 12)&4. Such vertex functions
can be found in the work of Danos, Gillet, and Cauvin.
They construct vertices which exhibit the invariance prop-
erties of the appropriate interaction, which are Lorentz in-
variant, and which are the simplest possible combinations
of the fields and their derivatives. Minimal coupling is
invoked for electromagnetic vertices. Explicit forms for
the vertex functions for both the Hayward and Rarita-
Schwinger formalisms can be found in the Appendix.

In order to exhibit these vertices and the delta propaga-
tor in familiar notation and in a way easily compared with
the Rarita-Schwinger results, I have chosen to consider
three processes —pion nucleon scattering, photon nucleon
scattering, and pion photoproduction —considering in
each case only that graph which leads to the s channel ex-
citation of a delta. Isospin indices will be suppressed.
These processes will be presented as 4X4 matrices which
should be sandwiched between standard four-spinors
(u, u) in order to compute amplitudes. They will be ex-
hibited using the Pauli 2X2 spin matrices, so as to clearly
represent the relative size of contributions in the low vel-
ocity limit. The vertex matrices presented represent the
produce of three matrices, [4)& 12].[12&& 12] [12&& 4]
=[4X4]. The particular representation of the Dirac y
matrices used separates the four-spinors into the upper
two "large components" and the lower two "small com-
ponents":

where
~

0) and (0
~

are vacuum bra and ket states and
T [ ] denotes the chronological product

u =[(E+m) /2m]'~ 1
X

O'P

E+M
T[P(x)P(x')]=/(x)P(x') if t)t'

=(—) 'P(x')P(x) if t') t (10)
where 1 is the 2&(2 unit matrix, o. are the three 2)&2 Pauli
spin matrices, 7 is a Pauli two-spinor, and m is the nu-
cleon mass.

(s denotes particle spin). This propagator is explicitly ex-
hibited in the Hayward article for a particular gauge
choice.

To use the Hayward formalism in the calculation of
graphs where the delta exists in an intermediate state,
having been created from, and decaying into, a nucleon,
the vertex functions must be nonsquare matrices. The

PION-NUCLEON SCATTERING

The pion-nucleon center-of-mass scattering amplitude,
with momenta and energies defined in Fig. 1, is propor-
tional to the following:

(a) The Rarita-Schwinger formalism (pseudoscalar pion)

3M
Duf (M+8') q'. q ——o"q'&(q + co 0 u; .i, M —8

2 M

0

(12)
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(b) The Hayward formalism

1

2M f

(M+ W) q
'.

q
——o"q 'Xq
2

(M —W) q
'.

q
——o"q 'X q2

W is the total center-of-mass energy, co is the pion total energy, and M is the delta mass. Each term in these 2 X 2 arrays
is itself a 2 X 2 matrix. D represents the inverse of the quadratic energy denominator, which, in the case of a stable delta
particle, would be

D= 1

(E+co) M—+i@
(14)

The appropriate form for this term accounting for the decay of the delta will be described later.
At the resonance peak (M = W) these two formalisms give identical results. Moving off the peak by one half width in

either direction, the RS amplitude picks up an extra term which is smaller than the dominant one by I /2M (-0.05).
The additional term in the H amplitude is much smaller, being reduced from the dominant term by a factor
(I /2M) q /(E+m) ( -0.007). Despite the differences in angular dependence of the off-peak contributions, it will be
difficult for experiments in the resonance region to give evidence favoring one formalism over the other.

PHOTON-NUCLEON SCATTERING

The center-of-mass amplitude for elastic photon-nucleon scattering (see Fig. 2) is proportional to the following:
(a) The Rarita-Schwinger formalism

1

3M
au~ (M —W)

e' e——o'e'ge 0
2

1

M+m
M+W k' kk — (~' r+~v r yr)+ (ie k'XEo"e' ek'e' E —iZ k'cr e'—Xk)

M M+ 2(M +m)

1

(M+m)

1

M+m
E' acr e'+ ——k ' axe' — ee'o"E'—

2 2

e' e——o'e'Xe
2

u; . (15)

Here ez ——(O, e') and e„=(0,e) are the polarization four-
vectors and m is the nucleon mass. Only the lowest two
nonvanishing orders in terms of k/M (-0.2 in the reso-
nance region) are retained.

There are two separately gauge invariant yNA cou-
plings appropriate for this formalism. The one exhibited
here is the M1 coupling, which experimentally has been
shown to dominate in the resonance region. The other
coupling, the electric quadrupole, is linear in the nucleon
momenta as well as the photon momenta. Isospin depen-
dence of the Ml coupling prescribes equal amplitudes for
yp and yn scattering.

(b) The Hayward formalism: The independent cou-
plings for the yNE vertex appear in Ref. 6. The first and
simplest, the current interaction, leads to the scattering
amplitude

FIG. 2. Feynman diagram for photon-nucleon scattering
with intermediate s-channel delta; momentum, energy, and po-
larization variables as labeled.
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1
f

(M —W) e' F —o—"F'XF
2

0 (M+ W) e' E— o—"F'Xe
2

ug (16)

The anomalous moment term of Ref. 6 must be included to produce favorable comparison with RS predictions (which
have been shown to be in agreement with photoproduction data). Letting rM (r dimensionless) be the ratio of the cou-
p].ing constant for the anomalous moment vertex to that of the current vertex, the lowest two nonvanishing orders of the
added contributions are

—1
Duf r

—4—(M —W) e'F——o ~'Xe
2

(M+W)
(

g k g k —
)

3(M+W)(, k, k, ,
)

(M+ W)

M

0

e'.ek 'k+r'. ke k ' e'—k—'Xko"e+ —k ' &X&'~ k.
2 2

0 u;. (17)

Isospin dependence of these amplitudes is not specified by
the theory and, in lieu of a dynamic theory of the struc-
ture of baryons, should be adjusted to fit the data.

The leading term in the RS formalism is identical to
the leading term of the current vertex contribution in the
Hayward formalism [Eq. (17)]. The energy dependence of
these two terms causes them to vanish at resonance, how-

I

ever. Similarities exist between the remaining terms in the
RS amplitude and the anomalous moment terms of Eq.
(18), but no one-to-one matching is possible.

Appropriate choice of the anomalous transition mo-
ment (equivalently r) can be made to produce similar re-
sults: An example of such a choice will be illustrated later
in this paper.

PHOTOPRODUCTION OF PIONS

In the center of mass system, the pion photoproduction amplitude (shown in Fig. 3), is proportional to the following:
(a) The Rarita-Schwinger formalism (pseudoscalar pion)

M+ W co
(

M, — (M —W)ken, i

1
f + (e q'o"k ie q'X—k)

M+m u;. (18)

(M —W) q
' F——0"q

' X e
2

Terms of order k /M and higher, relative to the leading terms, have been discarded.
(b) The Hayward formalism

1

2M
Duf

(M —W) I+r— q' e cr q'Xe-—
Pl 2

u;.

.'M+ W'(q .. r ;k .,)————
M

(19)
(M —W) q 'e ——o"q 'XF

2
0

Higher order terms, as in (a) above, have been discarded.
Isospin dependence yields coefficients of 1, —1, 2, and 2
for the processes yn~pm. , yp~nm+, yp~pn. , and
yn —+nn. , respectively, for the RS amplitude. The Hay-
ward case prescribes the standard isospin vector coupling

coefficients for the em final state, but the relation between
the yp and yn amplitudes is not specified.

At resonance (M = W) the forms of these two ampli-
tudes become very similar, suggesting that an appropriate
choice of r might produce good agreement (which shall be
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I

Q, gg

FIG. 3. Feynman diagram for pion photoproduction from a
nucleon, with intermediate s-channel delta; momentum, energy,

and polarization variables as labeled.

demonstrated). Quite dissimilar terms become noticeable
when the energy is merely one half width from the reso-
nance peak, and discrepancies in prediction should be
measurable in integrated cross sections, and even more so
in particular spin and angular differential cross sections.

NUMERICAL ILLUSTRATION

In an attempt to somewhat quantify comparison of the
three Rarita-Schwinger and Hayward amplitudes, Figs.
4—6 present fixed total energy angular dependences of
these amplitudes. They are shown on arbitrary scales,
fixed such that the imaginary parts of the RS and Hay-
ward amplitudes are equal in the forward direction at
8'=1232 MeV (at resonance). Angular dependences are
shown at the peak, and at a total energy one half-width on
either side. For the purpose of these graphs, the energy
denomination was chosen to be

1D=
W —M +iMI

with I =-110 MeV. The illustrated values correspond to
the situation in which all polarization (nucleon and pho-
ton, initial and final) are perpendicular to the scattering
plane. The amplitudes and angles are expressed in the
center of mass frame.

Figure 4 serves to illustrate the fact that with appropri-
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FIG. 4. Angular dependence of pion scattering amplitudes at
three energies in the resonance region (solid line—RS amplitude;

dashed line—Hayward amplitude).

FIG. 5. Angular dependence of photon scattering amplitude

at three energies in the resonance region (solid line—RS ampli-

tude; dashed line—Hayward amplitude).



29 FREE DELTA PROPAGATOR 2227

0-

(Y

tel
CL

Im(M)
4/= t 232

Re(H)
Q Cdeg)

Z:
H
CL
LLI

(f)

177

R~CQ0

FIG. 6. Angular dependence of pion photoproduction ampli-
tude at three energies in the resonance region (solid line—RS
amplitude; dashed line—Hayward amplitude).

ate choice of coupling constants, the two formalisms give
effectively identical predictions of m.-N scattering ampli-
tudes. Whereas the discrepancy between the two becomes
greater proportional to the distance from the resonance
peak, terms in the total mN amplitude other than the 3-3
resonance term should obscure the difference.

Figure 5 shows a comparison of the two formalisms for
pion photoproduction. In the 8' = 1232 MeV calculation
the value of r, representing the size of the anomalous
transition moment, and the size of the yNA vertex cou-
pling constant, were chosen to give the best agreement be-
tween the two. Nearly perfect agreement at this energy
leads to quite noticeable differences of prediction at ener-
gies one half-width away. Specific energies, scattering an-
gles, and/or polarization directions could be selected
which would emphasize these differences, and allow ex-
perimental results to choose the amplitude in best agree-
ment. (Since for spin —,', the Hayward theory coincides
with standard Dir'ac theory, s and u channel processes
with nucleon intermediate states will be treated identically

in the two formalisms. ) The value of r chosen using pho-
toproduction calculations is used for the calculation of
photon scattering.

Figure 6 shows angular distribution for elastic photon
scattering calculated using the two formalisms. The value
of the Hayward Nyh current coupling constant is chosen
so that the imaginary part of the 8'=1232 MeV curve
will match the result from RS, while the ratio of the
anomalous moment coupling constant to that for the
current vertex is the same as was used in the photopro-
duction fit. Whereas the predictions of the two formal-
isms are in qualitative agreement at 8'=1287 and 1177
MeV, at resonance, the real parts have opposite sign.
Other choices of this ratio can improve this particular
discrepancy, but at the expense of the fit at other energies.
Using coupling constants deduced from the photoproduc-
tion fit can give a parameter-free prediction of the curves
of Fig. 6. This would cause an enhancement of the Hay-
ward predictions (dashed lines) by a factor of 6.7, and put
the two formalisms in complete disagreement.

No attempt has been made to find the optional set of
Hayward coupling constants which would give the best
agreement with RS predictions. The above calculations
are to illustrate the fact that simultaneous comparison of
predictions with data using the two approaches for the
three processes considered should clearly rule in favor of
one approach over the other. They cannot agree with
each other within the resonance region —experiment must
support one, or neither.

Two aspects of the data of Figs. 4—6 warrant further
comment. Whereas at resonance, one expects the real part
of the scattering amplitude to vanish, each figure shows
real parts of significant size at 8'=1232 MeV. This is
because a relativistic propagator includes both a particle
moving forward in time, and an antiparticle moving back-
ward in time. In the center of mass system the first possi-
bility corresponds to a pure (resonant) spin = —, ampli-
tude, but the second contains all multipoles and is not to-
tally imaginary at resonance. In yN scattering, the terms
corresponding to a propagating antiparticle are of the
same order of magnitude as the particle propagation con-
tributions. The other matter refers specifically to the
8'=1177 graph in Fig. 6. For both formalisms the
imaginary part of the forward scattering amplitude is
negativ~a violation of unitarity. This would not be a
problem in a complete calculation, where the unitarity of
the S matrix is guaranteed by the presence of additional
contributions which provide a slowly varying background
to the 6 exchange term in the resonance region.

ENERGY DENOMINATOR

The form of the propagator, particularly the energy
dependence of the form factor (if any) and the denomina-
tor, depends upon the underlying theoretical assumptions.

If the delta is treated as a fundamental field in a La-
grangian field theory, it is assumed to be a stable
particle —the mass is represented by a point on the real
axis of the complex energy plane. With fundamental nu-
cleon and pion fields, the presence of a Nm state with the
same quantum numbers as the delta but at lower energy
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will "dress" the bare delta, giving the physical delta a
shifted mass and a nonzero width.

Theories exemplified by the Chew-Low model do not
introduce the delta in the Lagrangian but find that the
various manifestations of the delta "resonance" can be ex-
plained by sums of states Nm, Nmm, Nm. mm, . . . . Such ap-
proaches often use a resonance denominator as a con-
venient parametrization of behavior in the resonance re-
gion, but would not expect the spin dependence to be so
rigidly described as by the RS or Hayward propagators.
From this point of view the introduction of a separate del-
ta field brings the danger of double counting, yet there are
ways to avoid or at least minimize these problems while
treating the delta as a fundamental field.

S matrix theory allows, in addition to poles on the real
axis in the complex energy plane, fixed off-axis poles on
the second sheet, i.e., resonances with mass M and width
I' which do not vary with energy,

(2l)

where s is the square of the total center of mass energy.
Crossing symmetry implies an image pole, off axis, at
u =M2 iMI—(u is the Mandelstam crossed energy vari-
able).

When processes are treated in a truncated Hilbert space
(considering nucleons and deltas as the only baryons, for
example), often fundamental requirements of amplitudes
like unitarity and crossing symmetry are lost. Contribu-
tions to the amplitude which are unitary separately are
not easily combined into a unitary sum. Such difficulties
can produce obvious errors. In Compton scattering, the
amplitude should be real below the Nm threshold. A fixed
pole delta violates this requirement, even when crossing
symmetry is accounted for. In the S matrix approach, the
imaginary parts of the sum of the s and u channel delta
amplitudes are cancelled exactly, below Nm threshold, by
the summed contributions of s and u channel graphs of
all higher resonances. This must be accounted for in a
realistic calculation. A further requirement of Compton
scattering is that the threshold cross section must equal
the Thompson cross section, and this is accomplished by
treating only the s and u channel nucleon poles. Delta s
and u exchange contributions do not vanish at threshold,
and again must be cancelled by the effects of processes
not explicitly included. Olsson has shown that the ef-
fects of unitarizing amplitudes consisting of a single
resonant pole and nonresonant background can be treated
by the introduction of energy dependent widths and vertex
functions into the propagators. The precise form of the
width function as well as a multiplicative energy depen-
dent factor for the propagator depend upon what terms
are included in the treatment (no background, back-
ground, other resonances'?) as well as upon which process
is being considered. An example of Olsson's results, in
the case where s channel delta exchange is added to a non-
resonant background for the treatment of Nm scattering is

(E+m)(v s +M)
6s q

3

and the vertex factor Vis proportional to

(E+m)(v s +M) z
q

S

(23)

(24)
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FIG. 7. Scattering phase shift for pion-nucleon scattering in
total spin = 2, total isospin =

z channel: solid line—fit to
data; dashed line—fixed delta pole; dot-dashed line-
parametrization of Olsson.

In the case of yN scattering, V is proportional to k, the
square of the photon momentum. The q dependence of
the width guarantees zero width at (and below) pion
threshold, and the k vertex function for yN scattering
ensures a zero contribution at photon threshold.

Exhibited in Fig. 7 is the energy dependence of the AN
scattering phase shift in the neighborhood of the delta
peak, in the spin = —,', isospin = —,

' channel. The solid line
represents a fit to the experimental phase shifts, ' the
dashed line represents the phase shifts of a fixed pole of
width 110 MeV, and the dot-dashed line represents the
parametrization of Olsson. The discrepancy between ex-
periment and 01sson's result can be nearly eliminated with
the inclusion of appropriate background terms.

A treatment of the resonating ratio D, following
Olsson, with V and I chosen appropriate to the process
under consideration and to the number of and kind of am-
plitudes included, should produce reasonable cross section
predictions in the resonance region.

Crossing symmetry implies the need to treat the u
channel delta exchanges in combination with the s chan-
nel exchanges discussed herein. Even in the center of
mass system, the Rarita-Schwinger and Hayward propa-
gators for this case become extremely tedious and compli-
cated. For treatment of processes from threshold through
the delta resonance region, the u delta contributions can
be implicitly included via the energy dependent width and
vertex function of the s channel propagator. For pion
scattering and photoproduction, the u channel delta pole
is always more distant (in the energy plane) than theI"( l470), the next higher nucleon resonance which is sel-
dom explicitly included. In Compton scattering at thresh-
old, the s and u channel delta poles are equidistant, but

D= V

s —M +iMI
where

(22)



29 FREE DELTA PROPAGATOR 2229

their sum must be canceled here by other processes (simu-
lated by k in the vertex function), and thus even here the
u delta exchange can be consistently omitted.
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APPENDIX

0 0 0 I
Do= 8 0 I 0 0 Dk=

where I is the 2&(2 unit matrix;
trices with elements

Gk —Fk

FI, 0 0 —Fk

then Gk are 2&2 ma-

—l Gy~E@Dp

Nyh anomalous moment vertex:

—iGr, (y„D„—y+~)(k„e„—k„e„),
where 6„, 6&„and 6&, are the coupling constants. D&
is a 4X 12 matrix of the form (k = 1,2, 3),

The amplitudes calculated in this paper are related to
two three-particle vertices, the Nm. h and the Nyh. The
form of these is shown below:

(a) The Rarita-Schwinger formalism:
N~A vertex:

Nyh vertex:

y~Jc„
(M +m)

where g and g& are the coupling constants for the ver-
tices, and the p index (0,1,2,3) is to be contracted with the
four-vector index on the RS —,

' spinor in the final state.
Repeated indices are summed. A form for the RS propa-
gator is given in Eq. (3).

(b) The Hayward formalism:
Nmh vertex:

6 ysqpDp

Nyh current vertex:

(G3) = —2v 6C' p''

and Fk are 2)&4 matrices with elements

(F3)~ ~ = &3—/2CIn'o~

The C's are Clebsch-Gordan coefficients. The rows and
columns of the G matrices are labeled m =+—,', ——,'; for
the F matrices, I'= —,, + —,, ——,, ——,.

The Hayward propagator, in the simplest case of a 5
particle in its center of mass frame and in a gauge (analo-
gous to the Lorentz gauge in QED) where gauge-
dependent terms (analogous to longitudinal photons) van-
ish, is a 12&&12 diagonal matrix. The top four diagonal
elements have the value (M+ W)/2M; diagonal elements
6—10 have the value (M —W)/2M; all other matrix ele-
ments vanish.
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