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An application of intensity interferometry to relativistic heavy ion collisions is reported. The
correlation between two like-charged pions is used to study the reactions Ar+KCl1—27%+X and
Ne+NaF—27~ +X, both at an incident beam energy of 1.8 4 GeV. Source sizes and lifetimes are
measured and compared to the predictions of simple geometric models and of Monte Carlo cascade
calculations. There appears to be a substantial coherent component of the pion source, although
measurement is complicated by the presence of final state interactions. A detailed discussion of the
techniques of intensity interferometry is also presented. The generation of uncorrelated background
events is discussed, along with the influence of the correlation on the background and the prescrip-
tion for its removal. The statistical errors in the background spectrum are examined and found to
have nontrivial implications for the analysis. The effect of the mutual Coulomb repulsion of the
two pions, and of the pion-nuclear Coulomb interaction, on the two-pion correlation function is
analyzed. The impact parameter bias resulting from a two-pion trigger is calculated and found to be
substantial. Finally, a simple model for the interpretation of Gaussian source parameters is present-

ed and compared to the predictions of Monte Carlo cascade calculations.

I. INTRODUCTION

The collision of two nuclei at relativistic energies is an
event of both considerable interest and considerable com-
plexity. The interest arises from the high energy densities
expected in the collision region. The complexity results
from the large number of inelastic nucleon-nucleon col-
lisions. To date, all efforts to understand such a system
proceed through the construction of a model rather than
an exact solution of the underlying dynamics. In the past
ten years, a large variety of models have been used in at-
tempts to explain the systematics of relativistic heavy ion
collisions (RHIC), with varying degrees of success. Simi-
larly, experimental attempts to discriminate between vari-
ous approaches have been frustrated by the ability of
models with vastly different (and mutually inconsistent)
assumptions to predict equally well the single-particle
momentum spectra.

Two-particle inclusive measurements offer a more sen-
sitive tool for understanding RHIC. In particular, the
measurement of two-particle relative momentum distribu-
tions allows one to determine the collision geometry quite
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directly, by using the technique of intensity inter-
ferometry. In this paper, the results of such a measure-
ment for Ar + KCl and Ne + NaF collisions at 1.8 4 GeV
are reported. In Sec. II, a brief description of intensity in-
terferometry is provided. The experimental apparatus is
described in Sec. III. Data analysis procedures are dis-
cussed at some length in Sec. IV. Results are presented in
Sec. V, with a summary and conclusion in Sec. VI. Three
appendices discuss the question of impact parameter
biases, the error analysis of the background spectrum, and
the consequences of a simple geometric model for the pion
production process in RHIC.

II. INTENSITY INTERFEROMETRY

Intensity interferometry uses the correlations between
like particles induced by Fermi or Bose statistics to deter-
mine the space and time dimensions of the particle source.
The method is quite general, first finding application to
the measurement of stellar diameters in the pioneering
work of Hanbury-Brown and Twiss.! Goldhaber,
Goldhaber, Lee, and Pais> (GGLP) were the first to ex-
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tend these methods to particle physics. By modifying the
Fermi statistical model to include symmetrization be-
tween like particles, GGLP were able to explain the ob-
served differences in opening angles between like-charged
pairs and oppositely-charged pairs of pions created in pp
annihilation. Since then, many authors have used similar
approaches to measure the size of hadronic interaction re-
gions. Recently, these methods have been extended to
RHIC by the University of California Riverside group.}

A particularly convenient approach to intensity inter-
ferometry in particle physics proceeds through the intro-
duction of the two-particle correlation function C,, first
introduced by Kopylov and Podgoretskii.* An heuristic
discussion is presented here for the sake of completeness.
For further details, with particular emphasis on RHIC,
the reader is referred to the work of Gyulassy et al.’ and
Yano and Koonin.®

Consider the detection of two like pions, shown
schematically in Fig. 1. Assume that the pions are creat-
ed in the same event, such that a pion of momentum p; is
detected at x;, while the pion detected at x, has momen-
tum p,. (In what follows, the quantities p, r, and x are
four-vectors.) If the pion source extends over some spatial
region including r; and r,, there are two ways to obtain
the same final state observed at x; and x,. Since the par-
ticles are indistinguishable, the amplitudes for the two al-
ternate paths must be added. The probability of such an
event is then proportional to the square of the resulting
amplitude, so that (assuming the pions may be described
by plane waves)

ipi(xy—ry) ip)(xy—r,)
dPlZNIepl 1 1eP2 27"

ip(xy—ry) ipy(xy—ry)
e PTG PR T 2, gy (1)

If the distribution of individual pion sources in space and
time is described by a distribution function p(#), and if the
emission of pions at different space-time points may be
treated as statistically independent, the net probability is
then obtained by integrating Eq. (1) over the coordinates
ry and r,, so that

Py~ [ dPyp(ri)p(r)=1+|5(g)|?, @

where ¢ =p, —p; and p is the Fourier transform of p(r)
with respect to g. This is the essential result of intensity
interferometry: The probability of detecting two bosons
depends on their relative momentum, with an enhance-
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FIG. 1. Schematic illustration of a two-pion correlation ex-
periment in which a pion of momentum p, is detected at x;
simultaneously with the detection of a pion with momentum p,
at x,. The pions are assumed to originate from an extended
source encompassing r; and r;.

W. A. ZAJC et al. 29

ment equal to the square of the Fourier transform of the
source distribution function. If R is some characteristic
source size, the range of the enhancement will extend over
qg~1/R, as expected from the uncertainty principle.
Thus, a comparison of the observed relative momentum
spectrum to the relative momentum spectrum expected in
the absence of Bose-Einstein correlations (using, for exam-
ple, pion pairs from sources widely separated in space and
time) permits extraction of the pion source size and life-
time.

The more refined treatments of Refs. 5 and 6 show that
the left-hand side (lhs) of Eq. (2) may be expressed as the
the ratio of the two-particle inclusive cross section to the
product of the single-particle cross sections (suitably nor-
malized by the mean multiplicities), so that

d60,,
ey T
_ _ k.
P, =Cy(py,p1)= (n,,(n,,—l)> d30,, d301r - @
dpi dp3

The above expression defines the two-particle correlation
function C,, which is generally a function of the two mo-
menta p; and p,. If the pion may be described by plane
waves, and if the individual pion emitters may be regard-
ed as pointlike,” then C, becomes a function of only the
relative four-momentum ¢. Arguments similar to those
leading to Eq. (2) then give for C,

Co(p1,p2)—>Ca(g)=1+ |p(d,q0) | *,

where §=P,—P; and go=|E,—E,|. Note that the
normalization of p(r) ensures that |p(d=0,g9,=0)|%=1,
so that an ideal C,(q,go) would have an intercept of 2.

As an example of this procedure, consider a source den-
sity given by

1 _r2/r2_ 422
e , (4)
mR3r
where R (7) is the distribution of pion emission points in
space (time). Calculation of the squared Fourier

transform for this distribution then gives for the correla-
tion function

p(T,t)=

= 2R2 2.2
—U/| T PR -(/2g57> 5)
As noted above, the normalization of p(r) would imply
that C,(q=q¢=0)=2. In practice, the zero intercept of
C, is usually observed to be somewhat less than 2. This
observation motivated Deutschmann et al.® to introduce
the parameter A to avoid the introduction of systematic
biases in fitting the data to the observed correlation func-
tions. Possible sources of the deviation of A from unity
and their interpretation will be discussed in Sec. V.

C2(q,q0)=1+2e

III. EXPERIMENTAL METHODS

Figure 2 shows a view of the apparatus used in this ex-
periment. Beams of 1.84 GeV “’Ar and *Ne from the
Berkeley Bevalac were directed onto KCl and NaF tar-
gets, respectively, which in each case provides a nearly
symmetric target-projectile system. Targets of 0.5 to 1.0



29 TWO-PION CORRELATIONS IN HEAVY ION COLLISIONS

Al A2 A3 A4 A5 A6 A7 A8

MWPC4 B2 B3 B4 B5B6B7B8B9

MWPC3

N\
y I z

Target Beam

T T T T
0 20 40 60 80100
Scale in centimeters

FIG. 2. The experimental apparatus.

gcm™2, which provide an interaction probability on the
order of 1%, gave a good compromise between high event
rates and multiple scattering of the pions in the target ma-
terial. Intensities were typically 103—10° beam particles
per pulse, where one pulse is slightly less than a second in
duration. At these intensities, between 0.1 and 1 good
events per pulse were obtained. (The Bevalac duty cycle is
one pulse every six seconds at a magnetic field corre-
sponding to 1.84 GeV.)

Pions emerging at 45+8 deg from the beam direction
were accepted into a simple magnetic spectrometer sys-
tem. A 9 kG central field was provided by an H-type
magnet with a 56 cmX 168 cm pole tip and a 21.5 cm
gap. The ingoing trajectories of the pions were defined by
two small (30.2 cmX14.2 cm) multiwire proportional
counters, MWPC1 and MWPC2. After being bent in the
field, the pions pass through two large (200 cm X 25 cm)
MWPC’s, thereby defining their outgoing trajectories, and
hence the bend angle. Each of the four MWPC’s consist-
ed of three planes of sense wires with 2 mm wire spacing,
with 1.4 cm spacing between the sense planes.

A two-pion trigger is created using the scintillation
counters S1 and S2, various combinations of the 4 and B
counters, and a fast signal FO from the MWPC’s. The
geometric overlap of a given A4 counter with a B counter
defines 17 allowed combinations (4B);. Two-pion events
are therefore defined by the requirement

event=S1-S2:-F0-(AB),,"(AB), ,

with m=s£n. Time-of-flight (TOF) signals were measured
between S2 and the various AB combinations. The pulse
height analog-to-digital converter (ADC) for each A and
B counter was also recorded. Proton contamination was
reduced on line by narrow TOF gatewidths, and off line
by a combination of further TOF cuts and ADC cuts (see
Fig. 3 for an example of typical TOF and ADC spectra).
This procedure reduces the proton contamination to less
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FIG. 3. (a) TOF spectrum for 7’s and protons. Each bin cor-
responds to 1.6 ns. (b) ADC spectrum showing the pulse heights
obtained for 7’s and protons.

than 1%, as may be seen in Fig. 4. Note that the arrow at
E. . =500 MeV in Fig. 4(a) is equivalent to the arrow in
Fig. 4(b) located at | Py, | =700 MeV/c¢, so that the ap-
parently large proton contamination in the first graph is
in reality barely discernible in the total event sample. The
narrow TOF gates also serve to reduce the electron con-
tamination to a negligible level for all pion momenta con-
sidered here. Accidental triggers due to the simultaneous
detection of two single-pion events are minimized by the
narrow (< 100 ns) gate used in the overall trigger. Such
events never exceeded a 5% contribution at the highest
beam intensities and were reduced to a negligible level off
line using the time-of-flight data for each 4B combina-
tion. More detailed information concerning the fast elec-
tronics and data acquisition, as well as the analysis codes
to be described below, may be found elsewhere.’

Off-line analysis begins by identifying all possible track
candidates using a simple geometric algorithm. These
candidates are then momentum analyzed using an interpo-
lation method based on a Chebyshev parametrization of
Monte Carlo tracks.”® The accuracy of this procedure
may be assessed from the contents of Table I, which give
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FIG. 4. (a) Invariant single-particle spectrum (arbitrary nor-
malization) for Ar + KCl—27* +X events. (b) Raw spectrum
(uncorrected for spectrometer acceptance) in the laboratory for
the same reaction as above. The arrow at E_,, =500 MeV in (a)
is equivalent to the arrow in (b) at | P | =700 MeV/c.

the predicted resolution for the momentum, both in mag-
nitude and in angle, as well as the initial position of each
pion on the target (in the plane perpendicular to the
beam). These results are calculated by a Monte Carlo pro-
cedure which includes the effects of the spatial extent of
the beam on the target, the decay in flight of the pions,
spatial resolution of the wire chambers, and multiple
scattering and energy loss in the target, counters,
MWPC’s, and air, averaged over the observed momentum
spectrum. In Fig. 5 the absolute and relative momentum
resolution are shown as a function of the laboratory
momentum. For low momenta, the resolution is deter-
mined by multiple scattering in the target and the “S”
counters, while for high momenta the spatial resolution
(1 mm) of the MWPC'’s in the bend plane is the limiting
factor. For |P| >200 MeV/c, the relative momentum
resolution is always better than 2.5%. All results reported
here will be for pions with laboratory momentum satisfy-
ing

TABLE 1. Resolution for fitted quantities in the presence of
energy loss and multiple scattering.

Quantity {(Actual —fit)) {(Actual —fit)?)
|| MeV/e) 3.74 3.79
0 (deg) 0.042 1.01
¢ (deg) 5.63x 1073 1.39
x" (cm) —0.053 1.09
y™ (cm) 0.046 0.893

220 MeV/c < | Puan| <800 MeV /c .

These cuts provide an essentially proton-free sample of
pions with high momentum resolution.

Of particular importance for an intensity inter-
ferometry experiment is the resolution in relative momen-
tum. These distributions are shown in Fig. 6, for both the
relative momentum and the relative energy, again aver-
aged over the single-pion momentum distribution. Also
shown is the relative invariant momentum,
ginv={]g |*—¢3)'/2. This quantity will be used in the
Coulomb corrections to the relative momentum spectrum,
to be discussed below.
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FIG. 5. Relative (a) and absolute (b) momentum resolution as
a function of the magnitude of the laboratory momentum.
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FIG. 6. (a) Resolution in the magnitude of the relative

momentum as a function of the relative momentum. (b) Resolu-
tion in the relative energy as a function of the relative energy.
(c) Resolution in the magnitude of the relative four-momentum,
as a function of the relative three-momentum.

IV. GENERATION OF
THE CORRELATION FUNCTION

Following the Chebyshev parametrization for the vec-
tor momentum of each track, cuts are made on various
quality-of-fit variables, the TOF and pulse height in the
AB counters, etc. The result is a data set consisting of
momentum-analyzed pion pairs, from which the correla-
tion function will be created. This section describes the
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means by which C, is calculated and the motivation for
doing so.

In principle the definition of C, as the ratio of the in-
variant cross sections [Eq. (3)] could be used to calculate
the correlation function. While this approach is often
used in theoretical work,’ it is extremely impractical from
an experimental point of view. Aside from the purely sta-
tistical problems resulting from binning events in six-
dimensional phase space, a more fundamental difficulty in
triggered experiments is the bias introduced by the two-
particle requirement. Unless the single-particle inclusive
cross sections in Eq. (3) reflect this bias, the numerator
will contain pions from a different class of events than the
denominator, which is known to produce spurious effects
in the calculation of the correlation function.!! Appendix
A shows that such a bias does indeed exist for the two-
pion trigger used in this experiment. By relating the num-
ber of produced pions to the number of participant nu-
cleons, it is shown there that requiring pion production
reduces the mean impact parameter (b) considerably
from the unbiased value of 5.5 fm (for Ar + KCl col-
lisions). Not surprisingly, higher pion multiplicities are
associated with smaller impact parameters, so that for the
one-pion trigger (in our spectrometer) we have
(b(17w))=3.3 fm, while for the two-pion trigger
(b(2m))=1.2 fm.

To avoid the difficulties that arise from mixing pions
from different event classes, an alternative approach based
solely on the observed two-particle relative momentum
spectrum A (q,q,) is desirable. (For the remainder of this
paper we will use g to denote |q|.) If a background
spectrum B(g,qq) could be found such that all details
such as production dynamics, experimental acceptances
and biases, etc., were incorporated, except those induced
by Bose-Einstein correlations, then it is clear that C,
would be given by

A(q,90)
B (q,%) '

The most common prescription used to generate
B(q,q0) is that of different-event mixing, as first suggest-
ed by Kopylov.!? In this scheme, fake events, generated
by combining individual pions taken from different
events, are used to calculate a “random” background spec-
trum in g and g,. Intuitively, it would appear that accep-
tance effects, single-particle spectra, etc., would be con-
tained in this spectrum, but that interference effects,
which are not expected to extend to pions from different
events, would be removed, thereby satisfying the defini-
tion of a suitable background spectrum.

In practice, it is found that different-event mixing never
fully removes the correlations induced by Bose statistics.
This is most easily appreciated by considering a hypothet-
ical experiment that measures only a very small region of
the total p; ~p, phase space. As the size of this region
shrinks to zero, every real pion pair will be within the
“range” of the correlation, so that p; ~p, for all events,
and thus any mixing process on this data set will also
create events with p; ~p,. Mathematically, this may be
understood by the following argument: First, we adopt
the notation

C,(q,90)= (6)
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Ca(p1,p2)=1+Alp1,p;) .
Equation (3) may then be written in the schematic form
d’n dn_dn
=[1+Alpr,p2) ]l ———.
dpdp, b dp, dp,
The background spectrum generated by different-event

mixing then has a distribution in p, given by integrating
over all p,, so that

()

dng d*n dn dn
= dp,=—— 1+A(p1,pr)]1—d,
7 IR ooy P . [ [1+Ap1Lp Vapr P2

d
=—[1+A(p;;A)] . (8)
dp, [ D1 1

In the above expression, () is the region of integration,
which of course is given by the acceptance of the spec-
trometer used to measure the two-pion distribution. The
desired single-particle spectrum dn /dp, is thus modified
by a correction term A(p;,A), which in the ideal case
should be a small quantity compared to one. Similarly, a
correlation function using this background spectrum will
contain these (momentum-dependent) correction terms:

1+Apy,p2)
[1+A(p;A)][1+A(py;A)] -

Before discussing the removal of the A’s from the
different-event mixing correlation function, several re-
marks are in order. First, it should be obvious that the
above results are independent of the origin of the two-
particle correlations. Instead, they derive immediately
from the assumed form of Eq. (7), and therefore apply to
any attempt to generate correlation functions, whether the
source of the correlations is kinematic, dynamic, or sta-
tistical. Second, even in the limit of 47 spectrometer ac-
ceptance, the A’s are nonzero. Explicit calculation of the
A’s, using reasonable forms for A(q,q0) and dn/dp,,
shows that the correction terms in C, are of order
({(k,YR)™3, where (k,) is the average pion momentum,
and R is the pion source size. Very general arguments’
independent of the assumed form for A and dn/dp, lead
to the same conclusions. Thus, for Q=47 and for RHIC,
these correction terms are of the order 2—5 %. Finally, it
should be clear that a “figure of merit” for the different-
event mixing method is the average value of A over the
data set. Since failure to remove these effects can lead to
spurious conclusions concerning the degree of pion source
coherence, large average values of A (> 10%) must be re-
moved explicitly. We now direct our attention to the re-
moval method.

Assume one had a priori knowledge of C,, and thus of
Al(g,90). Consider an arbitrary background event b;; gen-
erated by taking a pion with momentum p; from one
event and one with momentum p; from a different event.
If each b;; is assigned a weight given by

C3(p1,p2)= )

wo(by)=[1+A(p; M) [1+A(p;;A)], (10)

these weight factors will then precisely cancel the unwant-
ed terms appearing in Eq. (9). Binning in terms of g and
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qo simply introduces a sum over a projection operator
P[(gq0)—(pip;)],

w(q,90)= ZP[(QQQ)ﬁ(Pin)]a)(bij) ’ (11)
i

without affecting the basic result that explicit knowledge
of C, allows us to develop a prescription for weighting
background events such that the spurious factor terms in
Eq. (9) are cancelled.

In practice, of course, C, is not known beforehand. In-
stead, an iterative procedure must be used. C, is
parametrized in terms of assumed values for the source
radius and lifetime. A weighted background spectrum is
calculated via Eq. (11), which is then used in Eq. (6) to
calculate a new C,. This correlation function is then fit
to determine the new source parameters, which are then
used to recalculate B(g,qo), and thus close the loop.
Monte Carlo simulations of this procedure have verified
that it does indeed regenerate the correlation function
from pion pairs observed in a small acceptance region.
The iteration converges to stable values for the radius and
lifetime very quickly (between two and four iterations),
and is independent of the starting values of these parame-
ters (within reasonable limits, so that the first guess for
the correlation function has some structure on the same
scale as that observed in the data).

At each step of the iterative process, the correlation
function is fit to the functional form of Eq. (4). Fits were
performed using a maximum likelihood procedure to
predict the actual number of observed pairs in a given g-
9o bin in terms of B(g,q() and the assumed form for C,.
Essential to this method is the assumption that the statis-
tical errors in B(q,qq) are small compared to those in the
real events. A naive extension of the sum in Eq. (11) to
all i=#j would seemingly lead to a very large number of
background events, thereby easily satisfying the criteria of
negligible error in the determination of B(q,qq). In reali-
ty, the question of the statistical errors in the background
spectrum is somewhat more subtle, and leads to the
surprising conclusion that (if all possible background can-
didates are generated) the statistical fluctuation in a bin
containing n background events is proportional to n3/4,
not n'/2, The origins and implications of this behavior
are discussed in Appendix B.

V. EXPERIMENTAL RESULTS

Results from three data sets are reported here, all for
incident beam energies of 1.8 4 GeV. For the Ar + KCl
system, approximately 6700 27~ pairs and 5500 27t
pairs passed all cuts. In the case of Ne + NaF, nearly
10000 27~ pairs were accepted. All pions were required
to have a laboratory momentum  satisfying
220< | B | <800 MeV/c. Relative momentum and ener-
gy were always calculated in the nucleon-nucleon center-
of-mass system. For relativistic pions, our laboratory ac-
ceptence of 45+8 deg translates to roughly 89+12 deg in
the center-of-mass system. All three data sets were fit!3
to the functional form of Eq. (5); the results of which may
be found in Table II.
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TABLE II. Pion source parameters.

Fit R ct
System conditions A (fm) (fm) X?/NDF
No Gamow 0.40+0.05 0.0+44 4.58+%4 57.2/80
Gamow 0.63+0.04 2.88%93 3.29*1¢ 98.2/80
corrected
Gamow
corrected, 0.64+0.04 1.92 4.5+28 98.2/80
Ar + KCl R fixed
27~ Gamow
corrected, 0.64+0.04 3.50%9:33 1.95 98.6/80
T fixed
Gamow and
Coulomb 0.63+0.04 2.77+4§ 3.44%11 80.3/80
corrected
No Gamow 0.48+0.07 2.26+1.4 4.12+12 52.4/81
Gamow 0.73+0.07 4.20+0¢ 1.54+24, 67.1/81
corrected
Gamow 0.69+0.09 1.92 5.579% 67.1/81
corrected,
Ar + KCl R fixed
27t Gamow
corrected, 0.72+0.06 4.101+0.54 1.95 67.2/81
T fixed
Gamow and
Coulomb 0.7340.07 4.10+0.4 176131 78.5/81
corrected
No Gamow 0.46+0.09 0.0+3 2.98+1.0 76.5/82
Gamow 0.59+0.08 1.83+98 2.9619:%° 125.7/82
corrected
Ne + NaF Gamow
27~ corrected, 0.59+0.06 1.52 3.31£0.3 126.1/82
R fixed
Gamow
corrected, 0.60+0.06 2.80+0.30 1.54 126.6/82
T fixed

Before analyzing the results of the fitting procedure, we
first discuss the visual presentation of the data. Figure 7
shows the appearance of an ideal C,(g,q,) [as defined by
Eq. (5) with A equal to one] convoluted with our
spectrometer’s acceptance. The contours are separated by
10 MeV, and values of R and 7 characteristic of nuclear
dimensions are assumed. It is clear that only a limited re-
gion of the relative phase space is accessible, dominated
by events with g ~g,. (Note, however, that only half of
the g-qo plane is kinematically allowed, as calculation of
the invariant relative momentum g;,,, in the 7-7 center of
mass shows that one always has ¢ >¢,.) One conse-
quence of our acceptance is that fixing g, restricts g to a
narrow band, so that a slice of the correlation function
given by C,(g,qo=constant) is of little interest. Instead,
we define the projections

> A(q,90)

90

> Bl(g,q0)

90

(Cy(g))= (12)

FIG. 7. Profiles of a theoretical correlation function with nu-
clear dimensions evaluated over the spectrometer acceptance
used in this experiment. The region on the lhs of the ridge is
kinematically forbidden.



2180

and
2 A4 (q:qO)

(Cy(gy))= ——————,
2o ZB%%

where 4 and B are as defined in Eq. (6). We will always
write these projections with angular brackets to emphasize
that they are spectrometer-dependent observables.
Nonetheless, they provide an adequate means for display-
ing the data and assessing quality of fits to the same. For
convenience, the quantities defined in Eq. (12) will often
be referred to as correlation functions, while keeping in
mind that they are in reality projections of correlation
functions.

A. Gamow corrections

We first turn our attention to the entries labeled as “No
Gamow.” The corresponding correlation functions are
shown in Fig. 8. For both sets of 27~ data, the radius is
fit to a value of zero, and for all three systems the value
of A is less than 0.50, a substantial reduction from the ex-
pected value (for a fully random source) of 1.0.

This behavior is consistent with a systematic effect that
has been neglected until this point: the mutual Coulomb
interaction of the two pions. It is well known that the
Coulomb interaction of two like-charged particles modi-
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FIG. 8. Projected correlation functions with no Gamow
correction for the systems (a) Ar+ KCl—277+X, (b)
Ar + KCl—27t 4+ X, and (c) Ne + NaF—27~ +X.
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fies the phase space density in relative momentum via the
Gamow factor, so that

(d 3n /dq 3 )chargcd
(d3n / dq 3)uncharged

2y _ me?

(The corrections to this form due to the finite extent of
the pion source have been calculated and found to be
small.’) Here e and m are the charge and reduced mass
of the particles. This factor suppresses the probability of
finding two 11ke-charged particles with small relative ve-
locities B~ “ﬁ Note that 3, must be calculated in the
center-of-mass frame of the two pions, where, of course,
one has fB,=¢g/m. Substituting the previously defined
relativistic invariant g;;,, for g in the above expression
gives the correct generalization to an arbitrary Lorentz
frame, since in the center-of-mass frame of the two pions
one has by definition g,=0. This observation is of more
than passing interest, since it implies that the Gamow
corrections are large, not just for small g, but rather along
the entire ¢ =g, line (see Fig. 7).

Monte Carlo calculations have verified that large
Gamow corrections persist in the two-pion relative
momentum spectra as measured by our spectrometer, pre-
cisely because the good momentum resolution of this de-
vice enables us to resolve the region of suppression.'*
Since the net effect of the two-pion Coulomb interaction
is to modify the correlation function

(13)

=G(n)=

C2(q:q0)_’G (mez/hqinv)CZ(q’qO) ’

it is important that the Gamow correction be applied to
the background events via Eq. (10), rather than attempt-
ing to correct for its influence after the generation of C,.
These results are presented in Table II under the heading
“Gamow corrected.” The corresponding correlation func-
tions are shown in Fig. 9. In each case the radius now ac-
quires a nonzero value and A increases to the range
0.6—0.7.

B. Interpretation of R and 7

We now discuss the quantitative values obtained for R
and 7 in the context of the simple model for pion produc-
tion presented in Appendix C. There it is shown that:

(1) A radius R defined for a Gaussian source as in Eq.
(4) is essentially indistinguishable (via intensity inter-
ferometry) from a source with uniform density of radius
R,=1.52R.

(2) A schematic model for pion production gives

R=0.564'"7fm, 7=0.574"3 fm ,

where A is the mass number of one of the incident nuclei.
(We use here units with ¢=1, so that lifetimes may be
quoted in fm.)

(3) More realistic Monte Carlo cascade calculations
predict values of 7 2—3 times larger than the naive value
given immediately above, but provide values of R con-
sistent with the above estimate.

To facilitate comparison of our results to these predic-
tions, we have combined the results of the various data
sets using an 4 '/3 parametrization to obtain

15



29 TWO-PION CORRELATIONS IN HEAVY ION COLLISIONS 2181

25T T T T
2 0'_Ar + KCl=27" + X]|
) Gamow corrected |
A - A
R S
1.0 é"
g L
051 (@ ]
ol LI T W S T I oL~ | I SR U N
0 50 100 150 200 250 0 50 100 150 200 250
| G| (MeVrc) 9o (MeV)
2.5 T 2.5 1T T T T
t«r + KCl =271+ X r .
2.0F7 Gamow corrected | 2.0 -
/\ 1 - A . -
?’; 1.5: ; 7 39 1.5% %ﬁ_
= L N L 11
\‘;’“ 101 s 1.0p ST
05T ®) 7 %Twe % ]
oL~ | T B S B oLt SN U N RN S N S B
0 50 100 150 200 250 0 50 100 150 200 250
| T (MeV/c) a, (MeV)
25— 1T 1T T 25T T T T T T
Ne + NaF =27~ + X7
A 2'0”§ Gamow corrected | A 2.0 ]
o 155 4 15 .
! P RERth
g o gy Q'O PRI
=" B T I T R oL— S U DRI S '
0 50 100 150 200 250 0 50 100 150 200 250
[ @] (MeV/c) 9o (MeV)

FIG. 9. Projected correlation functions after Gamow correc-
tion for the systems (a) Ar+ KCl-277+X, (b)
Ar + KCl—-27* +X, and (c) Ne + NaF—27~ +X.

R =(1.010.2)4'3 fm, 7=(0.8+0.3)4'3 fm .

The experimental value for 7 obtained by this method is
intermediate in value between the prediction of the
geometric model and that of the cascade code. On the
other hand, the measured value of R is substantially
larger than either the geometric model or cascade calcula-
tions would indicate.

Before assessing the significance of the disagreement
between these models and the data, it is necessary to ex-
amine more closely the errors in the determination of R
and 7. Figure 10 displays the 68% and 95% confidence
limits for R and 7 allowed by each data set. It is clear
that our maximum sensitivity is to some overall measure
of the space-time extent (such as R?+72). This is simply
the spatial consequence of our acceptance in momentum
space (where most pions have g~qg). Another conse-
quence of the R-r correlation is that specifying one of the
parameters allows the other to be determined with signifi-
cantly greater accuracy. Table II presents the results of
fitting with either R or 7 fixed to the “expected” value
given by the schematic model. Of some interest are the
cases where R has been fixed to the nominal value (as
given by either the schematic model or the cascade codes)
of R =0.564'. Doing so always leads to values of 7
larger than the prediction of the geometrical overlap
model by a factor of 2—3, but in good agreement with the
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FIG. 10. Contours for the 68% and 95% confidence levels
arising from fits to Eq. (10) in the text. (a)
Ar+ KCl-27~+X, () Ar+KCl-27t+X, and (¢
Ne + NaF—-27—+X.

results of the cascade code calculations.

The most severe constraints on models of the pion
source may be obtained by examining the confidence lev-
els that result from using an assumed 4!/ scaling
behavior to combine the three data sets. These levels are
presented in Fig. 11, where it is apparent that the 20 er-
rors in R and 7 are substantially less than twice the 1o er-
rors in these quantities. (It is important to note that the
lo errors quoted above have been obtained directly from
the 68% confidence level, rather than by calculating the
weighted average of the three sets of R and 7 values.)
Figure 11 clearly demonstrates that both the schematic
model and the cascade codes predict a radius significantly
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FIG. 11. Contours of the 68% and 95% confidence levels
from combining the three data sets in Fig. 10 using an 4!/3
scaling between “°Ar and ?°Ne results.

smaller than our measured value. Conversely, both
models predict values for the lifetime parameter con-
sistent with our results.

C. External Coulomb corrections

There is an additional Coulomb interaction to be con-
sidered, that between a pion and all the nuclear protons.
We call these the “Coulomb” interactions in contrast to
the -7 interactions denoted by “Gamow” interactions.
Noticeable in Fig. 10 is the qualitative difference in the
confidence level contours between the 27~ and 27 mea-
surements. We have attempted to determine if these
differences are due to the opposite sign of the Coulomb
interactions experienced by the 7 ’s with the nuclear
charge as compared to the 7*’s. Using a first-order for-
malism correct in both the classical and quantum
mechanical limit,'® the momentum shift of each pion due
to the Coulomb interaction with a nuclear fragment of
charge Z; and four-velocity u; is calculated in terms of
the final pion momentum according to

A
8pulps)= F;—[(pf Ju— (Prtti Uy

(pru; )R o5t
1+[(psu;)*—m21R %

The effective radius R is the reciprocal of the mean in-
verse radius

1\7'_v7m
Rg=(—) =—7R,
eff <r> )

where the last equality holds for our usual Gaussian
source parametrization. We have idealized the complicat-
ed final-state distribution of nuclear charge by three
charge fragments, two having charge (1—f)Z and mov-
ing with the projectile or target velocity, and the third

(14)

having charge f-2Z at rest in the center of mass, where Z
is the charge of one of the incident nuclei. Guided by the
results for mean impact parameter biases presented in Ap-
pendix A, we have chosen f=0.80. Equation (14) is used
to correct the momentum of each observed pion; then the
correlation function is calculated in the usual fashion.
These results appear in Table II with the designation
“Gamow and Coulomb corrected.” In all cases the
changes in extracted parameters are much smaller than
the statistical errors, which is in accord with our intuitive
expectations that the changes in the relative momentum
spectrum will be small, since each pion receives essentially
the same impulse. In reality, such a post hoc correction
procedure is at best a crude approximation to the very
complicated multibody Coulomb problem, but the large
kinetic energies of the pions relative to their potential en-
ergies lead us to conclude that any such effects are likely
to be small.

D. Implications for source coherence

We now discuss briefly the significance of the values
obtained for A in Table II. Many authors have cited devi-
ations of this parameter from unity as evidence for coher-
ence in the pion source, since for a maximally coherent
source one has A=0. Furthermore, the assumption of a
completely chaotic source leading to independent emission
of pions is at best an approximation, since the relevant
pion wavelengths are not substantially smaller than the in-
ferred source dimensions.!” Nonetheless, to date, experi-
mental complications prohibit any quantitative con-
clusions concerning the fraction of coherent emitters im-
plied by a given value of A. First note the direct coupling
between the Gamow correction and the value obtained for
A. A second difficulty arises from the iterative generation
of C, discussed in Sec. IV, which introduces a systematic
tendency to increase the errors in A from the purely sta-
tistical values quoted in Table II. Other effects known to
affect the value of A, such as the creation of pions
through the decay of long-lived resonances, or the averag-
ing over unobserved reaction variables,!! further obscure
the interpretation of deviations of this variable from unity
in a given experiment, since a very complete set of mea-
surements indeed would be required to determine which
of these many contributions is the dominant one.

E. Comparison to other results

We conclude this section with a comparison of our re-
sults to those obtained by other authors. At 1.84 GeV,
the only two-pion experiments reported in the literature
are for Ar nuclei incident on heavy (Pb;O, or Bal,) tar-
gets.!®1° Rather than attempting to deal with the compli-
cated issues of the role of impact parameter biases and
spectator matter in asymmetric collisions, we concentrate
on the only other result reported for the Ar + KClI sys-
tem, at the slightly different energy of 1.54 GeV.% (This
corresponds to a center-of-mass energy differing by less
than 10% from ours.) These authors perform their fits by
fixing the value of 7 to 1.5 fm. The contours of Fig. 10(a)
allow us to read off the value of R obtained in our
analysis when 7 is fixed to 1.5 fm, viz., R =3.6+0.40 fm,
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in excellent agreement with their value (for their data set
most closely analogous to ours, i.e., the Gamow corrected
analysis for pions with center-of-mass momentum greater
than 150 MeV/c¢), of R =4.14+0.51 fm. The value of A
measured for their Gamow corrected data, A=1.06+0.24,
is statistically consistent with the value extracted in this
experiment, although we note that these authors systemat-
ically find values of A higher than those reported here.
We offer no explanation of this phenomenon, other than
to observe that the two experiments are more complemen-
tary than comparable, one being a high statistics, high
resolution exploration of a narrow region of relative
momentum, while the other provides a relatively unbiased
global sample of events.

VI. CONCLUSIONS

We have shown that a high statistics intensity inter-
ferometry measurement of pion source parameters in
RHIC provides valuable information for dynamical
models of these collisions. The two-pion trigger itself has
been shown to give a significant bias towards central col-
lisions. The effect of the two-pion relative Coulomb in-
teraction has been analyzed and found to be important,
while correction for the pion-nuclear Coulomb interaction
produced little change in the extracted radius and lifetime.
These final state interactions, and the iterative nature of
the background generation, prevent any definite statement
quantifying the coherent contribution to the pion source.
The results presented here are consistent with previous
measurements, and should provide a basis for future ex-
periments using larger acceptance spectrometers to apply
these techniques to heavier nuclear systems.
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APPENDIX A: IMPACT PARAMETERS BIAS
IN A TWO-PION TRIGGER

In this appendix we argue that a two-pion trigger pro-
vides a good approximation to a central collision trigger.
We do so by using the observed correlation between pion
multiplicity and participant nucleon multiplicity to estab-
lish the relation between pion multiplicity and impact pa-
rameter. Streamer chamber data are then used to relate
the trigger requirement of this experiment to the total
pion multiplicity, and thus to the mean impact parameter.

Figure 12 shows that the mean negative pion multiplici-
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FIG. 12. Relation between total charge multiplicity and
mean pion multiplicity (M,(Q)). Also shown is a schematic
impact parameter scale. See Ref. 21.

ty is linearly proportional to Q, the total number of par-
ticipant protons, for 1.84 GeV Ar + KCl collisions.?!
The number of participant protons may be calculated as a
function of impact parameter with an analytic approxima-
tion (for symmetric systems) due to Swiatecki??

3
5
where B=b/b,, and b,, is the maximum impact parame-
ter 2R. The normalization is in terms of the total number
of protons, so that Q(b =0)=2Z.

The rough nature of these arguments justifies the fur-
ther approximation (for small values of 8):

Q(b)=2Z(1—B)*(1+1.128)
~2Z(1-PB) .

Q(b)=2Z(1-B)* |1+ LiB|, (A1)

(A2)

This approximation is valid to (at worst) 20% for 8 <0.5.
In fact, evidence from recent Monte Carlo calculations
(see Fig. 8 in Cugnon and L’Hote?®) favors this linear
form over Eq. (A1) for 0.84 GeV collisions. Equation
(A2) allows us to translate Q directly into impact parame-
ter; such a scale has been applied to the upper axis of Fig.
12.

We now use streamer chamber data?* to determine the
mean pion multiplicity imposed by our two-pion trigger
requirement. These data consist of approximately 3000
1.84 GeV Ar + KCl events taken with an inelastic trigger
sensitive to approximately 85% of the total reaction cross
section. All negative tracks in this sample have been
momentum analyzed, which allows us to selectively exam-
ine those events satisfying the two-pion trigger used in
this experiment. Figure 13 shows the pion multiplicity
distribution which results from requiring two pions in our
spectrometer acceptance. As shown by the curve, the dis-
tribution is roughly Poisson, with a mean given by
(n,)=6.14+0.18.

We can now use Fig. 12 to immediately translate (n., )
into the equivalent Q, and thus the corresponding impact
parameter, thereby obtaining (b )=1.2 fm. Assuming the
fluctuations in {n, ) are in fact Poisson, the fluctuation in
(b) may be determined in a similar fashion to be 2.8 fm.
The fact that Fig. 13 is somewhat narrower than the su-
perimposed Poisson distribution (and the fact that nega-
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FIG. 13. Total pion multiplicity distribution for those events
in 1.8 4 GeV Ar + KCl collisions satisfying the two-pion trigger
requirement used in this experiment as derived from data pro-
vided by Beavis. See Ref. 24.

tive impact parameters are meaningless, so that fluctua-
tions of 2.8 fm about 1.2 fm must be asymmetric) indicate
that this method provides an overestimate for the event-
to-event fluctuations about (b ).

APPENDIX B: BACKGROUND FLUCTUATIONS

In this appendix we examine the statistical fluctuations
in a spectrum of background events generated by creating
all possible combinations of pions taken from different
events. In particular, we show that if such a process gen-
erates n events in a given bin, the statistical fluctuations
of this quantity are of order n3/*, not n'/2, We begin by
examining a schematic model that illustrates the basic
principles involved.?’

Assume we wish to calculate the area of the small re-
gion Q shown in Fig. 14, using a straightforward Monte
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/
/
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P
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'4_ N random points along axis __,t

FIG. 14. Schematic illustration of Monte Carlo area calcula-
tions analogous to two-pion background event generation.
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Carlo technique, ordered pairs (n,,n,) would be thrown
randomly over the area L2, with the calculated area of Q
being proportional to the number m of such pairs con-
tained within Q. The error in this estimate will of course
be proportional to m /2.

Now suppose we attempt to circumvent the require-
ment of generating M random pairs over the area L2, and
instead pick only N random points n; along the x axis,
then use these same points along the y axis to define the
set of points in the plane (n;,n;). This process generates
N (N —1)/2 such pairs, but our intuition suggests that the
stalt/izstical significance of such a set is still only of order
N~

Simple error propagation suffices to confirm this suspi-
cion. If n,=I,N/L is the mean number along the x axis
expected to fall in Q, and similarly for n, along the y
axis, the number of random points in  is then n =n,n,.
We now use standard methods to calculate the error in
this quantity, thus

2 2

ann
dan,

ann
on,

oXng)= o*(ny)

oX(ny,)+ !

2 2
=Nyhy +nxn,

N
=ng |(L+L) T |- (B1)

Specializing to the case Ix= 5,-, we immediately obtain
from the above o(ng)=v2n}"* Had Q been located on
the diagonal of the region L2, as for the region labeled Q'
in Fig. 14, n, and n, are no longer even approximately in-
dependent, and we obtain instead o(ng)=2n3" The gen-
eralization to d dimensions is trivial and gives for the

fluctuations about the mean number n, in a subvolume V
o(n,)=d-nf1=01720]

This model is suggestive of the different-event mixing
prescription used to generate a background spectrum in
intensity interferometry analyses: The N points chosen
represent the N pion events, with the real events being dis-
tributed along the diagonal and the background events
coming from the pairs (n;,n;), i#j. However, a typical
correlation analysis involves a complicated projection
from the six-dimensional p;p, space into a two-
dimensional gq, subspace. Rather than attempting to ex-
tend our model (which really is intended only as a plausi-
bility argument) to this case, we instead demonstrate
empirically that the background fluctuations are propor-
tional to n*/4, corresponding to d=2.

To do so, we define the variable I'? given by

(4;;—By;)?
AA;)+0%By)
ij 0(4;)+0%(By
where the sum over i and j represents a summation over
the g and g, bins in a relative momentum spectrum. Here

B;; is the number of background events in a given bin,
and 4;; is some other distribution we expect to be identi-

r’= (B2)
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cal with the B;;’s in the limit of large statistics for 4 and
B. The o’s are the assumed errors for each 4 and B.
Since by definition I'? has an expectation value equal to 1,
explicit evaluation of this variable for various assumed
forms of the o’s allows us to determine the form best sup-
ported by the data. As our known A distribution we take
the real two-pion events with |g | >150 MeV/c, where
all evidence (see Fig. 9) indicates the absence of correla-
tions. Similarly, the B distribution is taken to be the
background spectrum in the same relative momentum in-
terval. The functional dependence of o(B) is
parametrized with the general d-dimensional result, i.e.,

O.(B)zd.Bl—(l/Zd) .

Testing two different data sets then gives p =0.77+0.02
and p =0.75+0.02, where p =1—(1/2d), thereby con-
firming the n3/* form for background fluctuations corre-
sponding to d=2. (See Ref. 9 for a discussion of the error
estimates on p.)

Since the errors on n background events in a given bin
are no longer Gaussian, the usual property of invariance
of statistical significance under binning is lost. To see
this, suppose we wish to create a background spectrum
with negligible fluctuations in a given bin relative to the
fluctuations in the number of real events expected in the
same bin. Let the number of real events in the total sam-
ple be N, and assume the bin size is such that a fraction of
them, f, fall into the ith bin, so n;=fN. Assume that the
fraction of real events used to generate the background
spectrum by different-event mixing is g, so that the total
number of background events created is approximately
(gN)?/2. If we retain the notation C, for the correlation
function, the expected number of background events in
the ith bin is then of course

__f (gN)
m,—-C2 =

The correlation function as calculated for this bin is then
n;/m;. Requiring that the errors in n; dominate the error
in the calculated correlation function then implies

2 2

Using the above expressions for n; and m;, and assuming
Om, =2m,~3/ 4, we obtain the condition

1
. 2C,f <7 . (B3)

While independent of the original number of events N,
this result does depend both on g, the fraction used in the
background generation, and f, the fractional bin size. The
fact that small background errors requires g to be large is,
of course, reasonable. Setting g=1 then establishes the
maximum allowed bin sizes

Vem.  —{x2+[y(b/2)P+y2, (z1B,

(r)dr =
p+ 7R}

2185

fCr<<3~3% . (B4)

Failure to satisfy this condition for each bin will invali-
date the requirement of small background errors necessary
to a principle of maximum likelihood fitting procedure.
This inequality is satisfied for nearly all of the bins used
in generating the correlation functions calculated in this
paper. We have verified that an alternative fitting
method, based on minimization of a quantity that ex-
plicitly contains the background errors [the quantity T2
defined in Eq. (B2)], produces essentially the same source
parameters as calculated by the principle of maximum
likelihood analysis.

APPENDIX C: GAUSSIAN MODELS
FOR PION SOURCE PARAMETERS

This appendix explores some simple consequences of
the Gaussian parametrization used for the pion source in
this paper. We begin by interpreting R in terms of con-
ventional nuclear radii.

The normalized Gaussian (spatial) distribution implied
by Eq. (4) in the text is given by

L —r2ryy 1)

pIET=— e

To obtain the value of R equivalent to a uniform distribu-
tion R,, we can equate moments of these distributions,
thus obtaining

WV R,
R= 8 R"=1.50

by equating (r) for the two distributions, and

R
R=V(2/5)R,= 0 5"8

by equating (r2). These are but special cases of the gen-
eral result stated by GGLP (Ref. 2) that for R =R, /1.52,
the squared Fourier transform of a Gaussian distribution
differs from the corresponding transform of the uniform
distribution by 2% or less everywhere. Thus, no foresee-
able intensity interferometry experiment can hope to dis-
tinguish between these two distributions.

To motivate the use of a Gaussian to describe the
space-time distribution of pion sources, we use the follow-
ing heuristic model for pion production in RHIC:*® Con-
sider the collision of two equal-mass nuclei at impact pa-
rameter b, in the center-of-mass frame, where each is
moving with velocity =8, Let the nucleon density for
each nucleus be described by a Lorentz-contracted Gauss-
ian of radius R .

2 2
m VR dydz . (C2)
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As discussed above, R, is given in terms of the corre-
sponding uniform-density radius R, via R,/1.52
=0.84173 fm.

Assume the pion production rate is given by the overlap
of these densities, so that

d*n,
dridt
Here ony is the NN cross section for pion production,
and v,y is the NN relative velocity. Ignoring all such ef-
fects as pion reabsorption, slowing of the incident nuclei,

transverse expansion, etc., the pion source density may
then be written as

=p(T)p_(T) ONN"Vrel - (C3)

4
Ny —(2/R3)x2+y2 472 2
dridt

pATt)=

—28? 2 42
s~ Pem¥om!*/RY  —b>/2RG

Thus, the source is also Gaussian in space and time, with
lifetime and (transverse) radius parameters given by

R, R,

R=—%, r=——"+——.
‘/E ‘/iﬁc.m.yc.m,

[Here we have absorbed the factor of 2 so that the source
takes on the precise form assumed in Eq. (4) of the text.]
The neglected effects mentioned above all tend to increase
the values of R and 7, so that the above values should be
regarded as lower limits. Using the 4'/? parametrization
of R, introduced above, and specializing to the values of
B..m. and Y., appropriate to 1.84 GeV beam energies,
we have for R and 7:

R =0.564'3 fm, 7=0.574' fm .

(C4)

(Cs)

Note that the near equivalence of the predicted values for
R and 7 is “accidental” in the sense that B, ,, V. m. is very
nearly equal to one for this particular beam energy. Also
note that while the source strength depends on the impact
parameter b, the source radius R does not. The parame-
trization for R in Eq. (C5) is in good agreement with the
relation R=0.504'/° found by Cugnon and Koonin?’ by
fitting the results of Monte Carlo cascade code calcula-
tions of pion production sites. [This result differs by a
factor of 2 from the result found in their paper, again due
to writing their radius in the same form as Eq. (4) of this
work.]

We may also apply the Gaussian form for the distribu-
tion of pion sources in time to the Monte Carlo cascade
results of Cugnon et al.,'> which provides a quantitative
picture for the temporal as well as the spatial evolution of
a heavy ion collision. Figure 15 shows their results for
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FIG. 15. The curves are Monte Carlo calculations from Ref.
15 of production rates for pions and deltas and 1.84 GeV
Ca + Ca collisions. The points are predictions assuming a
Gaussian dependence in time.

the collision of two Ca nuclei at a beam energy of
1.84 GeV. Two curves are shown, one giving the produc-
tion of free pions plus delta resonances, while the dotted
curve gives the number of free pions as a function of time
(deltas being regarded as “bound” pions). Maximum
overlap occurs for ct=5.1 fm. The circular and triangle
points are the results obtained by integrating

dN,
dt

=Noe —1‘2/‘1'2 (C6)

for appropriately chosen values of 7. Thus, for the

N+ N, curve, we have for ¢t> 5.1 fm,

N(t)=‘;’N(t=oo)[l+erf[t‘;5'l H

with 7=2.31 fm. For the free pion production curve, we
have r=5.55 fm.

These expressions provide reasonable approximations to
the time dependence predicted by the Monte Carlo code,
particularly for the total production rate (the closed cir-
cles). The required value of 7=2.31 fm is in good agree-
ment with that estimated by the schematic argument
based on Gaussian overlap, i.e., 7> 1.95 fm. Note, howev-
er, that the production of free pions is predicted to
proceed at a much slower rate, due to reabsorption, energy
dependent cross sections, and finite delta lifetimes.
Nevertheless, the time development is still roughly
described by the Gaussian parametrization.
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