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The m- He-3H form factor 6 (q ) is calculated from a connection between the elementary particle

method and the impulse approximation using a realistic wave function with an asymptotic tail. An

analytic continuation is used for the timelike region. The m- He- H coupling constant 6„(—m ) is

found to be = —1.7, in absolute value higher than the elementary nucleon value g =1.41 because

of the nuclear extension. The form factor is in very good agreement with results of dispersion rela-

tions. A determination which led to G = —1.0 is shown to be wrong.

[NUCLEAR STRUCTURE 3HC; calculated m-'He-3H coupling constant. ]

I. INTRODUCTION

This is the first of a series of two papers about a com-
parison of the impulse approximation (IA) and the ele-
mentary particle method (EPM) for the calculation of cer-
ta11l interactions iI1 nuclei. Our IIlvestigatioIl was actuated
by the many recent contradictory determinations of the
n- He- H coupling constant 6 —=6 ( —m ). [By defini-
tion

In Refs. 1—5 values for f =G /Sm. are given. ] This is
the ~- He- H form factor 6 (q ) as defined within the
elementary particle method with the pion on the mass
shell.

Several authors have determined a value of 6 which in
absolute value is much lower than the elementary pion-
nucleon coupling constant

g
—=g~„(—m )=1.41,

viz. ,

This value has been obtained from analyses of pion pho-
toproduction, ' the charge exchange reaction"
p H~n He, elastic scattering He H —+ He H, and par-
tial conservation of the axial vector current (PCAC) with
analytic continuation. '

On the other hand, there are determinations which lead
to values higher in absolute value than g,

Tllc pla11 of th1s papcl ls as follows. Fllst wc dcf111c 111

Sec. II our notation. Then in Sec. III we summarize the
connection between form factors in the elementary parti-
cle method and the impulse approximation as devised by
Delorme. In Sec. IV we show how these form factors can
be continued into the timelike region and discuss the in-
fluence of the asymptotic tail of the wave function. In
Sec. V numerical calculations are given, leading to a high
value of 6 = —1.7. After a short discussion of possible
exchange effects in Sec. VI, a comparison is made with
dispersion calculations in Sec. VII. Good agreement is
found. In Sec. VIII a recent determination of 6 (Ref. 5)
by PCAC + analytic extrapolation of G„(q ), which led
to a low value of 6, is shown to be incorrect. In Sec. IX
a summary and conclusion are given. Part of this work is
based on a doctoral dissertation by one of us. "

II. PARTIAL CONSERVATION OF
THE AXIAL VECTOR CURRENT

In this section we summarize the relations for the
PCAC and nucleon and nuclear parameters. In the ele-
mentary particle method the equations for the p-n and
He- H doublet are analogous, because both have spin and

1sosptn —, and even panty. For the A =3 form factors
capitals will be used and for the nucleon small letters will
be used. In the following ~i)= ~'He) (~p) in the nu-
cleon case) and

~ f}=
~

H) (
~

n }).
The weak vector and axial vector currents are written as

«f I
I'1.(o)

I
1 & =u/6 Gv(q'))'1.

—1.8&6 & —1.S . (1.2) +6M(q )itJ1qqq/2M]u;, (2.1)

These values result from application of dispersion rela-
tions ' and from extraction from the muon capture rate
and PCAC. '

In this paper we propose a way to calculate 6, defined
in the elementary particle method, with the help of the
impulse approximation. In the following paper' we con-
sider two-step processes in the impulse approximation and
in the elementary particle method and compare them with
the value of G~ found here.

+Gt (q )iyzq1/m„]u; . (2.2)

Here M is the nuclear mass in the EPM (and the nucleon
mass in the nucleon case). These conventions conform for
the nucleon to Ref. 12 with exception of the sign of the
momentum transfer which is defined here as q =@~—p;.

The PCAC hypothesis states
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2

D(q') = —G—~(q')+
2Mm~

a G~(q )m a~G~m~
2 +I(q ).

+m~ g +m~
(2.3)

directly from H beta decay. What concerns us in this
paper is the value of G =G ( —m ).

III. A CONNECTION BET%EEN
THE ELEMENTARY PARTICLE METHOD

AND THE IMPUI. SE APPROXIMATION

", G~(q')[I+~(q')]
+m~

(2.5)

2

e(q )= 1—G (q')/G„(0)

Gg (q')/Gg (0)
(2.6)

Gq( —m )[1+E(—m )] .2 2 (2.7)
a~

A nonzero value of e(q ) is seen to have its origin in a
difference between the momentum dependence of the
pion-nucleus and the axial form factors.

The nucleon form factors are rather well known. Be-
cause the momentum transfer will be restricted almost
everywhere in this paper to —m„~q ~m&, a good ap-
proximation is given by a linear fit,

g;(q )=g;(0)(1—r;q /6), i =V,A, M, m. .

We have taken gv(0) = 1.0, gM(0) =p —p„=3.7,
gq(0) = —1.260+0.012, and rv ——0.74+0.02 fm,
rM ——0.83+0.08 fm, and rq ——0.72+0.07 fm (cf. Ref. 13).
Further the pion-nucleon coupling constant is

g =g ( —m )=1.41+0.02.

g~z/4n=g~„/8m =0.079 .

From (2.3) it follows that

g (0)= —
zg( )0/ a=1.33+0.01

so that from (2.8), used at q =0 and q = —m, one finds
r =0.82+0.06 fm. This linear representation for g~(q )

will be used throughout except in Sec. VII. Also we find

~(q') =~(0)=m.'(".— )/6=O. O14+O. O2O

for —m &q &m„, nearly independent of q in the re-
gion of q considered, The smallness of e is due to the
fact that the nucleon is localized with respect to the scale
length m ' [cf. Eq. (2.6)].

In the elementary particle method the value of G~(0)
which follows from (2.3) is

Here @~=0.94 is the pion decay constant. ' The pion-
nucleus form factor is defined by

(f ~ j ~i}=iG (q )ufygu; . (2.4)

The pion-nucleus coupling constant is G =—G„(—m ).
The function I(q ) is defined by the last equality in (2.3).

With Primakoff we introduce e(q ) by

Gv(q') = gv(q') [l I'
2

G «')= -'~6[g (q')+g (q')]f "]
—~ gv(q )[1]'— gv(q')[ P]", (3.2)

1
g~ (q') [a]

6
(3.3)

G (q') = —,
' ~6g, (q')[~]+

g~ (q') [~]",

There exist two ways to describe weak, electromagnetic,
and strong interactions in nuclei. One is the impulse ap-
proximation. Here a one-body operator is applied in the
form of an effective Hamiltonian, which reproduces ap-
proximately the relativistic nucleon amplitude. Then this
effective Hamiltonian is sandwiched between nuclear wave
functions, to calculate observables. If wanted, exchange
corrections can be added to this basic process.

On the other hand in the elementary particle method
the nucleus is not described as an aggregate of nucleons.
Only such information like spin, isospin, and parity is
used to construct a relativistic amplitude for the whole
nucleus.

Delorme' devised a connection between the impulse ap-
proximation and the elementary particle method using
certain multipole developments for the nuclear currents.
In this formalism relativistic form factors G v(q ),
GM(q ), Gq(q ), Gr(q ), and G (q ) for the He —+ H
transition are expressed in single nucleon form factors and
in reduced matrix elements depending on the nuclear wave
functions.

The relations are manageable only if one works in the
Breit frame, i.e., the frame where pn, + pu ——0, with p~,
(pu) the total initial (final) momentum, and includes
terms only to zeroth order in q/2M, where q =pz, —pz
is the momentum transfer. Generally, the errors involved
in using form factors in other reference frames are small.
The nucleon mass will always be approximated by
m =M/3 when using the Delorme formalism. All these
approximations are expected to be accurate within a few
percent.

%'e shall call the approximation for which these "IA"
expressions for "EPM" form factors are used, "EPIA."

The connection between form factors and matrix ele-
ments in this formalism is, using the conventions of Sec.
II for the form factors,

G~(0) = —1.30+0.01, (2.9)
g (q')[o]+, (3.5)

because G~ (0)= 1.22+0.01 can be determined rather with



3
[o]'=&'Hll g ~ (i)~4~jJ(

I q I
r(i))I'J(r(i))O(i)ll'He) (3.7)

(3.8)

are reduced matrix elements (Ref. 15, p. 75). Before cal-
culating the reduced matrix element a momentum con-
serving delta function must be split off in the usual
manner (cf. Ref. 11, p. 70). The charge lowering operator
is ~ =(II iI2)/—2

The nucleon form factors used by Delorme in Ref. 14
are related to ours as gP(q ) =gv(q ) and

gZx(q') =g~(q')+g v(q'»
and the nuclear form factors as EI (q )=GI (q )/2M and

EM(q )=[G (Iq )+GM(q )]/2M .

In EPIA the PCAC relation for the nucleus [Eq. (2.3)]
is automatically satisfied if PCAC for the nucleon holds,
and the approximation M /m =3 is used.

IV. EXTRAPOLATION TO THE TIMELIKE REGION

The formalism of Sec. III to calculate rdativistic form
factors by expressing them in reduced matrix elements of
nuclear wave functions (EPIA) allows also for an analytic
coIltlnuatlo11 info tllc 'tlIllcllkc rcg1011 of thc 111onlclltuIIl
transfer q . In the Breit frame q =q, as q0 ——0. An ex-
trapolation to q & 0 can therefore be accomplished by re-
placing in the radial integrals in Eqs. (3.7) and (3.8) the
absolute value of the momentum transfer

I q I
by i

I q I
.

It is well known from the theory of dispersion relations
that the relativistic nuclear form factors develop singulari-
ties in the timelike region caused by anomalous thresh-
olds. In this case the two lowest thresholds come from
He —+dp and He~1'p [d' is the singlet (i.e.,J =O, T =1)] breakup (see Sec. VI). Therefore one may

expect that for momentum transfers near the anomalous
thresholds form factors cannot be reliably calculated when
using a wave function which is different from zero in only
a finite region of space. The form factors of such a wave
function have no singularity. Thus in impulse approxima-
tion singularities come from the long range asymptotic

I
tail of the wave function. Form factors will be calculated
both with and without inclusion of such a tail in the v„ave
function.

The form of the asymptotic wave function used is [cf.
Ref. 16, Eq. (19)]

P-, ,I(y p) = ~v ~3'"[exp( —~v 3y/»/yj

X &00(y")ps(p)&00(p)XI)/v 2 .

y=[r(2)+r(3) —2r(1)j/v 3,
y=lyl,
p = [k(2)—k(3)]/2,

with k(i) and r(i) being the momentum and position of
particle i Particle . 1 is the spectator. The quantity Ps is
the S state radial wave function of particles 2 and 3 in
momcntuID space, normahzcd as

f, Ids(J) I'~'dJ =I
and g and I) the spin and isospin wave function belonging
to it. Further,

II = [4m nucleon+ /3]

with 8 the binding energy of particle 1 in the nucleus, and
C the asymptotic normalization of the S component of the
wave function. This form applies only to these com-
ponents in the wave function for which the orbital angular
momentum L of the 2—3 pair and I of the spectator parti-
cle are both zero. (Therefore also total angular momen-
tum W=O. ) This suffices as the two components with
W =L = I =0 and 5 =0, T = 1, respectively, 5 = 1,T =0,
make up for roughly 90% of the total probability.

The singularity in the form factors resulting from these
asymptotic tails can be found from the integral (for
k (0)

f I f„y pI(y, P) I
e' " y dye dP dydP=c av 3 ' f e "J«1

I
k—ly/'v 3)dy

av3+
I
k I/v3

av3 —lk I/v3

%'hich has thc forI11 of thc s1ngulaf1ty 1n dlspcrslon theory.
(cf. the expression given in Ref. 6 for k ~0.) The cut
starts at just as found in a dispersion relation for the cut originat-
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ing from an anomalous threshold. This is in accordance
with the work of Blankenbecler and Cook. '

The numerical calculation is based on the A =3 wave
function calculated by Brandenburg et al. ,

' as used in
Ref. 19. As the potential in this calculation the Reid soft
core potential is used, constrained to the 'So and S&- D&
channels. The wave function has been Fourier-Bessel
tranformed for the spectator particle to coordinate space.

The component with spin S=0,T = 1 for the 2—3 pair,
corresponding to the "singlet deuteron" in dispersion rela-
tion (Sec. VI), is about as important in the wave function
as the S = 1,T =0 "normal deuteron" state. Therefore we
have included also the asymptotic tail of this state, assum-
ing as in Ref. 21 that its strength C is the same as for the
S =1,T =0 state. The constant C has been calculated for
the wave function employed here in Ref. 21. The experi-
mental nuclear binding energy E~ ——8.5 MeV is not well
reproduced by this wave function (Eg '=6.7 MeV). This
has consequences for the value of 8=E&—Eq, where

Eq ——2.225 MeV is the deuteron binding energy (well
reproduced by the Reid soft core potential) or the singlet
deuteron binding energy (E~, = —0.07 MeV).

Because of the antisymmetry of the wave function
under particle exchange, calculations may be made for the
spectator particle only and an explicit form for Pz(p) is
not needed.

V. NUMERICAL RESULTS

].5—

0.5—

~ ~~ ~ ~
~ ~ ~ + ~ ~~ ~ ~ ~ ~ ~ ~+ ~ o+ , ' ~ ~ ~ ~ i

~ ~ ~ ~~ I ~ ~ ~
~ ~ ~ jj ljjjjjj~~ ~ + ~ ~ ~

~ ljjj ~ ~ to ~ jjjjj~ ~ ~ 411~ t ~ ~ ~ I~ I ~ i ~ ~ ~ 4 ~ ~ ~

~ ~ ~ t ~ ' ~ ioi "'~~ ~ ~ ~

p~=041 fm

14

G„(0)=1.16, p~ =0

G.(0)= —123 p-=0 30 fm

h do ble pole fits have been made to
and q =~p

ble fit for the pseudoscaiar
gained with Eq. (2 5) a

I( ) ptq (2.3)]. The c&ses are
asin Fig l.

(5.2)

(5.3)

(5.4)

(5.5)

The calculated nuclear form factors may be fitted for
—m &q & m& to within 1% accuracy by double pole ex-
pressions

G;(q )=G;(0)l(1+p;q'), i = V A, M, m. . (5.1)

The small [iP]" terms [with P(i)=pl(i)+p;(i)] have
been neglected. The results are the following (the asymp-
totic tail is not included):

e= —0.05, —m„&q &m& . (5.6)

In Figs. 1 and 2 the results for G~(q ) and I(q ) (2.3)
are shown, both with and without the asymptotic tail in
the wave function included.

The following points merit attention:
(i) The value of the n- He- H coupling constant is with

the extrapolation of Sec. IV;

0
d

~ ~ y ~ ~ \ 0 y ~ ~ ~ ~ t ~ ~ ~ ~

~ ~ y ~
~ ~ ~ ~

0 ~ jjj~ ~ ~ ~ ~
~ j ~ ~ ~ ~ ~ ~

6 = —1.68

when the asymptotic tail is not included. It is

6 = —1.69

(5.7)

(5.8)

q~(fm-2) 2

FIG. 1. Results for G (q ) for the cases (see text) (a)—(d)
dispersion relations, (a) g„(s) constant, si ———(3m ); (b) g„(s)
constant, s~ ———{4m ); (c) g (s) double pole, s~ ———(3m ); (d)

g (s) double pole, s~ ———(4m ); I-III EPIA: I: EPIA without
asymptotic tail; II: asymptotic tail with experimental binding

energy; III: asymptotic tail with Reid soft core binding energy.

if the experimental binding energy is used in the asymp-
totic tail. If one uses the value calculated from the Reid
soft core potential one finds G = —1.74. The double pole
form (5.1), (5.5) leads to G = —1.70. All these values are
essentially the same.

It is important to note that
~

G (0)
~

is lower than
g (0) because of the presence of the D state in the wave
function. In fact,

G (0)= —g (0)[p (S)——,
'
p (D) + —,p (S')],

where p(S), p(D), and p(S') are the probability of the
(leading) S, D, and S' states. For the wave function em-
ployed here p(D) =8.6%%uo and p(S') =1.7%%uo. With only a
symmetric S state present G~(0) would have the value
-g„(0).

In contrast,
~
G~( —m~)

~

is higher than g ( —m ) be-
cause of the form factor of the nucleus, coming from its
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spatial extension, which multiplies g (q ) in Eq. (3.5).
(ii) The asymptotic tail of the wave function is, as seen

from Figs. 1 and 2, negligible in the region of the momen-
tum transfer considered ( —m & q & m„). This happens
because the anomalous threshold is far enough. This justi-
fies our preliminary calculation in Ref. 22, where the
asymptotic tail is not included.

(iii) The function e(q ) varies very little with q
[—0.070&a(q ) & —0.056 for —m~&q &m&]. It has
been suggested that in EPIA e would be zero and that
only exchange could bring about an appreciable devia-
tion. The argument behind this is that the nuclear part
of Gz and Gz would be the same and that the EPM form
factors are proportional to the corresponding nucleon
form factors. These assumptions do not hold exactly
[Eqs. (2.5), (3.3), and (3.4)].

(iv) Usually in EPM, one takes the same momentum
dependence for GM(q ) and G„(q ) and motivates this by
the impulse approximation. The correspondence of the
EPM form factors to the impulse approximation as for-
mulated in EPIA shows that this is not entirely true, be-
cause of the extra convective terms in GM(q ) (3.2) and
the different single nucleon form factors (2.8) when com-
pared with Gz(q ) (3.3). More serious objections against
this assumption will be given in Sec. VI.

(v) The result for the partial muon capture rate
p + He —+ H+ v&, is, using EPIA,

A„, =1258 s ' (EPIA) . (5.9)

This is 0.7% less than the result calculated in "standard"
impulse approximation with the same wave function:
Az, ——1268 s ' (IA). [The difference with the IA value
found in Ref. 23 comes from a slightly different definition
of gz and a slightly different value of gz(0).] This small
difference between IA and EPIA is due to the truncations
in the formalism of Delorme as discussed in Sec. III.

VI. EXCHANGE EFFECTS

In this section the information available from experi-
ment on the EPM form factors is summarized. Compar-
ison with the results of the calculation of the EPIA form
factors gives an indication of the magnitude of exchange
effects.

From electron scattering ' via conserved vector
current (CVC) it is found that

doublet that may be considered to be firmly established.
Comparing these data with the EPIA values (5.2)—(5.4)
one concludes the following:

(i) The renormalization at q =0 is +16% for GM(0)
and +5% for Gz(0). This reflects the different influence
of exchange on vector and axial vector current (supported
by theoretical calculations).

(ii) There is perhaps an exchange effect on the q
behavior of the vector form factor, although there is a
fairly large uncertainty in the electromagnetic form fac-
tors for low q (2—3% at q =m&). Another possibility is
that perhaps even a "realistic" wave function is not realis-
tic enough.

Because of (i) the usual assumption of a similar
behavior of G„(q ) and GM(q ) for —m &q &mz is
questionable: no reliable calculation on the q dependence
of the axial vector form factors is available (cf. Sec. VIII).
So there exists an appreciable uncertainty in the predicted
values of Gz (q ) for q &0. At the momentum transfer in
ordinary muon capture we consider

Gg (0.96m~ ) = 1.07+0.05 (6.4)

a reasonable guess, assuming Pz ——0.25+0. 10 fm . Figure
3 shows the dependence of Gz(0.96m&) on Gz(0. 96m„)
imposed by the experimental capture rate. We take this as

A„,=1529+37 s-' (6.5)

56—

in accordance with Ref. 26. The uncertainty in
Gz(0. 96m„) in addition to the experimental uncertainty
leads to values of Gz(0. 96m& ) and e(0.96m& ) with a large
error,

Gp(0. 96m„') =22+f5; e(0.96m„)=0.06+0'72 . (6.6)

This error is so large that any speculation on an extrapola-
tion to q = —m~, which is needed to determine G~, is
useless. The conclusion can only be that with the present
uncertainty about the value of Gz(0.96m&) the muon cap-
ture rate is not suitable for constraining the pseudoscalar
part of the weak interaction in He. True, Primakoff ob-
tains a better determined value from the muon capture

Gt (0)=1.0,
Pv ——0.35+0.04 fm

G (0) pHc pH 1 16 3

pM .——0.25+0.04 fm

(6.1)

(6.2)

40—

N X
E
g 24-
C3

16-

Gg (0)= 1.22+0.01 . (6.3)

These are the only EPM weak form factors for the A ==3

using the double pole parametrization (5.1). (However,
there is no "deep reason" for such a double pole parame-
trization. A single pole fit, for instance, does not appreci-
ably alter our conclusions. ) Further, from the p decay of
H, it follows that

1.00
-8 I I I I I I I I I

0.96 1.04 1.08 1.12

Gp (0.96m ~)

FIG. 3. Dependence of Gp(0. 96m& }on Gz(0. 96~&) imposed
by muon capture rates of 1529 s ', 1566 s ', and 1492 s
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rate [e(m& ) =0.05+0.25], but only because in our opinion
he is too optimistic in assessing an error in G~ (m„).

VII. DISPERSION RELATIONS

As an alternative to the approach of Secs. III—V, one
may employ dispersion relations. Arguments against the
use of the forward dispersion relations for pion-nucleus
scattering (successful in the nucleon case) have been given
by Dumbrajs. Another method is to use a dispersion re-
lation for the divergence of the axial current D(q ) (2.3)
as first done by Jarlskog and Yndurain. If the pion pole
is separated the following expression for I(q ) results:

2 1 I'0 Ind)(s') d,
'f s —q

(7.1)

So —2$
X &+

12m
(7.2)

(Here we take the "pseudoscalar" coupling constant f2
[Eq. (4.3) from Ref. 6] equal to zero. ) Following Kopelio-
vich the contribution of the d*=pn singlet (J =O, T =1)
state in the continuum is included by assuming all
strength in a resonance just above threshold,

2 2Pl ~ffl dg
ImD(s), = —,'m.a r,g (s)

(m +s)[—s(4M +s)]'~

(7.3)

This anomalous cut starts at so ———(2. 1m ) . The latest
values for couplings " are used, r, =Qr;r, =0.46,
r, =0.37„where r, is the He-d-p coupling constant, r,- is
the H-d-n coupling constant, and r, is the He-d*-p cou-
pling constant. The H-d*-n coupling constant is unknown
but assumed to be the same as the He-d'-p coupling. The

The lowest contribution [Fig. 4(a)] to ImD(s) comes
from the breakup He~dp starting at the anomalous
threshold so ———(1.8m ) and is given by

2 2

= 2 I~md
ImD(s)d ——, mar, —g

.(s)
(m +s)[—s(4M +s)]'i

contributions of the normal three pion cut starting at
s'= —(3m ) and of other processes have been disregard-
ed.

In Fig. 2 the function I(q ) calculated in this way for
some typical cases,

g„(s)=g ( —m )=1.41

g (s) =1.33/(1+0.029s/m„)

is compared with the result in EPIA. The linear represen-
tation (2.8) is not realistic here because of the extrapola-
tion needed over a wide range; the case of a constant
g (q ) is given to show that results are rather independent
of the assumptions. As lower limits sf = —(3m ) and
sf ———(4m ) have been chosen, but a lower limit of
—(2m), m being the nucleon mass, does not make a qual-
itative difference. However, in the latter case results be-
come more sensitive to assumptions for the pion-nucleon
form factor g~(s). It may be noted that I(q ) is rather
well described by a pole located at the anomalous thresh-
old. This was used by us in Ref. 22.

The results of the dispersion relation agree very well
with the results of EPIA. This holds especially when in
EPIA the long range asymptotic tail of the wave function
is included. But also without such an inclusion up to the
pion pole the agreement is very good. This is what one
expects. Indeed, the diagrams included in the dispersion
relation are precisely the "diagrams" of the impulse ap-
proximation. The d (d") exchange corresponds to the
S = 1,T =0 (S =0, T = 1) part of the wave function.

In both dispersion relation and EPIA the typical "ex-
change" diagrams [Fig. 4(b)] are not included. In princi-
ple, extension of the dispersion calculations with exchange
diagrams would be nice but is complicated and involves
sweeping assumptions on several couplings. (Cf. the work
by Gross on the deuteron form factor. )

An important feature of this dispersion relation ap-
proach, which was overlooked by Jarlsko~ and Yndurain,
is the possibility of determining G„(—m~) without mak-
ing any continuation to the pion pole, neither for Gz(q )

nor for G„(q ). So, taking q =0 in Eq. (2.3), we obtain

3H
D (0)= —Gz (0)=a G~( —m „)+I(0), (7.4)

d, d"

(a) (b)

3He He

FIG. 4. Diagrams contributing to the imaginary part of the
divergence of the axial vector current.

which is the Goldberger-Treiman relation in the nuclear
case. This relation allows for a direct determination, now
that I(0) has been calculated. The value which follows
from the work by Jarlskog and Yndurain is I(0)=0.21,
and therefore 6 = —1.52 for the diagram taken into ac-
count by Jarlskog and Yndurain. In the four different
cases mentioned by us the values of I(0) fall into the
range I (0)=0.30—0.51.

The dispersion relation not only fixes I(0) but also
I(q ) for values of q different from zero. It is therefore
also possible to calculate G (q ) in this dispersion ap-
proach over its whole range [from the last equality in Eq.
(2.3)), again without making any assumption on the
behavior of Gq(q ) for q &0 (Fig. 1). A reasonable
parametrization with a double pole is P =0.25 fm,
which leads to G~( —m )= —1.7. This result is about the
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same as in EPIA. As already emphasized, this agreement
is due to the fact that the same physical input is involved.

It is also possible to calculate e(q ) with the help of Eq.
(2.6), but then we are forced to make assumptions on the
behavior of Gz(q ) for q &0. (Cf. Sec. VIII.) So Gp(q )

does not follow in a model independent way. With
G = —1.7 and the double pole expression for G~(q )

with p&
——p~ [Eq. (6.2)] one finds e=0.02, nearly in-

dependent of q for —m & q & m„. The slight differ-
ence with the EPIA value, Eq. (5.6), is due to the different
behavior of Gz (q ) in the two cases.

VIII. PCAC AND ANALYTIC CONTINUATION

which is a variant of (2.7). Primakoff in Ref. 8 also used
this equality. With Primakoff, Dumbrajs assumes (cf.
Sec. VI) that

G~(q')/G~(o) =GM(q')/GM(o) (8.2)

for all q . Experimental data on the magnetic form factor
by Collard et al. are used, together with a special map-
ping method, for analytic continuation of GM(q ) to
q = —m~. The behavior of GM(q ) found (shown in Fig.
5) for q & 0 drastically deviates from the double pole ex-
trapolation by Primakoff [Eq. (6.2)]. From the figure it is
seen that in Dumbrajs's extrapolation there is a maximum
in

~
G~(q )

~

around q ———0.25 fm . At still lower q,
G~(q ) even changes its sign and thus approaches the
anomalous threshold with the sign opposite to the Pri-

12

-24

-36
-1 0 q2 (frn-~) 3

FIG. 5. The form factor G~(q ) according to the double pole
fit of Primakoff and the fit of Dumbrajs.

Dumbrajs has attempted to show that there is no real
conflict between the (in absolute value) high Primakoff
value of G = —1.7 and the low value G = —1.0 ob-
tained by pion photoproduction' and charge exchange
p H~n He and elastic scattering He H~ He H. He
contends that the low value is correct by obtaining another
extrapolation for Gz(q ). We will show now that his ar-
gumentation is incorrect.

Dumbrajs starts out with the (correct) equation

G ( —m )/G (0)=[1+e(—m )]Gz( —I )/G„(0),

(8.1)

makoff extrapolation.
Dumbrajs has suggested that it is the cut singularity

from the breakup He~dp which causes this bend. But
also the form factor G~(q ), if fitted with a single pole in-
stead of the double pole of Eq. (6.2), is approximated rath-
er well as

GM(q )= G~(0) /[1+q /(2m )2]

and is therefore a fair representation of the cut starting at
about q = —(1.8m~) . Furthermore, the expression for
GM(q ) [and Gz(q ), too] also has this cut in EPIA,
which depends on the long range asymptotic tail (Sec. IV).
Therefore He —+dp breakup cannot explain the bend. In
the case of the extrapolation found by Dumbrajs very
strong exchange processes have to be present. The cuts of
the associated diagrams start at a higher threshold value
than cuts of the He~dp and He~d*p breakup which
were discussed in Sec. VII and supposed to be the leading
contributions. Therefore some scepticism about the reali-
ty of the behavior found for GM(q ) in Ref. 5 seems justi-
fied.

It was seen in Sec. VI that the momentum dependence
of Gz(q ) is somewhat poorly determined. The assumed
equality of G~(q )/GM(0) and G~(q )/G~ (0) is (approxi-
mately) valid in the impulse approximation only. If these
very strong exchange processes are present there are no
reasons why GM(q ) and Gz(q ) should have approxi-
mately the same momentum dependence any longer.

As will be shown now, the matter of extrapolation is ir. -
relevant for the rest of the argument, since the second step
in Ref. 5 is not justified. In order to calculate G~( —m )
from Eq. (8.1), Dumbrajs takes the value
e( —rn )=—0.05 from the work by Primakoff. This
value, however, was obtained there from the Jarlskog and
Yndurain calculation for I (q ), with use made of the dou-
ble pole extrapolation for Gz (q ). In that case e turns out
to be about constant, indeed, for —m &q &m„. In Sec.
VII it was shown that the calculation by Jarlskog and
Yndurain fixes G~( —m ) from the knowledge of I (0) and
Gq(0) only and independently of any extrapolation for
Gz(q ) at a high value. No different continuation can
alter this. [In fact, the view may be taken that a disper-
sion relation for Gq (q ) can also be written down with the
input of the Jarlskog and Yndurain calculation. This will
then also fix G„(q ) for all q . It can be expected that in
that case Gq(q ) will have the behavior found also in the
impulse approximation, as the input is about the same. ]

The extrapolation by Dumbrajs would also mean that
e(q ) is not constant any longer. For instance, in his
parametrization Gz ( —m ) = 1.13 and therefore
e( —m~)=+0. 27 using the value G = —1.52 following
from the Jarlskog and Yndu rain calculation or
e( —m )=0.43 from the value G = —1.7. In both cases
e(m„)= —0.05.

As said above, the extrapolation of Gz(q ) by Dum-
brajs, if realistic, implies large exchange effects. In that
case the calculation by Jarlskog and Yndurain would also
be questionable. As a possibility to determine G ( —m )

one might assume that e(q ) is still constant, as a first ap-
proximation. In Sec. VI the value
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e(0.96m~ ) =0.06+o 72

was found from the muon capture rate. The enormous
uncertainty in this also leads to badly determined values
for G, both for the Dumbrajs and Primakoff extrapola-
tions of Gz(q ):

G ( —m ) = —1.27 ~'3s
2 & +0 86

[Gz( —m ) =1.13], in the Dumbrajs scheme, and

G„(—m ) = —1.80+I 97

for G~( —m ) =1.59 as follows from the Primakoff extra-
polation. Primakoff in this way has obtained
G = —1.77+0.45. The smaller, but still appreciable, un-
certainty is caused by his overoptimistic estimate of the
error in e(0.96m„) from the muon capture rate (Sec. VI).

IX. CONCLUSIONS

The value of the concept of a pion-nucleus coupling
constant is rather limited. The form factor always plays a
role. With such a loosely bound system as a nucleus it is
very hard to find a way to define and measure G~. Still,
in this work we showed that a (in absolute value) high
value of G = —1.7 follows in a natural way from the
connection between the definition of G ( —I ) (within

the elementary particle method) and the impulse approxi-
mation. We discussed how to make the necessary analytic
continuation and the influence of the asymptotic tail. The
value of G found is supported by and consistent with
dispersion relations which have the same physical input.
Also arguments are given why exchange is not thought to
have such a catastrophical influence that this can explain
the low values found by some authors.

One determination leading to a low G has been
disproved in the present work. In an earlier paper we
showed already that the low values of G from charge ex-
change reaction '

p H —+n He and elastic scattering
He H~ He H are implausible. A low value of G is

also found in an EPM analysis of pion photoproduction. '

The situation there is difficult and in the companion pa-
per' we show that such a two-step process needs a very
careful analysis. Therefore the low value of 6 found in
this process can also not be considered as trustworthy.

As far as is known to us these were all analyses of G
leading to a low value. There is no convincing evidence
for such a low value. Contrary, all evidence points to a
value of G which is about —1.7.
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