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The Dirac impulse approximation formulation of intermediate energy, proton nucleus scattering
is extended to include the inelastic excitation of collective degrees of freedom. In this approach, the
deformed spin-orbit interaction appears naturally and is found to have a large effect on the inelastic

spin observables. The agreement with experimental data for the collective inelastic observables is
comparable to that obtained for the corresponding elastic ones.

I. INTRODUCTION

It has recently been shown' that intermediate-energy
proton elastic scattering is well described in a Dirac opti-
cal potential framework where the interaction strengths
are obtained via the impulse approximation from NN am-
plitudes. Especially impressive agreement has been found
for the spin-dependent observables.

In this paper we extend the Dirac impulse approxima-
tion framework to include the inelastic excitation of col-
lective degrees of freedom. In this extension the nuclear
density (not the potential) is generalized and the folded
first-order collective term becomes the transition density.
An advantage of such an approach is that the effective
spin-orbit piece of the transition potential generated from
the NN amplitudes is treated on the same footing as the
effective central interaction, thereby eliminating the expli-
cit calculation of a deformed spin-orbit interaction.

Previous works have emphasized the close connection
(data-to-data relations) between elastic and collective in-
elastic scattering. Recently the connection has been
shown to persist in Dirac eikonal approaches to collective
excitation. Given the excellent agreement with elastic

scattering, good fits to inelastic scattering are thus to be
expected and indeed are found. However, full partial-
wave calculations are needed to extract collective strengths
and as a first step in extending the calculations to regions
where the data-to-data formulae or the eikonal approxi-
mation break down. One obvious application will be to
the excitation of unnatural parity states, where detailed
microscopic nuclear properties can be studied. Such a mi-
croscopic formulation of inelastic scattering in the Dirac
impulse approximation is already underway.

In the next section we derive the expressions for the
scattering observables in the Dirac impulse approximation
collective model. In the following section the formulation
is compared to the standard nonrelativistic one and the
deformed spin-orbit interactions arising in the two ap-
proaches are compared. In Sec. IV comparison to the
published data for the 800 MeV Fe(p,p') reaction is
made.

II. GENERAL FORMULATION

We begin with the prescription for the elastic optical
potential of Ref. 2 which is

4

(0~ U(r) ~0) = — f dr'[Fsv(r r)ps'(r ) y+—ovF(rv—r )pvp(r )

+Fs„(r r')ps„(r ')+yoF—v„(r —r ')pv„(r ')],

(3)

in units of fi=c =1 where S (V) denotes scalar (vector) and p (n) denotes proton (neutron). Here k is the laboratory
momentum of the proton and yo denotes the 0th component of the Dirac y matrices. The NN invariant amplitudes F
are obtained in the impulse approximation from the free NN interactions as determined by phase shift analysis of NN
data. (We have ignored the very small tensor contributions to the optical potential. ) In practice the amplitudes are
parametrized in the following momentum-space form by a sum of Yukawa forms,

F;(q) = gA;, (I+q /p, ', ) ', i =Sp, Vp, Sn, Vn, (2)
J

so that we have in configuration space

F;(s)=(4') ' g p, ,JA;J exp( p,js)l(p;Js) . —
J
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The choice of Yukawa forms in the development of amplitudes is very convenient in carrying out the folding in Eq. (1).
Thus for a given term

f T 00

dr 'F;(r —r ')p;(r ') = g p&AJ exp( p—jr) dr'p(r')sinh(pzr')+sinh(pzr) dr'p(r')exp( —pzr')
J

(4)

Values for A,z and p,j were obtained by performing a
least-squares fit to the forward amplitudes (8 & 60'). Five
values of jwere sufficient to give excellent fits and the pa-
rameters are given in Table I for 800 MeV proton scatter-
ing.

In order to introduce collective degrees of freedom we
write Eq. (1) in schematic form

(J
~
&p

~
0) = +Rod(2J+1)

M BR g=@
I'M'«) ~

(9)
Ignoring noncentral parts of the NN interaction we can
perform the "tp" folding which yields schematically for
an off-diagonal matrix element

U(r, R) =tp(r, R),
where t is independent of R and sums are suppressed. The
nuclear radius is now generalized,

(J
~
U(r, R)

~
0) =Gq(r) g I'M (r),

M

where the form factor Gz(r) is

(10)

R(8')=Ro 1+ +Pi.&o(8') (6)

to first order in the deformations Pi where 8' is measured
from body-fixed axes. Expanding the density about
R =Ro yields

p(r, R) =p(r, Ro)+Ro +Pi Yo(8')
R =Ro

=po+ ~p

which may be rotated to space-fixed axes
r

~p=Ro QPiDrwo«Py)
)Le Bp

A,M BR

where (aPy) denote the Euler angles of the nuclear princi-
ple axes relative to a space-fixed frame and which
represent the nuclear coordinates in a rotational model. In
this model the initial and final nuclear states in the
ground-state band are described in terms of D~'o(aPy).
Integrating over the nuclear coordinates then forces A, =J
and gives for the transition density

X p;(r', R) . (11)
a

Equation (11) has assumed equal deformations for scalar,
vector, proton, and neutron parts for notational conveni-
ence. This restriction is easily removed. Referring to Eq.
(1) the structure of G(r) is evidently

G(r) =Gs(R)+yoGy(r) ~ (12)

(r
i

qg(+))
u-„(r)X,' '

to „(r)y,'" (13)

where X, is a Pauli spinor of projection s. The DWIA
amplitude is thus

Distorted waves are generated from the Dirac equation
using the elastic (or "diagonal" ) optical potential. These
are solved by making a partial wave expansion employing
standard techniques. For outgoing boundary conditions,
the Dirac distorted wave is written as a four-component
column vector

TABLE I. Relativistic amplitudes [(GeV/c} ] at T~,b ——800 MeV.
—I

F,)(q) =A;~ 1+ ~2
PIJ'

sp Re
Im

0.11
1.35

J=2
—0.89
—4.15

j =3
—0.75
—9.95

j=4
—0.52
—2.52

j=5
—0.38

4.43

~ Vp Re
Im

—0.34
—0.68

2.20
0.01

1.64
5.54

0.56
2.40

—0.14
—1.34

Re
Im

0.18
1.56

—2.42
—3.78

—1.38
—11.65

—0.37
—2.48

0.16
6.22

~ Vn Re
Im

—0.26
—0.84

2.86
1.12

1.61
6.57

0.35
2.07

—0.34
—2.65

0.125 0.350 0.550 0.900 1.500



29 IMPULSE APPROXIMATION DIRAC THEORY OF INELASTIC. . . 2il
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I
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I
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I
&'-„", &

=Q I&u-„, , (r)x,' 'I [Gv(r)+Gs(r)]I'M (r)
I

u
k

(r)&

+ & to-„, , (r +'
I
[Gv(r) G—s(r)]~M" (")

I
io-„(r )&

T]+T2 (14)

It is seen that T~ corresponds to the usual nonrelativis-
tic DWIA term involving upper components and roughly
the derivative of the central potential (sum of vector and
scalar). The second term can be related to a spin orbit i-n-

teraction term since it originates with the small com-
ponents of the projectile and its strength is the difference
of the vector and scalar terms. Using

icr Vu- (r)y,' '
w- (r)X,' '=—

E+m + V, (r) —Vv(r)
(15)

from the Dirac equation and an eikonal approximation it
is possible to write T2 in terms of upper components
where similarities in form to the usual spin-orbit interac-
tion are apparent. However, in the present case there is
an altered radial dependence from the conventional
(llr)(dldr)V„(r) used in a Schrodinger equation ap-
proach which amounts to an enhancement in the region of
the nuclear interior.

In the above formulation the nuclear properties are all
contained in the four densities p;(r). Previous calcula-
tions' of Dirac impulse approximation elastic scattering
have used Hartree-Fock or other bound state models to
generate the densities for detailed comparison to data.

These procedures are quite cumbersome, however, and
we wish to use a simpler prescription which retains most
of the important physics of the more fundamental ap-
proaches. Our prescription utilizes phenomenological
electron scattering charge densities p,h(r) which fix the
proton vector densities. We assume that these densities
are parametrized as three-parameter Fermi functions, i.e.,

1+a,h
ch

p,„(r)=
1+exp

(r —R,h )

&ch

(16)

ps(r)=pv(r) —2X I~k(r) I', (17)

where cok denotes the lower-component, bound-state wave
function for the kth fil1ed orbital. Typical bound state

We then unfold the proton charge form factor from p,h(r)
by replacing the phenomenological diffuseness value in
Eq. (16) by

a t =[a.i —(o 215)'] ' ' .

This gives the proton vector point density, pv~(r).
The scalar densities are related to the vector densities in

a microscopic approach by

1

lower components have normalizations of about 2.5% us-

ing bound state potentials comparable with those for the
real part of the low-energy, p-nucleus Dirac optical poten-
tial. We ignore any geometry changes and set p$'p
=0.95pv~. Finally the neutron-proton geometry differ-
ences are ignored giving ps„——ps~ and pv„——pv~. In this
manner we can calculate the elastic scattering for any tar-
get without adjustable parameters and inelastic scattering
with a single strength parameter Pz.

The structure of the distorted-wave calculations is basi-
cally similar to standard nonrelativistic DWBA calcula-
tions with spin-orbit effects. However, there are some
differences in detail which are given in the Appendix.

III. DEFORMED SPIN-ORBIT INTERACTION

In the previous section we have shown that the DWIA
collective transition amplitude is composed of two terms,
T] and T2, which are related to the Schrodinger theory
central and spin-orbit interaction, respectively. For a
treatment comparable to that developed in Sec. II, one
would write the transition terms as'

Uc
b, O'=P'R

R
(18)

b U"=P"o"V R(8') U" —.V,M (19)

with central and spin-orbit deformation parameters g and
g'. In some low-energy applications, " fits to analyzing
power data required P"=1.5P', although g'=P' seemed
to be adequate for 800 MeV (p,p') data. ' In the Dirac ap-
proach one would employ scalar and vector deformation
parameters in the form factor of Eq. (11), although Eq.
(17) suggests that their difference should be small. How-
ever, the enhancement of the nuclear interior in the spin-
orbit interaction, which propagates to the Tz transition
term [cf. Eq. (15) and the discussion following], provides
natural enhancement over the central TI term.

In Fig. 1 we show calculations for the 800 MeV
Fe(p,p') Fe reaction exciting 2+ and 3 levels. ' Cal-

culations using both Ti and Tz terms are compared with
those using only the central Ti term. The deformed spin-
orbit piece is seen to be substantial in its effect on the in-
elastic analyzing powers. This feature has been observed
previously in the work of Liljestrand et al. ' using a
Schrodinger-based approach. The Dirac-based approach
in Fig. 1 accentuates this difference probably because of
the interior spin-orbit enhancement to which we have
often referred.
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FIG. 1. Dirac impulse approximation calculations for the ex-

citation of the 2+ (1.408) and the 3 (4.872) levels of 5 Fe by 800
MeV protons. The dashed curves are calculated with only the
T& term in Eq. (14) which is analogous to omitting the deformed
spin-orbit interaction term.

The deformed spin-orbit term in Eq. (19) is actually
quite cumbersome to apply directly and an approximation
(the Oak Ridge term' ) is often used for calculational con-
venience. In our formulation no calculational approxima-
tions of this type are required. Thus one result of our
work is to suggest a simpler and more unified treatment
of the deformed spin-orbit interaction for collective (p,p')
transitions.

IV. COMPARISON TO DATA

It is not our goal in this paper to perform detailed anal™
yses of experimental data although such analyses will be
interesting once the Los Alamos Meson Physics Facility
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FIG. 2. Experimental and theoretical cross sections and
analyzing powers for the excitation of the ground, the 2+
(1.408), and the 3 (4.872) states of 5 Fe by the Fe(p, p')5 Fe
reaction at 800 MeV. The dashed curves were obtained by
changing the scalar and vector densities as discussed in the text.
The data are taken from Ref. 14.
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(I.AMPF) (p, p') data are available. We consider here

only the ' Fe(p, p') Fe' reaction for which data have been
published. ' In Fig. 2 we compare the cross sections and
analyzing powers with calculations using as input only the
electron scattering densities and free NN amplitudes as
outlined above. It is seen that excellent agreement is ob-
tained with the cross sections and fair agreement with the
inelastic analyzing powers. In detail, however, our analyz-
ing power calculations do not have sufficient structure at
forward angles, especially for the elastic scattering. It
seems likely that this discrepancy is due to the approxi-
mate description of the nuclear densities. Indeed, for elas-
tic scattering, slight differences among the geometries are
known' to have appreciable influence on the calculated
spin observables.

To illustrate this, the dashed curves in Fig. 2 were cal-
culated by arbitrarily adding 0.04 fm to the scalar radius
and subtracting 0.04 fm from the vector radius. As dis-

cussed in Ref. I such small changes are needed to fit the
sharp details of the elastic scattering spin observables and
this also appears to be the case for the indastic transitions.

Overall, we observe agreement with data which is com-
parable for both elastic and inelastic transitions. The sin-
gle extracted strength parameters, pI and p3, agree well
w1tll otllcl 111cRsllrcIIlcIlts ' of these quantltlcs.

This work was supported in part by the U. S. Depart-
ment of Energy.

APPENDIX

The proton-nucleus scattering is described by the Dirac
equation which includes a scalar and vector potential,
Vs(r) and Vv(r), respectively. Since the potential is cen-
tral we expand the four-component wave function in par-
tial waves

E+m
u~-( r )X,

=4m
g ( 1)[&'( I) X'~']'„—g (&—, p —s s;jp)exp(i 5„)i'I'„'*,(k )

r
I

" if„(r)[Y(r)X'~ ]~p

where ~ is the Dirac kappa label which specifies l and j

(A2}

and l is the "other" I with the same j. The normalization is chosen to asymptotically match to a plane wave (in the ab-
sence of Coulomb effects)

q(+)) E+m
2m

g1/2
S

cr k
8+m

+ik-r

Substituting Eq. (Al) into the Dirac equation yields coupled first-order radial equations for g„and f„or a second-
order equation in g„(or f„). Using standard techniques the r V' or Darwin term may be removed by a transformation
yielding the equation

d 1(l + I ) —k + V, ( ff) —r(I+~)V„(I ) .8 (I')g„(I')=0,
r r

(A4)

=1 1 8'
V,rf(r) = ~ ( Vs+ VI )( Vs —Vv+E+m)+( Vs —VI )( E+m)+-2E r 8

1 8'
2E 8 (A5)

We note, that for large r, 8(r) +I so that except for-
algebraic unpleasantness Eq. (A4) is of the same structure
as the radj. al Schrodinger equation. This similarity is even
greater if one ignores the quadratic Coulomb pa.rt of

V, (r)ffand the Coulomb contributions to 8(r). With
'tlmsc Rpprox1111atloIls tllc Rsymptotic Coulomb functIons
take on the simpler nonrelativistic forms which are far
more convenient to handle numerically and 5„ in Eq. (Al)
becomes the Coulomb phase (TI of Ref. l7. Tests of these
approximations for intermediate-energy proton scattering
show them to bc very Rccul'Rtc. Eqllatloll (A4) ca11 liow bc
solved numerically with a Numerov integration method'
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f„(r)=(E+m + Vs —VI )
K. gx+ gxar r

However, the functions g„and f„oscillate rapidly for the
energies of interest and thus Eq. (A7) is numerically in-

to 1ntcgratc to a matching radms R~ whc1c Vg and Vy
are negligible so that

A„g„(r)= [Ft(kr)+C„[Gt(kr)+iFt(kr)] I, r &EM (A6)

and from which the normalizations A„and scattering am-
plitUdcs

C„=(2i) '[exp(2i5„) —1]

are determined.
It is possible to obtain the lower component functions

f„(r) from g„(r) by using

convenient to apply directly. ~e employ the procedure of
using the equivalent of Eq. (A4) for lower components

d 1(l+ 1)
dr r~

+ Vett(r) x.V—SO(r) 8 ' (r)f„(r)=0,

where V,tt, V„are functions of 8 instead of 8 and

8(r)=1- Vg+ Vy

E —m

Using Eq. (A7) asymptotically and Coulomb function re-
cursion relations, we can readily determine the appropriate
lower component matching conditions, which are

A„g„(r)= [Ft(kr)+C„[Gt(kr)+iFt(kr)] I, r & Rst (A10)

w1th

—+Ft+ 1+
l l

(Al 1)

where ri=(Ze E)/k is the Coulomb parameter. The same
equation holds as well for Gt in terms of Gt, Gt+I. The
scatterlllg aIIlplltlldes C lI1 Eq. (A10) must be tile satile as
those obtained in Eq. (A6), which provides a check on the
numerical accuracy.

A minor detail concerns the phases for the "incoming"
final-state distorted wave in the transition matrix element.
These can be straightforwardly determined using a
Green's function approach' and yield the I'-dependent
phases i exp(iot ) for the final incoming distorted wave.

Following standard references, ' the differential cross
scct1on 1s given by

(A12)

where Tf; is the T-matrix element with distorted waves
normalized as in Eq. (A 1). This differs from the
Schrodinger normalization by the factor

(E; +m )(Ef+m)/(4';lj, f),
where p; (pf ) is the generalized reduced mass for the in-

cident (final) channel [usually taken to be the reduced en-

ergy EiE2/(Ei+E2)]. For the intermediate energy cases
considered in this paper, the factor is close to unity.
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