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Liquid-gas phase transitions in finite nuclear matter
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A procedure is developed to calculate the chemical potential of a system of fermions at high tem-
peratures in the independent particle model. This is then used to investigate the occurrence of
liquid-gas phase transitions in finite nuclei employing various zero-range nuclear effective interac-
tions. Finite size effects and the Coulomb force are found to lead to a sizeable reduction (-8 MeV)
in the "critical" temperature as compared to the case of infinite nuclear rnatter.

I. INTRODUCTION

The occurrence of a first order phase transition in nu-
clear matter has been the subject of numerous investiga-
tions that study the transition from the hquidlike
phase of ordinary nuclear matter (as encountered at low
excitation energies) to a gaseous phase where the average
interparticle distance is much larger than the range of the
interparticle interaction. Associated with such a phase
transition is a critical temperature above which only the
gaseous phase can exist. This critical temperature is very
interesting in view of experimental results from relativistic
hcavy-1on Rnd ultI Rfclatlvlst1c pI'oton rcactlons. Thc
isobaric fragment yields from these reactions obey a power
law characteristic of condensation near the critical point
as described by the droplet model of Fisher. " The calcu-
lations, ' however, deal only with infinite nuclear matter
and, therefore, ignore surface and Coulomb effects. Evi-
dently, the hot piece of nuclear matter produced in any
nuclear collision cannot have more than a few hundred
nucleons and so 1s Qot adequately dcscrlbcd by thc pI'opcr-
ties of infinite nuclear matter. In an earlier paper by the
present authors, this point was raised where it was
demonstrated, by a rather crude method, that the finite
size effects can be quite large and hence cannot be neglect-
ed when the equation of state and the critical temperature
are calculated. In the present work, we attempt to study
liquid-gas phase transitions in finite nuclear systems and
to determine the associated critical temperatures.

II. PHASE TRANSITIONS IN
FINITE SYSTEMS

A phase transition, strictly speaking, can only occur in
the thermodynaIDic limit in that the critical singularities
associated with such a transition appear only for a system
with an infinite number of particles. This is simply be-
cause the partition function of any finite system must be
an analytic function of the temperature and of all the
fields entering the Hamiltonian. As an example, the
specific heat displays a sharp lambda-type singularity at
the critical temperature T, (oo) of a liquid-gas transition
in an infinite system. The finite system specific heat, on
the other hand, does not exhibit such a sharp singularity,
but it has a large peak at a temperature T~,„(A), which

approaches T, ( oo ) as the number of particles A ~ oo. The
temperature T,„(A) can be regarded as the critical tem-
perature for a finite system of A particles so that the effect
of the finite size is in general to shift the critical tempera-
ture to a lower value and to turn the associated critical
singularities into rounded finite peaks. ' These effects are
illustrated beautifully in the exact and Monte Carlo calcu-
lations for finite three-dimensional Ising models with
nearest-neighbor interactions carried out by Binder.
The "critical" temperature for an Ising model system of
54 spins, for instance, is found by calculation to be less
than T, (oo) by -40%.

III. CALCULATION OP THE CRITICAL POINT

The critical tempeI'ature T, is determined as the tem-
perature at which the isotherm P vs p or p vs p (where P
is the pressure, p is the density, and p is the chemical po-
tential) has an inflection point

V
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Bp Qp Bp Qp

This inflection point is the critical point. The isotherms
themselves must satisfy the inequality

BP
&0 or &0Bit

P ~P

required for thermodynamic stability. However, when the
equation of state is calculated in the canonical ensemble
with the assumption of a single phase (i.e., uniform densi-
ty) throughout the volume V occupied by the system, the
isotherrns corresponding to T ~T, will have Van der
%Rais loops in which

"t)P t)por &0,
t)P P

and which, therefore, violate the requirements of thermo-
dynamic stability. This unphysical situation, which en-
tails, c.g., a negative coITlprcssibility, cRQ bc remedied by
the usual Maxwell construction. The presence of the
loops can be traced back to the (wrong) assumption of a
single phase, ' so that their occurrence is an indication of
the coexistence of two phases.
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For an infinite system, the P vs p and p vs p isotherms
are very simply related to each other through the equation

(3.1)

where f=E/V is the Helmholtz free energy density of the
system, and

fexp[p(e —p)]+1I '=e ' —e ' +

Substituting (4.2) into (4.1) we get,

=Q (P)z —Q (2P)z'+ Q(3p)z'—

(4.2)

(4.3)

(3.2)

Although the equation of state is customarily given as
P(p, T), it can be easily converted into p(p, T) and vice
versa. It is, therefore, equally easy to calculate the critical
temperature from either the P vs p or the p vs p iso-
therm s.

For a finite system, Eq. (3.1) is no longer valid' be-
cause of the finite size effects, and there is no simple
equation equivalent to it. We, therefore, find it more ad-
vantageous to work with the chemical potential rather
than the pressure for the following reasons:

(1) Since we will be dealing exclusively with fermions,
the chemical potential appears explicitly in the Fermi-
Dirac distribution function from the very beginning.

(2) The determination of the pressure in a two-phase
system is not an easy one as it depends on the geometry of
the interfacial region. Moreover, the macroscopic ap-
proaches to this problem break down for very small sys-
tems. On thc other hand, thc chemical potential is well
defined and can be determined from the requirement that
the total number of particles is constant.

For a finite system, another reason for the existence of a
loop for isotherms below the critical temperature comes
from the surface effects. ' This contribution is not of the
Van der Waals type in that the loop appears even if varia-
tions in the density are allowed for, but it approaches zero
as the system becomes larger.

In the following, we will attempt to calculate the clleml-

cal potential for a system of A nucleons in the
independent-particle model. Since we are primarily in-

terested in high temperatures, this model should be ade-

quate. I.abeling the single parti. cle energy levels as

ei, e2, . . . , eq, . . . , aild spccializlllg, fol thc moment, to
the case X =Z and no Coulomb 1ntcracttons between the

protons, the chemical potential is determined by the equa-

tion

where Q (p) is the classical canonical partition function

Q(P)= ge (4.4)

and z is the absolute activity

Dlv1dlng (4.3) by Q (P) wc gct

A
'9 =z —Sz(p)zz+SI(p)z'—

gs, lQ(P)

(4.5)

(4.6)

S„(P)=Q(nP)/Q(P) . (4.7)

Z= ga;I)'. (4.8)

The inversion coefficients, up to a7, can be found in Ref.
17. Here, we list the first four of them:

~ =S(P),

~1=2SI(P)' —SI(P),

II4 =5SI(P)'—&SI(P)SI(P)+S4(P) .

(4.9)

With the use of Eq. (4.5), tile chemical potential is t'hen

given by

p=kT lnz =kTln g II;II' (4.10a)

(4.10b)

Physically, rl is a measure of the degree of degeneracy of
the gas.

Equation (4.6) can be inverted algebraically to get the
activity z as a function of I),

= g n; = g f exp[p(e; —p)]+ I) (4.1)

where gs I is the spin, isospin degeneracy factor, n; is the

occupation probability of thc Itll energy lcvcl, and

p= 1/kT is the inverse of the tempe~atu~e »wh««. i-

lows we will attempt to invert Eq. (4.1) to obtain the
chemical potential p as a function of A, V, and T.

For high temperatures, the above system of fermions is

only partially degenerate and n; (&1 for ail I' It is then.
possible to expand about the nondegenerate case by using

the approximation

Using the expansion

g2 53 g4 g5 g6
in(1+5)=5—

2 3 4 5 6

we can expand Eq. (4.10b) in terms of I),

p=kTlng+kT g b;g',

where the first six coefficients are the following:
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bI ——a2,

b2 ——Q3 —az/2,2

bI =a4 —a2a3+a2/3,3

2 2 4
b4 ——ap —Q3/2 —Q2ag+Q2Q3 —Q2/4,

a2
$5 —a6 —a2a5 —a3a&+a2a 3+a 2a4 —a 2a3+

5

(4.13)

Ir =op+@;d(m'), (4.16e)

where p;d(m*) is the chemical potential of an ideal Fermi
gas of nucleons having a mass m*. These results are iden-
tical to those derived earlier. Equation (4.16e), in partic-
ular, is correct even at T=O, as is the corresponding equa-
tion for the pressure [Eq. (3.1) in Ref. 8].

Thc scrlcs (4.12) CRII bc vtcwcd Rs RII expansion III
powers of 1/kT. This is obvious from the above two ex-
amples where

2m

RIld tllc partltlon function ls

(4.14)

(4.15a)

where A, T is the thermal wavelength of a nucleon. From
(4.6), (4.7), and (4.15a) we then have,

The above procedure is quite general since we have not
specified the single particle energies yet. As an illustra-
tion, we will calculate the chemical potential for two sim-
ple cases. For an infinite ideal gas of nucleons (with
Z =N), the single particle energies are given by

Actually, (4.12) is an asymptotic (or semiconvergent)
series in that it will converge only in the limit of large kT.
Physically, this corresponds to the fact that the Fermi sys-
tem approaches the classical limit as T~ ~ so that all the
terms in (4.12) tend to zero except for the logarithmic
(classical) term. We can, therefore, employ the usual tech-
niques' in summing asymptotic series. These involve
stopping the summation at the term with the lowest mag-
nitude and the averaging of successive terms. ' Associat-
ed wi.th this there will be an unavoidable computational
error which tends to zero as the temperature increases.
Since we are interested in relatively high temperatures, the
errors involved are usually small and often negligible.
Usually, only the first few terms in the series (4.12) are
needed in the calculations that follow. In any case, the
summation was always stopped before the i =7 term.

gs, r Q{P) gs, r V 4

S„(P)=n (4.15c)

As a model for a finite system of nucleons, we take a
box of volume V and surface area S containing A nucleons
{wltll N =Z). Fol' thc llltclactloII between tllc Illlclcolls,
we take a zero-range Skyrme-type force

and

1 1 1a2= a3= —,etCp. . . p

2 4 3
(4.15d)

1
b

3
3' p 2

1 3 1 2
33/z 2 S 9~3

etce p s ~ ~ p

(4.15e)

Note that in this case the S„'s are independent of the tern-
perature. From (4.9) and (4.13), it then follows that

vI I= —tP5( r I
—r 2) +—P6

(5.1)

The values of tp, t3, and cr used are hsted in Table I.
These values are taken from Ref. 8 where they were ob-
tained by fitting the binding energy and density of infinite
nuclear matter. Assuming that the nuclear density p is
uniform inside the volume V, the single particle energies
of the nucleons are,

which are the results derived earlier.
If the Fermi gas is nonideal, then in the effective mass

approximation,

fi k
&k= ~ +&O p (4.16a)

2727

' 1/2
V —pro ~

2m'A'

m'kT

eo ———
4 top+ 24 t3 1+—p

+~
24

(5.2)

to
(McVfm )

TABLE I. Thc pMRmctcrs Of thc Skgjrmc 1Qtcx'8ct10Qs Used 1Q

CSlCQ18t10QS.

S {P)=n e

(4.16c)

(4.16d)

ZR1
ZR2

ZR3

1

3

0.1

1003.9
1192.2
4392.2

13287.2
11041.0
26967.3
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For such a system, the number of states with wave num-
ber between k and k+dk is given approximately by a for-
mula due to Hill and Wheeler, ' which includes the effects
of the finite size of the system (see the Appendix),

O. l 0.2 0.3 0.4 0.5 0.6 0.7
I 1 I I I I I

k2dk k dk L dk
8m. 8n

(5.3)
T =14 MOV

This formula was originally derived for a rectangular
parallelpiped, of dimensions a, b, c, for which
L =2a + 2b + 2c is a measure of the average linear size of
the system. It can, however, be applied to any box whose
shape is not too irregular. ' For a sphere of radius R, L is
equal to 2mR, the circumference.

With the use of (5.2) and (5.3), the partition function for
the system is found to be

-30—

Ve ' ~r S ~~rL
Q(P)= 3 1 —

4 V+8 VT

where A, r is defined in Eq. (4.15a). For a sphere,

S 3 L 3 1 1 S
V R' V 2 R2 6 V

so that

(5 4)

(5.5)

-50—
FIG. 1. Isotherms for a system of 50 protons and 50 neutrons

interacting via the zero-range Skyrme force ZR1. Error bars in-
dicate computational errors involved in summing the asymptotic
series (4.12).

It is obvious that the last term in (5.4) or (5.5) is a second
order surface correction.

Using this partition function, the coefficients (4.9) and
(4.13) are evaluated and the series (4.12) is summed as ex-
plained in Sec. IV. In particular, we stop at the term of
lowest magnitude and take the average of successive
terms. This means that only half the last term is added to
the sum. The error in the summation is taken as half the
magnitude of this term. Figure 1 is a plot of several iso-
therms calculated for a system of 50 neutrons and 50 pro-
tons with the force ZR1 from Table I. The isotherms in-
dicate that the critical temperature is =18 MeV and the
critical density =0.38po, where po is the density of infinite
nuclear matter which we take to be 0.17 nucleons/fm .
Table II shows the effect of finite size on the critical point

of N =Z systems with no Coulomb force, using the forces
listed in Table I. The errors quoted for the critical tem-
perature result from the uncertainty in determining the
chemical potential because of the computational errors re-
sulting from summing the series (4.12). These errors ap-
pear for the smallest systems only because their critical
temperatures are low enough that these errors begin to be-
come non-negligible. Moreover, for a given temperature,
the errors get larger as 2 decreases. The situation is fur-
ther illustrated by the error bars on the isotherms of Fig.
1. The results given in Table II show a sizeable drop of
about 6 MeV in the critical temperature for the smallest
system considered. This is in agreement with the results
obtained earlier for a finite system. The inclusion of the
Coulomb force and surface diffuseness effects, as well as

TABLE II. Effect of finite size on the critical point of nuclear matter for N =Z systems with no
Coulomb force. Calculations are made for the various forces shown in Table I. The errors are ex-
plained in the text. When no errors are reported they are (0.05 MeV.

No. of
Nucleons

Force ZR1
T, (MeV) p, /po

Force ZR2
T, (Mev) p, /po

Force ZR3
Tc (MeV) pc/po

10
104

10
500
200
100
50

22.90
22.80
22.00
20.80
20.20
19.10

18.1+0.1
16.5+0.5

0.40
0.40
0.39
0.39
0.38
0.38
0.38
0.34

20.5
20.4
19.7
18.6
17.9
16.9

15.9+0.1
14.5+0.5

0.375
0.375
0.375
0.37
0.35
0.33
0.33
0.30

16.00
15.80
15.00
14.00
13.50

12.6+0.1

11.6+0.3
10.5+ 1.0

0.325
0.325
0.325
0.30
0.30
0.28
0.25
0.23

Previous result
From Ref. 8 13.4 0.39 11.9 0.36 8.5 0.29
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the use of a finite-range term in the Skyrme interaction,
are expected to lower the critical temperature still further
and so bring it into better agreement with the results of
Ref. g. Some of these effects will be considered in the fol-
lowing sections.

+—(I+x3P )p6
(6.1)

with the same values for to and t3 as the ZR1 force in
Table I. The values of xo and x3 do not enter in the cal-
culations for the case of N =Z systems, and so the force
(6.1) is identical to the ZR1 force for these systems. The
value of x3 is taken to be 1, while xo is treated as a pa-
rameter. With this interaction, the single-nucleon energy
levels are given by

fi'k Xo
&k~ = —~o 1+ p —&0+ p~2&i 2 2

+ ~ t3(P Pt)+~t, l/2VC ~ (6.2)

where t= + z for a proton and t = ——, for a neutron.
The Coulomb term V~ is taken to be the average Coulomb
potential energy per proton in a uniformly charged sphere

2/3

(6.3)

where the Z ~ term is the exchange contribution and
the Z ' term subtracts the interaction of the proton with
itself."

Before trying to calculate separate proton and neutron
chemical potentials with the use of the energy levels given
by (6.2), it is possible to get an approximate idea of the ef-

Once the Coulomb force between the protons is taken
into account, the isospln symmetry which we have utilized
in the preceding sections will be broken. In particular, the
protons and neutrons will have different energy levels and
chemical potentials (p~ and p„, respectively), and Z will
no longer be equal to ¹ In this case, separate calculations
must be carried out for p~ and p„. For this purpose, we
use a more general form of the zero-range Skyrme force

v)2 ———to(1+xoP )5(r) —r2)

feet of the Coulomb force without losing the symmetry
exploited in the preceding sections. The Coulomb force
raises the single-proton energies by the amount Vc and
favors making Z & ¹ The effect of such an asymmetry is
seen from Eq. (6.2) to lead to raising the single-neutron
energy levels at the low densities of interest in the present
calculations. We can, therefore, use the following approx-
imate single-particle energy levels for both protons and
neutrons and keep X =Z

——,top+ ,„t3 —1+—p +—Vc, (6.4)

where VC is given by (6.3). The effect of this approximate
treatment of the Coulomb force is shown in Table III for
2=50, 100, and 200, where it is seen that the Coulomb
force lowers the critical temperature by a further 1—3
MeV, depending on the size of the system. The calcula-
tions are carried out with the ZR1 force of Table I.

On the other hand, if the Coulomb force is to be treated
correctly, then the protons and neutrons must be treated
separately and have different energy levels and chemical
potentials. Here it must be noted that the protons and
neutrons in hot nuclear matter produced in a relativistic
collision are not in chemical equilibrium although they
may be in thermal equilibrium (as we have been assum-
ing). As a result, their chemical potentials are not related
to each other. The situation is, therefore, completely dif-
ferent from that found in supernova matter where there is
chemical equilibrium (or P equilibrium) between the neu-
trons, protons, electrons, and neutrinos. However, since
P equilibrium is achieved via the weak force, it cannot be
realized in a nuclear collision.

As a result of having different chemical potentials and
different isotherms, the protons and neutrons will also ap-
pear to have different critical temperatures, T,z and T,„,
respectively (assume that T,z & T,„ for the sake of argu-
ment). This, of course, makes no sense physically and it
results from the fact that, while calculating the chemical
potential for the neutrons, we are assuming the protons
are still present [see, e.g., Eq. (6.2)] which is obviously
wrong if T & T,~. In addition, it makes no sense for the
neutrons to stick together after all the protons have boiled
off, and vice versa if T,„»T,». It is, therefore, obvious
that the correct critical temperature in such a situation is
given by the smaller of T,~ and T,„.

The chemical potentials for the protons and neutrons
are now calculated from Eq. (4.12) where rt is defined in
Eq. (4.6), except that 3 is replaced by Z or N and ger is
now equal to 2. The single-particle energies used are those

TABLE III. Effect of the Coulomb force on the critical temperature of finite nuclear systems. The
nuclear force used is ZR1. Columns 2 and 4 give the critical temperature and density when no
Coulomb effects are included (i.e., the same as Table II), while columns 3 and 5 give T, and p, with the
approximate inclusion of the Coulomb force as given by Eq. (6.4).

No. of
Nucleons

50
100
200

T, (MeV)
(no Coulomb)

16.5+0.5
18.1+0.1

19.1

T, (MeV)
(with Coulomb)

15.5+0.5
16.2+0.3
15.7

o.~co
(no Coulomb)

0.34
0.38
0.38

(with Coulomb)

0.32
0.37
0.37
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given by (6.2). The critical temperatures T,z and T,„are
listed in Table IV for a system of 40 protons and 60 neu-
trons (first three rows) and for a system of 44 protons and
56 neutrons (second three rows). For each system, we let
xo [see Eq. (6.1)] take the values 0, 0.2, and 0.5. The ef-
fect of increasing xo is to increase T,z and lower T«, as
can be seen from Table IV. The values of xo used in the
literature vary, although a choice around 0.5 is quite
popular. We notice that for xo ——0.2 and 0.5, the results in
Table IV indicate that systems with a larger neutron-
proton asymmetry will have lower critical temperatures.
Notice also that in most cases T,z )T«, which reflects the
fact that a neutron has less protons to interact with while

I

the proton has more neutrons with which it can interact as
compared to the X =Z case. For comparison, we give in
the last row of Table IV the results obtained earlier in this
section with an approximate treatment of the Coulomb
force.

VII. CALCULATIONS WITH SERR's
INTERACTIONS (Sks)

The Sks interaction ' has three density-dependent terms
and, for the present calculation, it can be written as fol-
lows:

t] t3v(ru)= —to5(r»)+ —[k 5(r&2)+5(r&2)k ]+t2k5(ri2)k+ —p2 6
5(rig)

t4 2 r]+ r2 t5 3 r]++—p' 5(r»)+ —p' 5(r») . (7.1)

This force is interesting since it can reproduce the proper-
ties of the giant monopole resonance (GMR), although it
has an incompressibility K=400 MeV that is much higher
than the generally accepted value which is derived from
an analysis of the available experimental results pertaining
to the GMR. The Sks incompressibility is, however, com-
parable to that obtained with regular Skyrme forces (like
the ZR1 force above) that have a linear density depen-
dence.

The parameters of the Sks force are shown in the first
column of Table V together with other relevant quantities
including the incompressibility K, the effective mass
m /m, and the "surface compressibihty parameter" g
(Ref. 21), which serves as an indicator of the surface
compressibility. We also show in the first column the
critical temperature T, (00 ) and density p, ( ao ) for infinite
nuclear matter calculated with the Sks interaction. These
values of T, ( 00 ) and p, ( oo ) are much lower than the cor-
responding values given by the usual Skyrme-type interac-
tions (see the first row of Table II, for example). In the
second column of Table V, we show the parameters of
another force denoted Skj, which is very similar to Sks ex-

cept that it has an effective mass of 1. For this force,
T, (00) and p, (oo ) are somewhat higher than for Sks,
which is expected from the value of the effective mass.
However, these values are still much lower than the corre-
sponding values in the first row of Table II, except for the

very soft (K=190 MeV) ZR3 force [with o =0.1 in Eq.
(5.1)] which gives a comparable T, ( oo ), but a still higher
value of p, ( oo ). Also included in the second column of
Table V are T, and p, for a system of 100 nucleons (with
Z =N) with the Coulomb interaction included according
to the approximation (6.4). Again we notice that, for the
Skj force, the critical temperature is reduced by about 5
MeV because of surface and Coulomb effects, which is
roughly in agreement with the results obtained in the
preceding sections with regular Skyrme-type forces. For
comparison we include in the third and fourth columns of
Table V similar calculations with two Skyrme-type forces
with linear density dependence (o =1). The force called
Skg has an effective mass of 0.8 (same as Sks), whereas
the ZR1 force has an effective mass of 1 (same as Skj).
The incompressibilities of all four forces are very close,
but Skg and ZR1 differ from Sks and Skj in the value of
the surface compressibility parameter ri. For a Skyrme
force, ri and E are related to each other and cannot be
varied independently, unlike the Sks and Skj forces. The
smaller values of rl for the latter indicate that these forces
are quite soft at densities (p+2, although they have a
high incompressibility at nuclear matter density. This ac-
counts for the fact that T, and p, obtained with these
forces are closer to those obtained from the soft Skyrme
forces (o =0).

TABLE IV. The proton and neutron "critical" temperatures and "critical" densities with the correct
inclusion of Coulomb and symmetry energies. Note that p,' ' (or p,'"') is the total nuclear density and not
the proton (or neutron) density.

44
44
44
40

40
50

56
56
56
60

60
50

0.0
0.2
0.5
0.0
0.2
0.5

~CP

(MeV)

15.7+0.3
16.6+0.2
17.9+0.1

17.2+0. 1

18.6+0. 1

20.7
16.2+0.3

p'"ipo

0.36
0.36
0.37
0.36
0.37
0.39
0.37

TCn

(MeV)

17.1+0.3
16.3+0.3
15.0+0.4
16.5+0.3
14.6+0.4
12.5+0.5
16.2+0.3

p. ipo
(n)

0.39
0.38
0.35
0.37
0.38
0.32
0.37



29 LIQUID-GAS PHASE TRANSITIONS IN FINITE NUCLEAR. . . 2073

TABLE V. Parameters for the Sks, Skj, Skg, and ZR1 forces together with some relevant quantities
calculated with these forces as explained in the text.

Interaction

to (MeVfm )

3ti+5t2 (MeV fm')
t3 (MeVfm )

t4 (MeVfm )

t5 (MeVfm' )

m*/m
SC (MeV)

g (MeVfm )

T, (00)
p, (~)
T, (3=100)
p.'(3=100)

1532.5
497

68 022
—347 548

708 079
0.8

400
—250

12.6 MeV
0.19 pp

Skj

1441.4
0

60 100
—278 264

551 292
1

400
—250

15.0 MeV
025 po
9.9+0.5 MeV
0.18 po

Skg

1035.3
486.75

11073
0
0
0.8

372
—352.7

20.3 MeV
0.4 pp

ZR1

1003.9
0

13 287
0
0
1

384
—329.4

22.9 MeV
0.4 pp

16.2+0.3 MeV
0.37 pp

VIII. CONCLUSION

The effect of finite size and the Coulomb force have
been found to lead to a sizeable reduction in the critical
temperature of nuclear matter. Surface effects can reduce
the temperature by 5—6 MeV while the Coulomb force is
responsible for a further reduction of a few MeV. In gen-
eral, the simple estimates obtained in Ref. 8 are found to
be fairly good. By analogy, we expect that similar con-
clusions will hold for the case of supernova matter and,
therefore, the neglect of surface and Coulomb effects in
supernova calculations is not justified.

In the present calculations, however, several effects
have not been included that may play a role in determin-
ing the critical point. For one thing, the use of a finite-
range force instead of the zero-range forces used here
would have an effect on the nuclear equation of state. By
examining the results of Ref. 8 it can be inferred that this
could lead to a reduction in the critical temperature of
2—3 MeV. The diffuseness of the nuclear surface should
also be taken into account. This will lead to a further
reduction in the critical temperature because of the reduc-
tion in the binding energy of the surface nucleons as com-
pared with the uniform density model used here. A third
effect that has not been included is fluctuation in the oc-
cupation probability of the single-particle energy levels
[see Eq. (4.1)]. Fluctuations in general tend to reduce the
critical temperature and their importance grows as the
system's size decreases. The net results of these effects
would be to reduce the values of the critical temperature
below the results obtained in the present work, so that
these results can be regarded as upper limits.
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found in the original work of Hill and Wheeler. '

Consider a particle confined in a two-dimensional infin-
ite rectangular well of dimensions a, b in the x-y plane,
with one corner at the origin. The wave functions for the
possible states of this particle are solutions of the equation
( V +k )/=0, with tP =0 at the surface, and are given by

lm . mm
$1~ =sin x sin y .

a b

Each of these solutions corresponds to a lattice point in
the two-dimensional k space,

le mm.k=, ky ——
a b

with which is associated a characteristic rectangle of area
(m/a) (m/b) (see Fig. 2).

dN =number of states between k and k +dk,
area of circular shell —shaded end regions

area per state

dk
2b Za

k dk — dk,2' 2m'

k dk — dk,
2m. 4m

87//b — 0 ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~
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APPENDIX

Here we give a derivation of the asymptotic formula for
the number of states with wave number between k and
k+dk in the two-dimensional case. A generalization to
the three-dimensional case is straightforward and can be

4m/b

2v'/b

~ 0

, ii,
2~/0 4r/a 6r/a 8r/a

X

FIG. 2. k space for a particle in a two-dimensional infinite
rectangular well.
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where S =ab is the area of the well and L=2a + 2b is its
perimeter. Note that for an infinite system, a and b~ ~
and the k-space lattice goes into a continuum so that the
shaded regions in Fig. 2 vanish. The correction to the

value of dX found above essentially contains the effect of
zero-potnt motion and the quantlzatton of the wave num-
ber in a finite system.
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