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We construct and examine the properties of the energy-independent potential U which is wave
function equivalent to the usual optical potential U(E). A simple procedure is presented for con-
structing U in the uniform medium, and physical examples are discussed. The general result for the
finite system, a recursive expansion in powers of U(E), is used to investigate the multiple scattering
expansion of U. The energy-independent potential is found to have serious shortcomings for direct
microscopic construction or phenomenological parametrization. The microscopic theory, as exem-
plified here by the multiple scattering approach, does not lead to a reliable approximation scheme.
Phenomenological approaches to U are unattractive because the physics does not guide the
parametrization effectively: the structure of the nonlocality is not tied directly to the dynamics;
Im U changes sign; different elements of the physics, separate in U(E), are completely entangled in

U.

I. INTRODUCTION

Energy dependent optical potentials arise naturally in
describing multichannel reaction processes via equivalent
one channel theories,’

1
E+—QaHQa
Pa=|wa>(wa| ’ Qazl”'Pa9 (2)

U (E)=P,UP,+P,UQ, Q. UP,, (1)

where P, projects onto the channel a. The operator
U,(E) is explicitly energy dependent, complex, and nonlo-
cal because of the intermediate coupling to the other
channels. Given U,(E), the diagonal transition amplitude
in the channel a is obtained from solution of a standard
one-channel Lippmann-Schwinger equation

T E)=P,T(E)P,=Uy(E)+U4(E)Goy(E1)T,(E), (3)

where Go(E) describes free propagation in the channel a.
The completely off-shell matrix elements of T,(E) are
given correctly by Eqs. (1) and (3). This is not terribly
surprising, since a solution for U,(E) corresponds to solu-
tion of the full multichannel problem. The optical poten-
tial approach to reaction theory has been very fruitful
since, on the one hand, systematic expansions of the elas-
tic channel optical potential have been derived microscop-
ically and, on the other hand, comparatively simple,
theoretically motivated phenomenological representations
are available.

Microscopic approaches based on the multiple scatter-
ing expansion can be organized to build in unitarity con-
straints at any level of truncation, with each successive
level of approximation incorporating reaction processes
involving an additional nucleon. For example, the lowest
order term,

UY(E)= S (E), @)

where ¢;(E) is the (in-medium) projectile-ith nucleon tran-
sition matrix, already generates a good description of in-
termediate and high-energy hadron-nucleus elastic scatter-
ing. The reactive content associated with U'! is quasifree
nucleon knockout, which is the dominant reaction mecha-
nism in the low-density (or peripheral) limit; for central
collisions, the strong absorption (“black disc”) limit is
respected. This simple form [Eq. (4)] then provides the
starting point for a comparatively simple yet meaningful
phenomenology, with the target geometry and projectile
dynamics separated. For example, a static zero-range ap-
proximation to Eq. (4) yields the local energy-dependent
optical potential

(T|UME) | 7'y =8(F—F")p(r)t(E) . (5)

Even low-energy nuclear reactions have been described
with phenomenological optical potentials tailored accord-
ing to Eq. (5), with geometrical aspects still described by
p(r), while the energy-dependent ¢(E) is replaced by a
phenomenological function of energy.

The energy dependence of the microscopic optical po-
tential, though not a serious complication insofar as the
calculation of the elastic scattering amplitude is con-
cerned, does pose formal problems when used in a pertur-
bative coupled-channels description of, e.g., intermediate
energy inelastic excitation of low lying collective states.
The intermediate channel Green’s functions, which appear
naturally in such perturbative treatments, do not lend
themselves to the usual spectral expansion as a result of
the nonorthogonality of the scattering states.

Recently, attempts have been made?~® to derive an
equivalent energy-independent optical potential which,
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when used in the Schrodinger equation, generates the
same scattering wave function as that obtained with
U,(E). The idea of an energy-independent potential is ac-
tually not new, and a trivial example is the effective mass
approximation invoked to treat a linearly energy-
dependent potential. More explicitly, given an optical po-
tential of the form [a special case of Eq. (5)]

(T|U(E)|T')=CEp(r)8(T—T"), (6)
the associated Schrodinger equation,

[—V2+Uy(E; D) o(T)=Ey(T) , (7)
may be recast (algebraically) into the form

(—V2+TUo)o(T)=Eto(T) , ®)

with the equivalent energy-independent potential U given
by

(F| T, | 7'y =—CSPT) ga57_5) . 9
1—Cp(T)

This is nonlocal and has a complicated interplay between
the potential strength (recall that C is complex) and the
target geometry. Whereas geometrical properties and
dynamical features of U(E) are clearly separated, this is
not so in U. The complicated coordinate space structure
of U implies that, even in a rather simple physical situa-
tion [as represented by Eq. (6)], energy-independent opti-
cal potentials are not amenable to physically motivated
direct phenomenological construction. Furthermore,
while U(E) respects the previously mentioned “peri-
pheral” and “central” (black disc) limits in a strong ab-
sorption situation, these constraints associated with
geometry and unitarity are not observed in expansions of
U. Since an effective procedure for microscopically con-
structing an optical potential must provide a systematic
expansion which can be truncated at a low order, the wave
function equivalent energy-independent optical potential
is rather unattractive as a focus for theoretical effort in
many situations of relevance to nuclear physics.

Our paper is intended to be rather pedagogical. Several
recent papers have discussed the energy-independent opti-
cal potential,>~® the majority emphasizing the attractive-
ness of U. Our intent is to offer a somewhat different
construction procedure for U, particularly for the uni-
form medium, and then to expand on the shortcomings of
such a potential in a more systematic fashion than done
above for the simple effective mass example. We do this
both by explicit construction of U in cases of physical in-
terest and by developing a multiple scattering expansion.
The coupled channel theory of U(E) could equally well be
used to demonstrate our arguments, but the example
drawn from multiple scattering theory, which has been
employed with considerable success at intermediate ener-
gy, will be sufficient for our purposes.

In Sec. II, we present a simple method for constructing
U in the infinite medium and discuss two examples in de-
tail, one a phenomenological local optical potential with
quadratic energy dependence, the other a nonlocal optical
potential appropriate for intermediate energy pion scatter-

ing. In Sec. IIl, a general derivation of the energy-
independent optical potential is presented, culminating in
a recursive expansion of U in terms of U(E). While our
methods are slightly different, the first terms in this ex-
pansion have been discussed previously by Ma et al.® We
then go on to use this expansion in a discussion of multi-
ple scattering. The difficulties with reactive content
which ensue upon truncating the multiple scattering ex-
pansion of U are discussed. Section IV contains a sum-
mary of our results.

II. ENERGY INDEPENDENT POTENTIAL
FOR OPTICAL PROPAGATION
IN A UNIFORM MEDIUM

The shortcomings of an equivalent energy-independent
optical potential can be seen by constructing U for propa-
gation in a uniform medium (i.e., nuclear matter). The
Green’s function is then diagonal in the initial and final
momenta

(B|G(E)|d)=2m)’8(B—q)G(p;k),
(10)
E=k?, 2m=1.

Translational invariance demands that all scattering states
are plane waves, with the wave number determined by the
poles of the Green’s function,

G(p;k)"'=k>—p>—U(p;k)=0. (11)

Here, U(p;k) is the usual energy-dependent complex opti-
cal potential (or self-energy), with the variation in
momentum corresponding to nonlocality. Recall that for
scattering, one solves the dispersion equation [Eq. (11)]
for the in-medium wave number p*(k), with E =k? real.
The one-pole approximation for the Green’s function can
then be written as

G(p;k)=—p7(%(2—l(%p—2 , (12)
—1

PHk)=

0
1+—U(p;k)
+ 8p2 p

p=p*(k)

mp

m

(13)

p=p*(k)

The in-medium wave number is complex, with the ima-
ginary part giving the optical damping of the wave func-
tion. (Note that the dispersion equation may have multi-
ple eigenmode solutions in general. For simplicity, we
shall keep only the optical eigenmode, which is unambigu-
ous for a weak enough potential strength. See Ref. 7 for a
discussion of the Green’s function with multiple eigen-
modes.) The residue at the pole in Eq. (12) defines the ef-
fective k mass.®

The energy-independent potential U(p) is defined to
produce the same pole in p in the associated dispersion
equation

Gp;k)"'=k?—p>—U(p)=0. (14)

The potential is obtained easily as
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Ulp)=k %p)—p?, (15)

where k(p) is the (complex) solution of Eq. (11) for k
with p real. This solution is generally applicable to calcu-
lations of quasiparticle lifetimes in a Lehmann representa-
tion of the Green’s function, not to a study of optical
propagation. The one-pole approximation for the Green’s
function has the form

7(p) A
Gip;k)=—LL  _5p)G(p:k), 16
p ot 7(0)G(p;k) (16)
-1
Pp)= |1— = U(psk) = |2 (17
dk k=kp) |ME |p—k2p2)

The Green’s functions G and G have the same pole, since
k?[p*(k)]=k? but differ by the effective E mass®
evaluated at the quasiparticle pole.

We wish to use the formal solution for U(p) [Eq. (15)]
to study cases of physical relevance. The simple effective
mass result discussed in the Introduction is, of course,
recovered trivially as

(1—C))—[(1—=C1)*—4C,(Cy+p2/E,)]'"?
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Ulp;k)=Ck?p
k(p?=p%/(1—Cp), (18)
- C
Ulp)=—~L—p2
(p) 1_Cpp .

In the infinite medium, p? plays the role of — V2, so that
Eqgs. (18) and (9) agree. A less trivial example is presented
by a potential with quadratic energy dependence. Bauer
et al.’ have suggested this form for nucleon scattering
with E <200 MeV, together with a theoretical justifica-
tion related to the effective mass. Ma et al.® state that
the quadratic term, since it is weak, should not modify U
very much. This statement should be viewed with cau-
tion. To show this simply, we take a local potential

U(p;k)=U(k)=CoEy+C,E +C,E*/E, , E=k?,
(19)

where the C; are dimensionless strength parameters and
E, is an energy scale parameter. We obtain

U(p)=E 2
(P)=E, 2C, , (20)
CoE, C,C, c, 2C, C, 4
— - + 1+ 2 P ... .
o0 1—C, 1—c, |T1Zc, aa—cr P T a—c, P E, T @
l
Clearly, there is a very compl.icated interplay in U [Eq. . ko uT
(20)] among the various terms in U [Eq. (19)]. In particu- Ulp;k)= . > . (22)
_. . . 'R 2_ 2 k— —_‘H_— 2
lar, the energy-independent term Cj is not isolated as a k*—kg+i kz,uI‘ 2w P
0 A

separate term in U. Even though C, may be small, it
may produce a large effect in U by “interference” with a
large energy-dependent potential; for example, the
C,Cy/(1—C,) coefficient in the local piece of U may be
significant (compared to one) even for a small C,. Of
course, the quadratic term in U becomes large at suffi-
ciently high energy for small but finite C,, so that one
may not be surprised that U, which must reproduce the
wave function associated with U at all energies, is strong-
ly influenced by C,. One may attempt to circumvent this
problem by introducing arbitrary high energy cutoffs in
the original optical potential. However, even in cases
where this is allowed by the physics, the fact remains that
individual contributions to U(E) which generally have
well-defined physical content, are completely entangled in
U; this includes any energy-independent contribution to
U(E). Thus, one has no real guidance from microscopic
theory for direct phenomenological construction of U.

Another instructive example may be drawn from the
multiple scattering theory. We take a first order energy
dependent optical potential [as in Eq. (5)] with a
resonance-dominated projectile-nucleon transition matrix
modeled after that appropriate for intermediate energy
pion scattering,

Here, k, corresponds to the resonant 7N c.m. momentum
and T to the resonance width. We take ky=1.25 fm~!,
=0.55 fm—!, pion mass £=0.7 fm~!, and resonance
mass M, =6.2 fm~! (note that this is not a particularly
narrow resonance). The k2 dependence of the width has
been taken for convenience. The p? term in the denomi-
nator corresponds to intermediate propagation of the reso-
nance and produces a corresponding nonlocality in the
energy-dependent potential

(F|Ug |F)=Uplo)= [ (;’:)3 eTIU(psk)

s=r—7’, @3

My k?
p%s—;- k2—k(2)+i—l-(7,ur . (24)
0

Using Eq. (15), the exact wave function equivalent
energy-independent potential is, in momentum representa-
tion,
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FIG. 1. The imaginary part of the energy-independent opti-
cal potential U(s) [Eq. (44)] plotted vs s for several values of A
(in fm). The dashed lines correspond to negative values of Im U.
The dash-dot line corresponds to M= « with Ag =1 fm.

Up)=+(p*—0? |1+

172
__4
(pZ_QZ)Z

_Lpr—0Y), (25)
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kouT' /A
g=— R (27)
1+ipl k3

The coordinate space representation Ul(s) is shown in Fig.
1 for several values of Ag. This parameter, which deter-
mines the strength of U(p,k), corresponds to the mean
free path at resonance for pion propagation in nuclear
matter. For normal nuclear matter density, the mean free
path is Ax =1 fm. We see from Fig. 1 that the range of
the nonlocality depends strongly on the strength of the
optical potential. This follows from the fact that the ex-
act U [Eq. (44)] is nonlinear in the strength parameter .
Furthermore, note that the imaginary part of Ul(s)
changes sign. These results point out the difficulties with
phenomenological forms for U: Even with a rather sim-
ple physical picture, U has a complicated structure not
obviously related to the underlying physics.

This difficulty is reinforced by examining the My —
limit of the model problem. The energy-dependent poten-
tial U(s) is local in this limit [see Egs. (23) and (24)].
Surprisingly, the energy-independent potential U(s) be-
comes even more nonlocal, as shown in Fig. 1. In fact,
this peculiar behavior can be seen in the lowest order term
of U,

T =Upip)=—5— , (28)
p—0Q°
_ kouT /Age ~ies
T N(s)= ol R . , 29)
[1———1‘%+ii—%— 4as
a2=———————k(2)
IR Sy 8
My Kk}
o| 1=ipl/kd  y 1—(uT/k3)?—2i(uT /k3)
Mo 07 22+ M 2y212 (30)
A +(ul/k§) A [1+(uT/k§5)?]

As M, increases, a decreases, corresponding to greater
nonlocality. The energy-independent optical potential #
has a complicated, nonintuitive structure.

Finally, we comment on the nonlocality structure for
the case of rapid energy dependence in U (E). This situa-
tion occurs in our simple model in the limit I’'—0. As al-
ready noted, the nonlocality in the energy-dependent opti-
cal potential is directly associated with the underlying
physics. For Egs. (22) and (23), the nonlocality range is
given by the propagation distance of the resonance
d=2ky/M,I'. For example, in the limit M — o0, '—0
with d fixed, we still have

U, (x) e V7 (31)

i.e., the nonlocality is still finite and characterized by the
resonance decay length. On the other hand, the rapid en-
ergy dependence in U(p,k) generates rapid momentum
dependence in U, and thus a long-range nonlocality not
associated with the underlying reaction dynamics. For ex-
ample, we obtain

T (1(5) g ~SWT/2k0) _  ~(s/d)pu/My) ’ (32)
in the limit described above, meaning that the nonlocality
becomes infinite in range. These conclusions are clearly
independent of the specific model considered here. We
note that, even with the less stringent requirement of
phase shift equivalence, the energy-independent potential
may develop similar pathological momentum depen-
dence.'®
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III. ENERGY INDEPENDENT POTENTIAL
FOR FINITE SYSTEMS AND THE
MULTIPLE SCATTERING EXPANSION

We start this section with a formal derivation of the
wave function equivalent energy independent optical po-
tential, appropriate for scattering from a finite system.
Many of the results here are not new,>~® although our dis-
cussion differs somewhat from those previously given; in
particular, the symmetry properties of U for scattering
with spin are discussed. We present a recursive expansion
for U in terms of U(E) and then apply this to a discus-
sion of the multiple scattering expansion, demonstrating
again the shortcomings of U as a vehicle for theoretical
studies of hadron-nucleus scattering.

The energy-independent potential equivalent to U (E)
for incoming scattering states is defined by the relation

¥7 (
T, | W) =UE) ¥ . (33)

To solve for U, we introduce the dual states (¥ +)|
defined such that

(PG| W) =(2m)%8(4—k) . (34)

A formal expression for U, follows directly, namely,
g,=[ (;’k) UE) WL (35)

We shall assume that there are no bound states (see Ref. 6
for a discussion of U in the presence of bound states), so
U, is umq) e by construction. We stress that the dual
states (9§ ] are not identical with the dual states usual-
ly employed in low energy nuclear reaction theories. 1 In
these theories, the optical potential is assumed, in conflict
with Eq. (1), to be energy independent albeit complex.
With this assumption, the dual states are given simply by
the solution of the Schrodinger equation with U replaced
by Ut and with incoming boundary conditions. With an
energy-dependent potential, the dual states can be ob-
tained only with solution of an integral equatlon which
we now derive. The scattering parts of | ) and
(4| are defined by

(B¢ =2ms(3—K)+6F (B, (36)
(T |3)=2m’8(3-9)—¢ (B . 37)

The orthogonality relation [Eq. (34)] then yields
$ 0= —»(q)—f—E—¢(+( BB . (38

Since the scattering part of the incoming scattering wave
function is given by

$FB)=(B | GoENT (B | k),
R (39)
=(P|w(EF) | k),

we have the formal solution of Eq. (38),
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FHE (a '—l—~—w(Ek) I{> . (40)
q 140(EL)

Here, & is the momentum operator acting to the right.
This has a clear meaning in a power series expansion

6 FK)= (G| o(Ep) | k)

dp ,- o\ —
—f (2m3(q]w(Ep)lp>(p|w(Ek)[k)

4+ (41)
From Eq. (35), we have the matrix elements of ﬁ+,

(BT, |d)=(PITE)|T)
_ dE — T +
J o7 BITE KOS EE
42)

Unfortunately, the solution of the integral equation for
& *) [Eq. (38)] is generally rather difficult, partly because
of the peculiar intertwining of energy and momentum ar-
guments seen in the expansion [Eq. (41)]. We shall return
to a “Born expansion” of U below.

We have been careful to state that U is the equivalent
potential only for incoming scattering states. In general, a
different potential must be defined for outgoing waves,

(W | T_=(V | UE) . 43)

The development given above for U, can be repeated for
U _, with the result

(BIU_|@»*=Kq| T4 | BNy yt- (44)

The expression on the nght hand side means that U(E)
should be replaced by U Y(E) everywhere on the right-
hand side of Eq. (42), i.e., in T(E) and in ¢‘*). For
scattering of spin-zero particles, the symmetry

(BIUME)§)=(q|UWE)|B),

together with Eq. (44), implies that
(BIU_|19)=(4q| U0, |B).

However, this does not apply in general For example, the

optical potential for scattering spin-5 and spin zero parti-
cles can be written as

(4|UE)|B)=Vo(g%p%:q BE)
+Vi(g%pLq BENGXp-G . (45)

The relation given by Eq. (44) can be seen already in the
first order contribution to U, in an expansion in powers
of U(E),

(B1TYL4)=Volg%p%d B;E,)

+ Vl(qz,PZ,?l'

AL =

“BEQ)ipXqo ,
(46)
<fl' I U(—l-) l §>= VO(qz’pz aﬁEq)

-

+V1(g%p?d B Ep)ig X

)
Ql
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This relationship between central and spin-orbit terms in
U persists to all orders, as implied by Eq. (44), although
it must be stressed that the central (spin-orbit) term in the
full U will include contributions from ¥V (¥;) in higher
order. We conclude that U, constructed from Eq. (35),
is unique® (in the absence of bound states'?) but not sym-
metric. This is in contrast with phase-shift equivalent
energy-independent potentials, which are symmetric but

2059

nonunique.

Our thrust will now be to understand the relationship
of U to a microscopic theory of the optical potentlal We
shall use the multiple scattering theory, which is highly
developed and quite successful. For this purpose, and to
show more directly the relationship of U and U (E), it is
useful to expand Egs. (42), (38), and (39) and T(E) in
powers of U(E). We obtain a recursive expression

<p|U+|q>~f(2 )3<p|zA<q,q>| (4'|UE)|G), 47)

Ao(g,q')=1, (48)
A, _(( ,@)U(E )—A,_i(q’ Q’)U(E )

A, (g,9")= 4 ne. n>0. (49)

E,—E,

The operators A, for n >0, play the role of “fluctuation”
operators as they explicitly vanish when the optical poten-
tial is energy independent. The first three terms (n <2) in
this expansion have been explicitly written already by Ma
et al.® Note that there is no singularity in A,(g,q’) since
the numerator in Eq. (49) vanishes when g =q’. The
correctness of the energy fluctuation expansion [Egs.
(47)—(49)] can be verified directly for the trivial effective
mass example. Using Eq. (6) for the energy-dependent
potential, we immediately obtain A,=(cp)". Equation
(47) is then a simple geometric series which sums to give
Eq. (9).

The success of the multiple scattering theory rests upon
its provision of a rapidly convergent expansion of the op-
tical potential. Successive terms in the expansion corre-
spond to direct reaction processes involving more and
more target nucleons. For algebraic simplicity, we work
with the optical potential in the fixed-scatterer, large-4
limit (the full optical potential, without approximation,
could equally well be used). The first two terms in an ex-
pansion in powers of the projectile-nucleon ¢ matrix are
then!

(B|UWE)|G)= Ap(f)’—fi)t(f)’,fi;E)
C(Z)( 1,—>l -
f 2 CU a1

t(3,45E)¢t(q",q;E)
E*—E,

X +.--’

(50)

—>.—>+

C¥3,q)= [ dxdye’TFHITcORy), (51

where the nuclear two-body correlation function is de-
fined through the two-body density p? as

COR,7)=p?(%,7)—p(X)p(F) ,
(52)
f dyp?(X,7)=p(X)

The terms in the expansion of U(E) have well-defined
physical content: the first term corresponds to quasifree
nucleon knockout; the second term includes a correction
for projectile scattering from a correlated pair. It is the
dominance of the intermediate energy hadron-nucleus re-
action cross section by quasifree scattering that dictates
an expansion of the optical potential in terms of ¢(E). In
the absence of more complicated reaction mechanisms,
such as those associated with correlations, the expansion
will naturally truncate. The unitarity constraints respect-
ed by the first order term lead to reasonable results even
in the strong absorption limit, where multinucleon
knockout becomes important.

In contrast, the expansion of U has none of these at-
tractive features. Using Eqgs. (47)—(52), we have the ex-
pansion through second order in ¢,

(B U, |9)=4p(B—t(B,§E,)+ 4> f(z )3[pm(ff—?]",E{'—a)t(ﬁ,zl";Eq)

—p(B—d")p(q'—q)(B,q ;E,)]®

t(q',q;E,)

g (53)
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In the absence of correlations,

p?(B,9)=p(plp(q) , (54)

the second term in U does not vanish; clearly, similar
problems are present in higher order. A truncated U has
no interpretation in terms of specific reaction mecha-
nisms. It provides no reliable guidance for phenomeno-
logical construction of an energy-independent optical po-
tential.

IV. CONCLUSIONS

We have discussed the construction and properties of
the wave function equivalent energy-independent optical
potential U, considered recently by several authors.>~¢ A
central question has been whether energy-independent po-
tentials provide an effective approach to direct microscop-
ic or phenomenological construction, recognizing that
these two concerns are not independent. For example, the
multiple scattering approach to the optical potential, in
building in specific reaction mechanisms in a unitary way,
provides a rapidly convergent scheme and thereby gui-
dance for an effective phenomenology based upon the tar-
get geometry and elementary interaction parameters. The
equivalent energy-independent potential U does not share
these advantages.

The multiple scattering approach, used here as an effec-
tive example of microscopic construction of U(E), leads
to no systematic, reliable truncation scheme for U. Dif-
ferent physical processes become entangled. For example,
the inclusion of target correlations, which would directly
lead to adding a term to the first order U(E) with a
specific geometry (i.e., p?), has no special signature in U.
Thus, phenomenological incorporation of corrections to
the basic theory are very difficult.

The nonlocality associated with specific physical mech-
anisms in U(E) is reflected in a completely nonintuitive

way in U. We saw this in the example of the first order

M. S. HUSSEIN AND E. J. MONIZ 29

U(E) drawn from the multiple scattering approach to in-
termediate energy pion-nucleus scattering. The nonlocali-
ty is then just the propagation or decay distance for the
intermediate resonance. By contrast, decreasing this prop-
agation distance actually led to an increase in the nonlo-
cality of U and, in the limit of small resonance decay
width with fixed propagation distance, the nonlocality
range became infinite. Since this nonlocality structure is
not obviously tied to the physics, with ImU changing
sign, phenomenological approaches are again basically
without guidance.

Even for cases where a phenomenological local U(E) is
appropriate, the associated U may be uncomfortably com-
plicated. For example, one might hope that, for a U(E)
with separate energy-independent and energy-dependent
terms, the former would remain isolated in U. This is not
the case, as shown by the example of a local U(E) with
up to quadratic energy dependence. The energy-
independent potential is nonlocal and has “interferences”
between the energy-independent and energy-dependent
terms of U(E). Since one may expect that the different
energy dependences in U(E) arise from different physical
processes, this is again an example of how the physics get
mixed up in going to U. Finally, we discussed the sym-
metry of U. In general, different potentials are needed for
incoming and outgoing scattering states.

In conclusion, while the concept of an energy-
independent optical potential may be of use in limited
contexts [such as when U(E) has a very weak energy
dependence], U has serious shortcomings in not reflecting
the underlying physics understandably.
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