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s- and p-wave neutrons on Si and "S: Spherical optical model analysis
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The s- and p-wave neutron scattering functions obtained previously by R-matrix analyses of high
resolution transmission data for 0—1.4 MeV neutrons on Si and "S have been averaged by means
of a simple analytic approximation to obtain experimental optical model scattering functions. To
describe these with a spherical optical model potential requires the real well depth to be about 20%%uo

deeper for p waves than for s waves. This result agrees with an earlier analysis for ' S and suggests
that deformation effects must be included for all three nuclei.

I. INTRODUCTION

The phenomenological optical model potential (OMP)
has been used' extensively to describe data on average nu-
cleon scattering functions. Most such data involve sums
over many partial waves for incident nucleon energies of
several MeV. However, by scattering neutrons at lower
energies where good energy resolution is possible, one can
measure the scattering function for each significant par-
tial wave and then, by subsequent averaging over energy,
deduce an OMP for the individual partial waves. For
neutron energies less than about 10 keV there is already
an extensive body of data on average s-wave scattering
functions. These results are usually expressed in terms of
a radius R' and a strength function (I „)/D. However,
few analyses have been made in the energy range of
several hundred keV where high resolution neutron exper-
iments are possible and where a few partial waves higher
than s waves become important.

From high resolution neutron data3 on S and the cor-
responding scattering functions, Johnson and Winters~'s

deduced average scattering functions for s and p waves in
the energy region from 0 to 1.1 MeV. To fit those aver-
ages with a spherical OMP required a real well 20%
deeper for p waves than for s waves. MacKellar and
Castel showed that this difference can be attributed to
the deformation of the S target. (Recently, MacDonald
also deduced an OMP froID the S resonance parameters
by a different averaging procedure than Refs. 4 and 5.)

One can reasonably expect other deformable nuclei near
S to require a similar l dependence for the spherical

OMP. Here we extend the OMP analysis to Si and S
transmission data that were obtained ' at QRELA, the
same time-of-flight facility as used previously for S.
Since relatively small enriched samples of ' Si and S had
to be used, it was necessary to restrict the neutron beam
and to use a shorter flight path than for S. As a result
the statistical uncertainties for Si and S are larger and
the energy resolutions poorer than for S. Nevertheless,
the following analysis shows there is enough information
to demonstrate an l dependence of the spherical OMP.

Since few resonances are observed for these nuclei, the

width of the averaging functions must be comparable to
the energy range of the measurements in order to average
over several resonances. The earlier analysis by Johnson
and Winters ' for S used an approximate procedure
equivalent to the use of a very broad averaging function.
At that time, however, that procedure had been justi-
fied' '" only for nuclei with level spacing D small enough
such that the width of the averaging function can be made
much larger than D but still much narrower than the re-
gion of measurements. Those conditions do not hold for
these nuclei. Recently, Johnson, Larson, Mahaux, and
Winters' (hereafter called JLMW) reviewed the relation-
ship of the averaged experimental scattering function to
the OMP and showed numerically that very broad averag-
ing functions are valid. Furthermore, averaging can be
done approximately by a simple procedure; in fact the
method used previously ' for S is a good approximation
for very large averaging widths.

In Sec. II we review the averaging procedure. In Secs.
III and IV we find average scattering functions for Si
and for S, and in Sec. V we fit these functions with a
spherical OMP. Section VI is our summary.

II. AVERAGING OF THE SCATTERING FUNCTION

This section is a summary of pertinent equations from
JLMW. ' We discuss only spin-zero targets and relatively
broad resonances, for which only the entrance neutron
channel is important. For a given J the cross section is
related to the real part S„ofthe scattering function,

o(E)=2vrk gJ[1 S„(E)], —

where k is the neutron wave number and gJ is the statisti-
cal factor, J+—,'. Given S„one can find also the

imaginary part of S because S is unitary.
To fit the data we expand S in terms of the R function

of the R matrix formalism, which automatically embodies
the unitary property. In the one-open-channel case we
have for a given J

2;p(~) 1+iP(E)R(E)
1 iP (E)R(E)—
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IV. EXPERIMENTAL S (E) FOR Si

Harvey et a/. measured the transmission of 0.0—1.4
MeV neutrons on Si02 and made an R-matrix analysis
similar to that for S except that the boundary radius was
4.2 fm and the R'"' were parametrized by distant poles
above and below the experimental region. Since the large
cross section for oxygen in Si02 made it impossible to ex-
tract precise information on R'"' from the nonresonance
cross sections, the essential information came from the
potential-resonance interference patterns for a broad s-
wave resonance at 183 keV and for two broad p3/2 reso-
nances at 745 and 845 keV. The information for pi/2
neutrons was inadequate for the present analysis because
no broad p &&2 resonances were observed.

We converted their pole expansion for R'"' to the form
of Eq. (4). For this purpose we use (y )/D for the full
energy region from Et =0.0 to E„=1.4 MeV, but, since
no significant information was obtained on the energy

NEUTRON ENERGY IMeV)

FIG. 6. Experimental and OMP shape elastic and compound
cross sections divided by gJ for p-wave neutrons on ' Si. Curve
symbols are as in Fig. 2. Arrows show the energies of two reso-
nances that provided the primary data for osE.

dependence of R"', we parametrize R simply as constant.
Thus, we find R = —0.06+0.05 and —0.35+0.10, respec-
tively, for the s, /z and p3/2 channels.

Figures 5 and 6 show o.sE and o, calculated using R
and the reported strength functions; the S (E) were
calculated from Eq. (7) with Rf included for the long-
dash curves and omitted for the solid curves. With Rf in-
cluded we used I=500 keV for si/2 and I=300 keV for
p3/2. Each curve is plotted from 0 to 1.4 MeV; however,
arrows are included to indicate the positions of the broad
resonances which provided the essential data on R'"', and
hence on O.sE. Again we emphasize that the broad region
was needed to show that R'"' is due to relatively distant
levels, not to the accidental presence of a nearby strong
level.

V. SPHERICAL OPTICAL MODEL POTENTIAL

Following the previous procedure for S we use here a
Woods-Saxon form factor for the real potential and
Woods-Saxon derivatives for the spin-orbit and imaginary
potentials. As previously, we fixed ra =1.21 fm, ao ——0.66
for the real wells, and aD ——0.48 fm for the imaginary
well. We then adjusted the well depths V0, V„,and WD
to obtain the best visual fits to the experimental averages.
These fits are the short-dash curves in Figs. 2—6. For 3"S

p waves we adjusted V„to fit osE for both p, /2 and p3/g
but allowed only a single value of WD for fitting 0, For

Si, for which pi/2 curves are not available, we assumed
V„=7+3MeV. In obtaining the visual fits we em-
phasized energy regions judged to be most experimentally
reliable.

Table I lists the fitted well depths not only for Si and
S but also for S from Ref. 5. The uncertainties for 3 Si

and S are those propagated from uncertainties on R and

(y )/D. Uncertainties in (y )/D were assigned ' from
the fluctuations in Porter-Thomas widths and Wigner
spacings whereas, as indicated above, the uncertainties in
R were estimated from various fits to the data. For OSi

the assumed uncertainty in V„is also propagated. For
S the uncertainties are from Ref. 4. Qualitatively, the

uncertainty in R propagates to V0 and V„,whereas the
uncertainty in ( y ) /D propagates to 8 D.

VI. CONCLUSION

An examination of the spherical OMP well depths in
Table I for the nuclei Si, S, and S shows that, con-

TABLE I. Spherical optical model potential parameters. Geometric parameters rp ——rD ——1.21 fm,
ap ——0.66 fm, and aD ——0.48 fm. See text.

Target

"Si

Vp

(MeV)

48 +1.7
62 +2.5

V„
(Mev)

(7+3)'

8'D
(MeV)

4.5+

32S 51.5+0.4
61.4+ 1.1

6.0+4„
2.7+ 1.5

34S

'Assumed value.

51.5+1.1
58.5+ 1.2 6+3.5 3.5+1.9
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s1stcIlt with thc Rss1gIlcd uncertainties, thc iIIlaginary
depth 8'D is about the same for all three nuclei. Also, the
three values of Vz for s waves are comparable as are the
three values of Vo for p waves. But Vo for p waves is
clearly deeper than for s waves. The average of the three
values, weighted inversely with their variances, is
Vo ——51.3 MCV for s waves and Vz ——60.3 MCV for p
waves; these differ by 18%.

We conclude that the phenomenological spherical OMP
is appropriate in this mass region in the sense that it can
be parametrized to give a systematic description of the
three nuclei. In that regard it would be interesting to ex-
tend this study to other nearby nuclei. On the other hand,
the requirement for an l dependence in Vo suggests that
the spherical model is not adequate. For S MacKellar

and Castel have already shown that the I dependence can
be alleviated if the proper dynamic deformation of the
target nucleus is introduced. One expects the same to be
tlllc fol Sl aIld S, slIlcc tlmsc Illlclcl llavc slIIlllar dcfol'-
mations. In the companion paper' MacKellar and Castel
treat these deformations.
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