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Meson theory of nucleon-nucleon scattering up to 2 GeV
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We show that it is possible to construct a meson-exchange Hamiltonian for N, m, 6, and N* (1470
MeV) to describe NN scattering up to 2 GeV. The model consists of: (a) vertex interactions mN+ 6
or N*, and m.h+-+5 or N* with which an isobar model is constructed to describe the P33 and Pl I mN

scattering phase shifts up to 1 GeV; (b) the transition interactions from NN to Nh, AA, NN, and
N*N* are determined from one-pion and one-rho exchange mechanisms; (c) the NN —+NN interac-
tion is directly derived from the Paris potential by using a momentum-dependent procedure to sub-

tract the contributions from intermediate states involving 5 or N*. The NN~NN scattering equa-
tion is cast into the familiar coupled-channel form, but with a highly nonlocal isobar self-energy

X(E,p) calculated from the vertex interactions mN~A or N* in a dynamical three-body approach.
Both the isospin T=1 and T=O NN scattering phase shifts of Amdt et al. up to 1 GeV can be
described to a very large extent by the model. The fits are, on the average, better than most of the
previous NN calculations. The model also describes reasonably well both the magnitudes and signs
of the NN total cross sections o' ', 6o'T', and Ao.&' up to 2 GeV, except the strong energy depen-
dences in the region near 800 MeV. We discuss the origin of this problem in connection with future
necessary improvements of the model and the questions about the dibaryon resonances. The model
can be used for a unified approach to study the isobar-nucleus dynamics at both low and intermedi-

ate energies.

! NUCLEAR REACTIONS Isobar model for 6 and N* excitation, meson- '

I, exchange theory of NN scattering from 0 to 2 GeV.

I. INTRODUCTION

The meson theory of nucleon-nucleon (NN) interaction
has long been developed' according to two essential as-
sumptions: (a) the NN force at the long and intermediate
ranges (roughly r ) 1 fm) can be described by the exchange
of mesons; (b) the short range part can be treated
phenomenologically by fitting the NN data. In the past
decade, the development of the theory reached its peak
with impressive results of two-pion-exchange calculations
obtained by the Paris group and others. ' Many low en-

ergy nuclear properties have since been calculated from
the Paris potential. An important question to ask is the
following: Can this theory be extended to higher energies'?
In this paper, we extend the work of Ref. S to show that
such a meson theory can be developed to describe NN
scattering up to about 2 GeV (all collision energies re-
ferred to in this paper are defined in the laboratory
frame).

In the higher energy regions E & 1 or 2 GeV, the 6 exci-
tation and pion production are two essential ingredients of
any theory. The existing studies of intermediate energy
NN scattering (including ndscattering) .can be roughly di-
vided into two different approaches. The first one ' is
to emphasize the unitarity of the theory, which immedi-
ately leads to nontrivial numerical problems of treating
the mNN branch cut. Largely owing to the computational
difficulties, most calculations along this line have been
carried out by using either the low-rank separable interac-
tion or an incomplete description of baryon-baryon in-

teractions. The simple isobar model of 6 excitation is fre-
quently introduced in these studies. The second approach
is to construct coupled-channel models' ' with an ap-
propriate prescription of the width of the off mass shell b-, . -

These calculations are usually carried out by using the
standard one-boson-exchange model, ' ' without taking
advantage of using the results of the nonperturbative 2n-
exchange calculation as achieved by the Paris potential.
The success of either one of these two approaches in
describing the NN and m.d scattering is still very limited.
Major improvements are clearly needed for a detailed
understanding of extensive NN and md data from various
meson facilities.

At the present time, it is reasonable to assume that the
most realistic approach is to follow the unitary formula-
tion ' of the problem and use a meson theory of nuclear
force which is closely related to the Paris potential. The
purpose of this work is to continue the work of Ref. S, to
report the progress we have made in this direction.

In Ref. S, we constructed a meson-exchange Hamiltoni-
an for m. , N, and b„which gives a satisfactory description
of NN scattering phase shifts up to 1 GeV in the T =1
channel, where T is total isospin. The model consists of a
mN++5 vertex interaction and three baryon-baryon in-
teractions NN~NN, NN~NA, and NN~hh. The suc-
cess of the model is attributed to the following: (a) the
nN~b effect on NN scattering is treated in a dynamical
three-body approach '; (b) a nonlocal NN~NN interac-
tion of the model Hamiltonian is derived from the Paris
potential by using a momentum-dependent procedure to
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subtract contributions from the Nh and AA intermediate
states; (c) the transition interactions NN~Nb, , NN~h, A

are determined by one-pion and one-rho exchange. In this
paper, we report an extension of the model to also include
the N* (1470) resonance (5=I = —,). This extension is

necessary for two reasons. First, since the threshold ener-
gies for exciting AA and NN* are about the same, N~ and
6 must be treated' on the same footing in order to realist-
ically describe the inelasticities in the NN T =0 channels
(note that the NA state does not contribute to T =0 chan-
nels). Second, to examine the problem of dibaryon reso-
nances as suggested by pp polarization measurements, it
is necessary to have a careful description of channel cou-
pling effects, ' ' ' for which the N~ could be as impor-
tant as the 6 in the considered energy region. In addition,
the extended model will allow us to describe NN scatter-
ing at higher energies (2 GeV, where 2m production
through N* can also be investigated.

Since this work follows precisely the approach of Ref.
5, no detailed discussion of the model will be repeated
here, except for new features owing to the presence of N*.
However, the formalism needed in practice to calculate
the NN~NN interaction of the model Hamiltonian and
to treat the decay mechanism 6 or N*~~N and mm. N will
be given explicitly.

In Sec. II, we present a simple isobar model for the ex-
citations of b, and N~ in mN scattering. Compared with
previous work, ' the new feature of this model is to
describe the ~ production from wN collision. This isobar
model will then be used in Sec. III to describe pion pro-
duction in NN collisions up to 2 GeV. In Sec. IV, we dis-
cuss two main results. First, we show that the model can
describe to a large extent the NN phase shifts up to —1

GeV in both the T =0 and T =1 NN channels. Second,
we discuss the calculations of the pp and np reaction cross
sections and total cross sections cr"', DOT', and Ao'L"

, for
various spin orientations defined in Ref. 23. The model
gives, on the average, satisfactory descriptions of both the
magnitudes and signs of these three observables in the en-
tire energy region 0—2 GeV. However, the model does
not describe very well the energy dependences of the total
cross sections in the energy region from 600 to 1000 MeV.
%e discuss the origin of this problem in connection with
future necessary improvements of the model and the ques-
tions about the dibaryon resonances. Section IV is devot-
ed to summarizing our approach.

t(w)=h'+h' . h' .
w —a+Ed

(3)

To account for pion production, we extend the method of
Ref. 8 to solve Eq. (3) in the subspace

where 8 is b, in the P33 channel and is N* in the P&& chan-
nel. The major complication of the resulting scattering
equation in 5 is owing to the coupling to the three-body
n.aN channel [Fig. 1(b)]. The pion can dress 6 and N* as
illustrated in Fig. 2(a). In the intermediate ~b, state
[lower parts of Fig. 2(a)], the interaction m.N~b, can in-

duce 2m. contributions as shown in Figs. 2(b) and (c). If
we neglect the pion crossing mechanism [Fig. 2(c)] be-
tween any two intermediate 7Th states, the partial-wave
solutions of Eq. (3) in the subspace S take simple algebraic
forms in the mN c.m. frame,

hp (q)hp (qp)
t (q, qp,w)=, a=1,2,

w —m —X (w)

where q=
~ q ~

is the ~N relative momentum, w is the

collision energy, and m&
——mq and m2 ——mN. , are, respec-
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teractions shown in Fig. 1(a)

h'=hp)+hp3+h3(+h32+h )p+h3p+h(3+h33, (2)

where the subscripts 0, 1, 2, and 3 denote the mN, 6, N*,
and mA states, respectively. Note that h;J =h~; in Eq. (2),
and hence h' is a Hermitian operator. The main feature
of this model is to have pion production in m.N scattering,
as illustrated in Fig. 1(b). Our approach is to determine
the vertex interaction h' by fitting the PI] and P33 7TN

phase shifts up to —1 GeV laboratory energy. To achieve
this, we need to solve the mN scattering equation definedb'

II. ISOBAR MODEL FQR 5 AND N*

7T TI-

~N
To proceed, we follow earlier studies of mN scattering

to construct an isobar model for the 4 and N* excitations.
The main feature of N* is its large decay width to the
mmN state through the mA state. It is therefore reasonable
to extend the approach of Ref. 8 to assume that the wN
scattering in P]$ and P33 channels can be described by a
model Hamiltonian (in the c.m. frame)

(a)

02 23 l0

h =ho+A

where ho is the sum of relativistic free energy operators
E (k), EN(p), E~(p), and EN. (p) for ~, N, 6, and N*,
respectively. The interaction h' is the sum of vertex in-

FIG. 1. (a) Vertex interac'tions A. ;J- in Eq. (2); i =0, 1, 2, and 3
denotes, respectively, ~N, 6, N*, and ~A states. (b) Pion pro-
duction mechanism induced by vertex interactions h;J.
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tively, the bare masses of 6 and N*; i.e., a=1 and 2
represents, respectively, the 7TN P33 and P» channels.
The isobar self-energy X has two components [Fig. 2(a)]

X (w) =X~ (w)+X~ i~(w), a=1,2,

which can be explicitly calculated from the vertex interac-
tions

lho (q')
l q dq'

X (w)=
w E—(q') EN—(q')+i@ '

I, 2TI

(a)

r
I ~ LVAV ~AVW

l
h s(q')

l q dq'
X,2 (w)=

o w E (q') Ez(q') llz(w, q') '

(b) (c)
FIG. 2. (a) One-pion and two-pion contributions to the isobar

self-energies defined by Eqs. (5)—(7). (b) 6 self-energy calculat-
ed in the presence of a spectator pion [given by Eq. (8)]. (c) Pion
crossing mechanism between two n.h states.

00
I
hoi(q")

I q 'dq"
II~(w, q') =

w E.(q') —{[E.(q—")+EN (q")]'+q 'l '"+i~

The isobar self-energies X and X z contain the contri-
butions from one-pion and two-pion intermediate states as
illustrated in Figs. 2(a} and (b). In our approximation,
X 2„only contains the b, self-energy II& in the presence
of a spectator pion [Fig. 2(b}]. If the pion crossing mecha-
nism II~ [Fig. 2(c)] is included, the solution cannot be
written' in a simple algebraic form as given by Eqs.
(4)—(8). When the AN phase shifts are fitted properly, the
effects of the pion crossing mechanism and other neglect-
ed mechanisms, such as that owing to the pion rescatter-
ing, are phenomenologically included in h'. The above
simplified solution of X will allow us to avoid unmanage-
able complications when the same solution of the model is
needed in the calculations of NN scattering.

All vertex functions are parametrized as

lengthy derivations of all equations are parallel to those
given in Ref. 8, with some obvious extensions. Therefore,
we will only focus the reader's attention here on the neces-
sary formalism and numerical procedures by which our
results are obtained.

The model Hamiltonian for NN scattering is assumed
to be

5

H=a, +h'+ g v',

where Ho is just the ho of Eq. (1), the sum of free energy
operators for rr, N, b„and N*, and v' for i = 1, 2, 3, 4, and
S are, respectivdy, the transition interactions from NN to
NN, Nb„b,b„NN~, and N*N* [Fig. 4(a)]. We consider
NN scattering in the subspace

2

h ~(q)=g &+ A„p
p v'2(M+@) A2&+q'

2

C =BBeBXmeNN~m,

where m and )M are, respectively, the masses of the nucleon
and the pion. We adjust the parameters g ~ and A p and
the bare masses m~ and mN. to fit the P33 and P~~ mN
phase shifts up to 1 GeV kinetic energy. The results are
shown in Fig. 3 and Table I. The large inelasticity q in
P» can be reasonably fitted, while the simple isobar
model cannot describe the small but negative P&~ phases at
low energy. Other mechanisms must be considered to
resolve this problem and get better fits to the data at high
energy. We do not attempt to solve this nontrivial prob-
lem here. Instead, we argue that the present model is
sufficient to describe the main physics of pion production
from NN collisions.

III. NN SCATTERING EQUATION

We now extend the approach of Refs. 5 and 8 to include
N* in the study of NN scattering. Formal and somewhat
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FIG. 3. The calculated n.N scattering phase shifts are com-
pared with the data of Ref. 27. (E, is the total m.N energy in
c.m. frame. )
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TABLE I. The parameters of the isobar model for b,(P33)
and N~(P~~ ) excitations. The parameters are defined in Eq. (9)
and Fig. 1. 2 V4

h'
p

mN~E
+AN*
mh~N~

gaP

0.98
0.463
2.013
0.689

A p
(MeV/c)

358
599
251
356.4

Mg ——1300 MeV
MN. ——1575 MeV

where B is N, 5, or N*. The main feature of the model
Hamiltonian Eq. (10) is to have pion production from NN
collisions [Fig. 4(b)]. The interactions between isobar
channels (i =2, 3, 4, and 5) within this model are au-
tomatically generated by the vertex interaction h'. The
low order mechanisms are the pion contributions to the
isobar self-energies in the presence of a spectator baryon
[Figs. 5(a) and (b)], and the pion exchange between isobar
channels [Fig. 5(c)]. Furthermore, two baryons can in-
teract in the nplus tw. o-baryon channels, such as shown in
Fig. 5(d). A complete calculation including all of these
mechanisms between isobar channels is simply beyond our
present numerical capabilities in dealing with large com-
plex matrix equations (except in the separable model). In-
stead, we follow Ref. 5 and other approaches' ' to keep
only pion contributions to the isobar self-energies [Figs.
5(a) and (b)]. As suggested by the work of Betz and Lee,

(4) (6)

(b)
FIG. 4. (a) The baryon-baryon interactions v' of the model

Hamiltonian equation (10). (b) The mechanisms of one-pion and
two-pion production generated by the model Hamiltonian equa-
tion (10).

this approximation is probably acceptable except in chan-
nels in which the isobar-nucleon state is in the relative
l =0 wave, such as S2(NA).

With the above simplifications, the NN~NN scatter-
ing equation in each partial-wave eigenchannel a=JST
can be cast, in the c.m. frame into

p dp VII"(p p E)TI"I(p pE)
Tl'l(p', P,E)=VI'I(p', P,E)+ X f

(II E —2EN p +EE'

(12)

where 1 is the relative orbital angular momentum. The energy-dependent effective NN interaction Vl I contains all con-
tributions from the coupling of NN to inelastic channels involving pions. In deriving Vl I, we limit the number of pions
in any intermediate state to be less than 2 and keep only self-energy contributions from the pion to one of the baryons
[such as Figs. 5(a) and (b)]. Then, it is straightforward to extend the procedures given in Sec. IV of Ref. 8 to obtain

l, a vl', I"s"(P P )vl"s",1(P P)
VI'l(P P E)=vl'i (P P E)+ g g P dP E [~ ( „)]~ ( ( „))

&
=21"s" Op s, ~g E~p

where s" is the total spin of channels containing b, or N~;
[Ho(p")]; is the free energy of the ith two-baryon state;
e.g.,

[Ho(p")]2 EN(p")+E~(p"»

N
/

or h, '- \

(b)

L

etc.; and vl"I-,- is the partial-wave matrix element of v' of
Eq. (10) in momentum space. All the pion contributions
are contained in the isobar self-energy Xl(wl(E,P")) which
depends on the collision energy E and the intermediate
relative momentum p ". In practice, the baryons are
treated nonrelativistically in calculating X;(w;(E,p")).
Then, for each E and p", the isobar self-energies of each
intermediate state i in Eq. (12) can be calculated from Eqs.
(5)—(8) by substituting

(c) (d)

FIG. 5. (a) and (b) are, respectively, the one-pion and two-
pion contributions to the isobar self-energies in the presence of a
spectator baryon. (c) One-pion-exchange Nh~hN and
NN~~N~N interactions induced by the vertex interactions h'.
(d) NN interaction in the mNN intermediate state.
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2[m;+E (q')]

i =2,3,4,5, (13)

—[second term of Eq. (12)]~ E, (14)

where m2 ——m4 ——m; m3 ——m~, mz ——m~. ', m=m and m~,
respectively, for calculating X and X 2, and E (q') is
the pion energy evaluated in the nN or irk c.m. frame in
which the integrands of Eqs. (6)—(8) are defined. In do-
ing this calculation, the nucleon is also treated nonrela-
tivistically in Eqs. (6)—(8). Clearly, our procedures of cal-
culating X, are very different from those in Refs. 14—18.

As emphasized in Ref. 5, the energy and momentum
dependences of X;(iv;(E,p")) are the consequences of
treating pion production inelastic cuts. They have impor-
tant dynamical effects on NN scattering. Similar forms
of X; are also seen in any approach which rigorously ac-
counts for the irNN cut in NN scattering. Including the
irirNN in X; [through Eqs. (7) and (8)] is a new feature of
this work. At energies below the pion production thresh-
old E (280 MeV in the laboratory frame, X; is real and
leads to pure elastic scattering from solving Eq. (11). The
model will produce NN inelasticity when X; becomes
complex at higher energies. This "off-shell width" effect
of the isobar has been found in Ref. 5 to give a satisfacto-
ry description of T =1 NN scattering phase shifts up to 1

GeV. Including N* here, we can now examine also the
inelasticities in T=0 channels and NN scattering at
higher energies up to -2 GeV.

Our remaining tasks are to define the matrix elements
of the NN~NN interaction vii (p',p) and transition in-
teractions vt" t-,-(p',p) for i =2, 3, 4, and 5. All transition
interactions have a one-pion-exchange evaluated by taking
appropriate static limits of Feynman amplitudes. A form
factor

(&'—p') /(q'+ &')

is introduced in each meson-baryon-baryon vertex to regu-
larize the interaction at a short distance. Following Ref.
21, we also include the one-rho exchange in the transitions
to NA and hA states. The resulting potentials in r space
have been explicitly given by Niephaus et al. ' for transi-
tions to Nb, and b,h, and by Lomon' for NN~ and
N*N*. To limit the number of parameters, we also take
their coupling constants determined from the decay
widths of b, and N*. In this way, the cutoff parameter A
of the form factors is the only parameter of the transition
interactions. The matrix elements vt:i, (p',p") can be
straightforwardly expressed in terms of combinations of
Legendre functions of the second kind Qt(z) and can be
calculated very accurately.

The last step of our calculation is to define the
NN~NN interaction U '. Following the procedure intro-
duced in Ref. 5, v' is defined by substracting an energy
independent contribution of the intermediate Nb„
NN~, and N*N* from the Paris potential. In our model,
we assume that v' is defined by the following matrix ele-
ments:

where E, is chosen to be well below the pion production
threshold so that the second term of Eq. (14) is real as re-
quired by the hermiticity of v . This construction is con-
sistent with the Paris potential which calculates the 2m-

exchange mechanism in a nonperturbative approach based
on dispersion relations. Equation (14) is simply a pro-
cedure to avoid double counting and to extract from the
best meson theory a realistic NN~NN interaction at in-
termediate and long ranges, when m., b„and N* degrees of
freedom are treated explicitly. The partial-wave matrix
elements of the Paris potential can also be expressed in
terms of Legendre functions of the second kind and can be
calculated very accurately.

We solve the integral equation (11) using a standard
matrix method ' in momentum space. A11'nonlocal ef-
fects contained in Eq. (12) can therefore be treated exactly.
It has been shown in several previous studies ' ' that the
relativistic kinematic effects in the propagator of Eq. (11)
can give, quantitatively depending on the potential, effects
of about a few percent on the NN scattering phase shifts
even at low energies. To reproduce the low energy Paris
phase shifts at E =E, [because of Eq. (14)], the results
shown in Figs. 6—9 are obtained by using nonrelativistic
kinematics in solving Eq. (11). We also have used the
same numerical method to carry out relativistic calcula-
tions. The qualities of the fits to the data are comparable
to those shown in Figs. 6—9. The largest differences are
in the s wave phase shifts, which are about 2' lower than
the nonrelativistic Paris result at E =E,=10 MeV, and
are only about 5' lower even at 1 GeV. Those differences
can be reduced if the parameters of the Paris potential are
also readjusted in our seach of the values of A and F.,
This kind of many-parameter-searching is a much harder
task, and we leave this problem to future study, which will
also include other necessary improvments of the model, as
discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

The model Hamiltonian defined in previous sections
only has two free parameters: E, for the subtraction in
Eq (14) an. d the cutoff A of transition potentials v'~ .
No attempt was made in this work to try other form fac-
tors and hence, for simplicity, the same A is used for all
meson-baryon-baryon vertices. It was shown in Ref. 5
that by choosing E, =10 MeV and A=650 MeV/c, the
Amdt phase shifts in the NN T= 1 channels can be
satisfactorily described. For completeness, we also show
these results in Fig. 6 (note that the new NN scattering
phase parametrizations are given in Ref. 32). By includ-
ing the N* and using the same parameters, the model now
predicts the T =0 phase shifts. In particular, we can in-
vestigate the isoscalar inelasticities which are not well
determined owing to the lack of sufficient np scattering
data at higher energies. The results are compared with the
Amdt phase shifts in Fig. 7. Clearly, the fits to the T =0
data are also acceptable. It is important to note that both
the model and data show very small inelasticities p in all
partial waves. But the model predicts nonzero p in l &2
partial waves, while some of them are set to zero in the
analysis of Amdt et al. Our predictions can only be
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TOT
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FIG. 9. Same as Fig. 8, except for the np scattering.

tions with and without N*, we find that the 2~ production
to e is less than 1 mb, even at 2 GeV. Compared with
Ref. 9, the main achievement of the present theory is to
give an overall correct description of both the magnitudes
and signs of the considered total cross sections in the en-
tire energy region from 0—2 GeV. In particular, the
model also does a remarkable job in the higher energy re-
gion 1—2 GeV.

A major difference between our model and others ' is
to use Eq. (14) to define the NN —+NN interaction of the

model Hamiltonian. The results shown in Figs. 6—9 indi-
cate that the use of a nonperturbative 2m exchange, as
given by the Paris potential, is probably essential for a
successful description of NN scattering at medium and
hig4er energies.

The model, however, does not give sufficient energy
dependences of all pp total cross sections in the region
from 0.6 to 1 GeV. The calculated total cross section o"'
in this region is only about 80%%uo of the data. To see the
origin of this problem, we show in Table II the contribu-
tions from each partial wave. First, note that both Acr'I"
and b,cr'T" involve cancellations between contributions of
different signs. An overall agreement both in the magni-
tudes and signs for these two data is a nontrivial test of
the dynamical content of the model. The main feature of
Table II is that none of the contributions from each par-
tial wave at E &0.6 GeV show any strong variation. That
is why the calculations fail to reproduce the pronounced
minima of hoL"

, and b,cr'T" near 0.8 GeV. It is clear that if
one or two partial waves had stronger energy dependences,
the shapes of b,o'L"

, and b,o'z" could be well described.
Within our model, we have investigated this possibiIity by
examining the sensitivity of the calculation to the only
free parameter of the model, the cutoff A of the form fac-
tor of transition interactions. (As discussed in Ref. 5, the
value of another parameter E,=10 MeV is pretty much
fixed by getting good fits to the phase shifts at low ener-
gy. ) We found that by changing A from 650 to 1000
MeV/c, we can get the correct energy dependence of o'"
up to 1 GeV. But the resulting b,crL" has wrong signs at
-0.7 GeV. The calculated phase shifts are also in severe
disagreement with the Amdt phase shifts, indicating poor
descriptions of all NN scattering observables. Further-
more, the calculations with A=1000 MeV/c do not come
close to yielding any pronounced minima in ho.L' and
ho"' near 800 MeV.

TABLE II. The energy dependence of the contribution from each partial wave to the pp total cross
sections 60.~' and Ao T' in the regions 400 MeV & EL & 1000 MeV.

EL {MeV) 'So 3p 3p 3p
hol" (rnb)

Pz+ F2 64 I'c+'H

2.3
3.1

3.8
4.3
4.6
5.0
5.1

1.5
2.5
3.3
4.0
4.7
5.3
5.8

—20.4
—20.6
—20.4
—20.4
—20.5
—20.6
—20.5

9.2
9.8

10.5
9.9
8.5
7.0
5.9

—0.84
—1.3
—3.3
—6.4
—9.1

—10.8
—11.5

—5.3
—2.6
—0.96

0.04
0.6
1.1
1.8

0.72
1.4
2.4
4.1

6.0
7.4
7.6

—2.0
—2.5
—2.7
—2.9
—2.9
—2.8
—2.5

—15.1
—10.5
—7.8
—7.5
—7.9
—8.3

2.3
3.1
3.8
4.3
4.6
5.0
5.1

—1.5
—2.5
—3.3
—4.0
—4.7
—5.3
—5.7

9.2
9.8

10.5
9.9
8.5
7.0
5.9

—5.5
—3,5
—2,7
—2.9
—3.3
—3.8
—4.4

0.72
1.4
2.4
4.1

6.0
7.4
8.0

—0.41
—0.8
—1.4
—2.0
—2.7

—3.9

4.7
7.3
9,2
9.5
8.5
6.9
5.1

'Note that the sum also includes small contributions from higher partial waves up to I =7.
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One possible way to resolve the problem is to introduce
dibaryon resonances in some of the partial waves. Howev-
er, we feel that it is premature to proceed immediately in
this direction. The meson-exchange Hamiltonian present-
ed in this paper seems to contain most of the correct NN
dynamics, since all of the predictions come very close to
the data. The first important next step is to carefully in-
vestigate the energy dependence of other meson-exchange
mechanisms which are omitted in this calculation. The
most important one is the effect owing to NN interactions
in the ~NN three-body intermediate state [Figs. 5(c) and
(d)]. In Ref. 8, it was shown that this effect can have
-20% effect on 'D2 phase shifts and is Uery energy
dependent. The input P» isobar model should also be im-
proved to also describe the negative m.N phase shifts at
low energies. In particular, we must have a careful treat-
ment of the nucleon-pole term, ' ' which can sensitively
affect some of the NN and vrd polarization observables.
Finally, we should explore a better description of the
meson-baryon-baryon vertex interaction. Chiral (cloudy)
quark-bag model calculations of the form factors for N,
6, and N* could be useful in this regard.

V. CONCLUSION

In conclusion, we have shown that it is possible to con-
struct a meson-exchange Hamiltonian for m, N, b, , and
N* for NN scattering up to 2 GeV. The model gives
reasonable descriptions of the Amdt phase shifts up to 1

GeV in both the T =0 and T =1 channels. The calculat-
ed total cross sections o'", Ao.L', and Ao~ agree to a
large extent with the data in both the magnitudes and the
signs. This is the first time, to our knowledge, that a
meson-exchange Hamiltonian model has achieved such a
quantitative agreement with the data in the entire energy
region 0—2 GeV. The present calculation gives a sound
starting point for future refinements. Among them, a
large scale three-body calculation could be needed to in-
vestigate the energy dependence of the effect owing to NN
interactions in the m.NN channel. Until this effect is care-
fully studied, it is premature to extract information on di-
baryon resonances, if they exist, from the data. Our
model also gives definite predictions of np scattering.
Precise np polarization measurements at higher energies
()0.6 GeV) are needed to have a complete test of our
model. Finally, as demonstrated in Ref. 36, the present
model Hamiltonian can be used to carry out many-body
calculations. Therefore, we have a realistic starting point
of developing a unified approach to study the isobar-
nucleus dynamics, which clearly plays an important role
in resolving many nuclear problems, both at low and in-
termediate energies.
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