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The fcmte-temperature Hartree-Fock-Bogohubov crankmg equatIons are solved for the sI3/2
model. Fol any temperature below kT =0.2 McV, rotations induce a shRrp first-order phase tran-
sition. %hen statistical fluctuations in the pair gap 6 are included, the phase transition is smoothed
out for 2 T, ~ T ~ T, . The rotation-aligned i~3&2 pair is unaffected by temperatures up to 0.5 MeV.
Thc flmte-temperature vlolatIon of thc zero"temperature Hartlcc-Fock"Bogollubov rclRtlon
is given by the quasiparticle number Auctuation.

I. INTRODUCTION

The finite-temperature Hartree-Fock-Bogoliubov crank-
ing (FTHFBC) formalism has been applied to nuclei
which are heated as well as rotating. ' Properties such
as pair gaps and deformations have been determined as
functions of spin and temperature. ' A variety of first-
and sccoIld-ordcI' pllasc trans1t1ons have bccQ 1dcQt1-
fied. '-'

The FTHFBC theory ignores fluctuation effects, of
which there are two types. First, the Hartree-Fock-
Bogoliubov (HFB) theory provides a mean field approxi-
mation to the exact density operator D. Consequently,
the HFB density operator DHF~ violates the symmetries
of the Hamiltonian I This cr. eates number and spin
fluctuations in DHFR. This type of fluctuation has been
treated for zero- and finite-temperature systems.

The second type of fluctuation is statistical. It would
exist even if the exact density operator were known. For
example, if a system has a specified temperature, then
there will be fluctuations in its energy. In a perfect classi-
cal gas the fractional fluctuation in the energy is propor-
tional to I/v ¹ In the thermodynamic limit of large X,
the fractional fluctuation vanishes, so that specifying the
temperature is equivalent to specifying the energy. How-
ever, for small systems these fluctuations may be impor-
tant.

Another example is given by statistical fluctuations in
the order parameter. For macroscopic systems, these
fluctllRtioIis Rre slgiiificRII't Rt R critical point. Foi otller
states the fluctuations are not important, and the order
parameter has a specific weil-defined value for each state.
However, for finite systems such as nuclei, statistical fluc-
tuations in the order parameter can be large even for
states which are far from any critical point. Then the sys-
tem will not have a specific value of the order parameter.

For Quclc1 thc ol dcr paI aIIlctcI' can bc clloscn as thc
pair gap h. In the FTHFBC theory, b, has a specific
value for each spin I and temperature T. Then there are
sharp first- and second-order phase transitions. However,
since a nucleus is a finite system, there will be significant
statistical fluctuations in b, for any finite-temperature
state. For the uniform model, Moretto has shown that
these fluctuations wash out the second-order phase transi-

tion. In this paper we will consider the effect of statisti-
cal fluctuations on first-order phase transitions in rotating
llcatcd Quclcl.

II. THE i j3/2 MODEL

Our previous applications of the FTHFBC theory used
the two-level model. ' ' We now consider the iI3~2
model, which is more realistic than the tmo-level model.
For example, the ii3&2 model will probe the relative ef-
fects of temperature on the pair gap and on the rotation-
alignment effect. In this section calculations with the
FTHFBC theory are described. In Sec. III the effect of
statistical fluctuations will be discussed.

Consider the & &3&2 shell with the cranked pairing Ham-
iltonia,

(2.1)

(2.2)

where m is the projection of the spin on the z axis and x
is the rotation axis. The single-nucleon energies e~ are
the eigenvalues of an axially symmetric potential with
quadrupole deformation

3m —j(j+1)
j(j+1)

For j=—, and a quadrupole deformation p=+0.24, the
constant x is 2.0 MCV. The implicit assumption is that
the deformation is constant at low temperatures ( kT ~ 0.5
MeV). The pair constant 6 is chosen as 0.448 MCV.
Then 5=1.0 MeV for six nucleons in the ii3~I shell at
zero spin and zero temperature.

Let
~

k ) denote one of the seven single-nucleon states
~
i, 3&2m ), where m ——, is an even integer. Let

~
k) sig-

nify the time reverse of
~
k), i.e.,

~ ii3~2 —m). The o„
representation is defined by the unitary transformation"

(2.4)

(2.5)

where
~

K) is the time reverse of
~
K). The quasiparticle

operators are chosen as
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u = g(U;xCx+VXC;),
E

a-= g(U; C-+V; C ) .
E

(2.6)

(2.7) 1.0

The advantage of the o.„representation is that it block di-
agonalizes the FTHFBC energy matrix. The block which
determines the quasiparticles a; and the quasiparticle en-
ergies E; is

(A )
—cd„) U;

(2.8)
1

Ug

—(~p+~J» ) Vi

U;=V,*, V;=U;*, E;= E; . — (2.9)

The block which determines the quasiparticles a-. need

not be solved, since

0.6—

0.2—

j =13/
N=6
CO = 0

K=2
G=O.

A )=A 2=6' —p .

The tridiagonal matrix j„ is

(2.10)

The terms A i and A z are the Hartree-Pock (HF) Hamil-
tonians in the

~

SC ) and
~

IC ) spaces, respectively. For the
i&3/2 model, the HF potential vanishes, so that 4

&
and

A 2 are equal and diagonal,

0 0.1 0.2 0.3 0.4 0.5 0.6

T
FIG. 1. The pair gap 5 versus the temperature T for the

nonrotating system. The quantities kT, %co, sc, and 6 have units
of MeV.

(J„)«. (,rC
~

J„—
~

J: ) = —(Z
~
J„~I~") . (2.11)

The pair potential 6& is a multiple of the unit matrix.
The diagonal elements of 5& equal —6, where

I"=E —TS —coI,

where the energy and the entropy are

E = g &sc(p«+ pg g) b, 'IG, —

(2.20)

(2.21)

~=G X rxz.
E&0

(2.12)
S = —k g [f;lnf;+(1 f;)ln(1 f;)] .— —(2.22)

The pair density is

t«, [UfV'+ V'(1 f——)U]«, —

and the HF density is

(2.13)

p« =[UfU'+ V (1 f)V]«, — (2.14)

PEE =[Uf U + V (1 f)V]—(2.15)

The probabilities for the~ally exciting quasipa~icles are
given by the diagonal matrices f and f, whose elements
are

The sum in Eq. (2.22) includes i and i.
Since the HF and pair fields each have a dimension of

7, the HFB energy matrix (2.8) has a dimension of 14.
Equation (2.8) is solved by iteration. The final self-
consistent energy matrix is completely defined by specify-
ing four numbers T, co, iu, and b, . All quantities are
chosen to be real.

For a nonrotating system where co=0, the FTHFBC
equation (2.8) reduces to the much simpler finite-
temperature Bardeen-Cooper-Schrieffer (BCS) (FTBCS)
equation

1+e
1

1+e

(2.16)

(2.17)

1.2

1.0

x=(S)= g(p +p--),
K

(2.18)

where P=1IkT, k is Boltzmann's constant, and T is the
temperature. The chemical potential p and the rotational
frequency co are adjusted to satisfy the number and spin
constraints

0.8

0.6

0.2

13/2
6
2
0.448

I=(J ~= g (p« P g)(J )K'K—- (2.19)

0
Q QQ2 Q04 006 QQ8 Q10 012 Q14 016 018 020

The free energy in a rotating frame is
FIG. 2. The pair gap 6 versus the rotational frequency co for

various temperatures.
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FIG. 3. The angular momentum I versus the rotational fre-
quency co for various temperatures. —4
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G tanh( ,'PE )—
(2.23)

FIG. 5. Matrix element of J„ for one rotation-aligned nu-
cleon.

where the quasiparticle energies are

[(e )2+F2]1/2 (2.24)

0.20

NORMAL

0.16—

0.14— d order

0.12—

0.10—
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The FTBCS equation (2.23) is solved for the pair gap
b,(T) at F0=0, which is shown in Fig. 1. Heating creates a
second-order phase transition from the superfluid to the

normal state at the critical temperature kT,' =0.545 MeV.
The FTHFBC equation (2.8) is solved for the pair gap

b, (co) at various temperatures, as depicted in Fig. 2. There
is a critical point at kT', =0.2 MeV. For T & T, the func-
tion h(co} exhibits backbending. This indicates that rota-
tion induces a first-order phase transition from superfluid
to normal. For T, &T&T,' the function b, (co) does not
backbend, and rotation induces a second-order phase tran-
sition.

For each temperature below T„ the critical frequency
co, is defined by the crossing point in the isothermal
function F'(co) where F' is the free energy in the rotating
frame (2.20}. Alternatively, co, can be found by applying
the Maxwell construction to the isothermal equation of
state co(I) given in Fig. 3. For T & T„co, is defined as
the frequency at which 6 vanishes. The critical frequency
curve co, ( T} is given by the solid line in Fig. 4. This is the
phase diagram for the rotating heated system.

How does temperature affect the rotation-aligned pair?
The single-nucleon matrix element (a

I
J„

I
a ) is calculat-

ed, where
I
a) diagonalizes the HF density p. Figures 5

and 6 show the matrix element for the two orbitals which
become aligned along the rotation axis at high spin. For
small co raising the temperature increases the orbital align-
ment. This is reasonable, since increasing T decreases 6,
which permits a more rapid particle alignment. However,
the alignment is completed at the same co, regardless of
the temperature. Once the nucleon is rotation aligned at

0.02— G = 0.448
I I I I I

'0 0.1
I

0.2
I

0.3
I

0.4
I

0.5
I

0.6 0.7

T
FIG. 4. Critical frequency curve and phase diagram: critical

rotational frequency co, versus temperature T. The solid line
follows the Maxwell or Ehrenfest convention and the dashed
lines follow the delay convention for first-order phase transi-
tions.

= 0.1 = 13/2
N=6
x = 2
0 = 0.448

3 I I I I I I I I I I I

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

FIG. 6. See Fig. 5.
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1.0—

0.8—
c0

~~I 0.6—
CL

j = 13/2
V
O 0.4 — N = 6

/ 2

iJ 5/2r

5/2

just below the chemical potential, and the m = —,
'

orbital,
which is just above the chemical potential. Although v~
and f change rapidly with temperature, the occupation
p is nearly independent of temperature. So the two com-
peting effects mentioned above nearly cancel.

Whereas the yrast line is described by a quasiparticle
vacuum, the region above the yrast line contains thermally
excited quasiparticles. The average quasiparticle number
is N=(N), where

0.6

co = 0
x = 2 5/2

G = 0.448
«T

0 0.1 0.2 0.3 0.4 0.5 0.7

N= gn;= ga;a; . (2.27)

The temperature dependence of N is given in Fig. 9 for
the nonrotating system.

T
FIG. 7. The orbital occupation probability p, the quasiparti-

cle transformation coefficient v, and the quasiparticle occupa-
tion probability f, versus the temperature T. The orbital has

5m=—
2 '

III. STATISTICAL FLUCTUATIONS

In Sec. II, statistical mechanics was applied with the as-
sumption that the system was in a state of thermal equili-
brium. This section considers statistical fluctuations
around the equilibrium state.

—2 2 2
Pm Um +( m Um )fm

where the quasiparticles are

m = rnCm vmCm

(2.25)

(2.26)

and u~ +U~ = 1. Figures 7 and 8 show how p~, U~, and
f~ vary with temperature for the m = —,

' orbital, which is

T =0, raising the temperature to 0.5 MeV has no effect
on the alignment.

How does temperature affect the occupation probability
of an orbital? There are two competing effects. First,
raising the temperature reduces the pair gap. This de-
pletes orbitals above the chemical potential. Second, in-
creasing the temperature creates thermal excitations of
quasiparticles. This populates orbitals above the chemical
potential. For a nonrotating system FTHFBC simplifies
to FTBCS. Then the occupation probability of the orbital

~
ii3„m) is

A. Energy fluctuations

A system at constant temperature has fluctuations in
the energy. We must distinguish between statistical fluc-
tuations and fluctuations due to the approximate nature
of the mean field density operator. The energy fluctua-
tion is defined by

(SE)'= (H') —(8)' . (3.1)

This fluctuation does not vanish at T =0 when it
is evaluated with the Hartree-Fock-Bogoliubov cranking
(HFBC) wave function. Then 5E is a measure of the ap-
proximate nature of the wave function. However, statisti-
cal fluctuations must disappear at T =0. So Eq. (3.1)
cannot be directly applied to determine statistical fluctua-
tions around FTHFBC states. Using exact wave func-
tions it may be shown that

j = 13/2
N=6
co=0

0C K=2
CL

0.6 — G 0 448
V
V
Q 0.4—

j = 13/2

0.2—

0 0.1

f
7/2 7/2

0.2 0.3 0.4 0.5 0.6 0.7

0
0 0.2 0.4 0.6 0.8 1.0

T
FIG. 8. See Fig. 7. The orbital has m = —,.

T
FICx. 9. The quasiparticle number X~ versus the temperature

T for co=0.
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(5E) =kT CI,
where CI is the specific heat at constant spin

(3.2)
2.0

(3.3)

The third law of thermodynamics requires that CI ap-
proach 0 as T approaches 0. Notice that with Eq. (3.2)
the statistical energy fluctuation vanishes at T =0 even
for approximate wave functions.

The specific heat and the energy fluctuation are shown
in Figs. 10 and 11 for I=0. The peak in these functions
at kT,' =0.55 MeV signals the second-order phase transi-
tion from superfluid to normal. The graphs for I =2, 4,
and 6 are similar to the I=0 results. At the critical tem-
perature 5E=1.76 MeV. Is this fluctuation large or
small~ There are two interpretations. To address this
question in a realistic fashion we will use numbers ap-
propriate to real nuclei, and not simply the i~3~2 model.
Tanabe et al. ' have solved the FTHFBC equations for

Er. For I =6+ and kT =0.6 MeV, the thermal exci-
tation energy ls 5.3 MeV and CI =24k, so that 5E =2.9
MeV. Now 2.9 MeV is certainly a large fluctuation when
compared to an energy of 5.3 MeV. However, it is com-
mon to define the fractional fluctuation in the energy

I/2
(5E)

(3.4)E2

1.6—

~.0—
"O

0.6—

0 0.4

j = 13/2

8=6
Q) = 0

K=2
0 = 0.448

where E is the average energy. For ' Er the ground state
val« of

I
E

I
is aPProximately (8 MeV) (164)=1312

MeV. For I =6+ and kT=0.6 MeV,
~
E

~

=1306
MeV. The fractional fluctuation is M=2.9 MeV/1306
MeV=0.002. This is extremely small, even compared to
1 lV X =0.08. B. Quasiparticle number fluctuations

The fluctuation in the quasiparticle number is

(5X)'= (S'&—(S)', (3.5)

T
FIG. 1I. The energy fIuctuation 5E versus the temperature T

for 6)=O.

10—
j = 13/2

N=6
o) =0
K=2
0 = 0.448

where X is the quasiparticle number operator of Eq.
(2.27). Since n; =n;, it follows that

N = g tlat + g If(ll~

(3.7)

From Eq. (2.27) it follows that

(&)'= gf;+ g ff, . (3.8)

0 0.4 1.0

T
FIG. 10. The specific heat C versus the temperature T for

m =O. The quantity C has units of Boltzmann's constant.

Combining Eqs. (3.7) and (3.8), the fluctuation is

(5&) = g f;(1—f;) .

At T=0, all f; =0, so that 5N =0 as expected. Figure 12
shows how this fluctuation increases with temperature.
Gbserve that 5X and X are similar in magnitude.

At zero temperature the HFBC quasiparticle vacuum
satisfies the unitarity relation
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Tr( Q —Q ) =2 g f;(1—f;)=2(5N) (3.18)

Tr(R —R )=2(5N) (3.19)

The finite-temperature violation of the relation R =R is
trivially obtained from the quasiparticle number fluctua-
tion.

A related question is the reduction of the HFB densities

p and t to canonical form. At zero temperature, Eq.
(3.10) implies that there exist pairs of nucleon orbits

~
a)

and
~

a ) such that

(3.20)

0
0 0.2 0.4 0.6 0.8 1.0

R =R, (T =0)

where R is the generalized particle density matrix

(3.10)

p t
—t* 1 —p

(3.11)

However, at finite-temperature Eq. (3.10) is violated. It
will now be demonstrated that 5N provides a measure of
(R —R). The generalized quasiparticle density matrix is

T
FIG. 12. The fluctuation in the quasiparticle number versus

the temperature for co =0.

(3.21)

where all other elements of p and t equal zero. Since
R &R if T&0, the canonical form of Eqs. (3.20) and
(3.21) does not exist at finite temperatures. For the spe-
cial case of nonrotating systems, Eq. (3.20) will be satis-
fied when T&0 because of the time-reversal symmetry,
but the pair density will not have the canonical forin.
However, for a rotating system, even Eq. (3.20) is violated
when T&0. One cannot define two orbitals

~
a) and

~

a ) which have equal occupation. In this case the identi-
fication of paired orbitals is somewhat arbitrary. The la-

beling of paired orbitals can be accomplished by continua-
tion from the T =0 identification. Because Eq. (3.10) is
violated at finite temperature and the canonical form is
lost, the Bloch-Messiah theorem, which plays such an im-

portant role in analyzing zero-temperature HFBC wave
functions, is not very useful for interpreting finite-
temperature HFB density operators.

C. Pairing fluctuations

0 1 —f (3.12}

The densities Q and R are related by a similarity transfor-
mation

R =ZtQZ,

where Z is the quasiparticle transformation

Ug
Z —

V U, ZZ —1

(3.13)

(3.14}

It follows that

R =ZtQ Z (3.15)

R —R =Z (Q —Q )Z. (3.16)

f(1—f)
Q —Q'= 0

0

f (1—f) (3.17)

Since (R —R ) and ( Q —Q }are related by this similarity
transformation, they have equal traces. From Eq. (3.12) it
follows that

p (g )
F'(6)jkT— (3.22)

According to Eq. (3.22), there are no fluctuations at
T =0. This equation determines the thermodynamic fluc-
tuations. However, if the temperature is too small or if
nonequilibrium states vary too rapidly with time, then the
quantum fluctuations dominate and Eq. (3.22) is no longer
meaningful. '

The FTHFBC theory predicts first- and second-order
phase transitions in rotating heated nuclei. Do statistical
fluctuations wash out these phase transitions?

For a nucleus with a given temperature, rotational fre-
quency and particle number, the free energy in a rotating
frame, F of Eq. (2.20), is minimized. The equilibrium
state has a sharp value of b, , as in the FTHFBC theory.
However, statistical fluctuations create values of b, which
deviate from the equilibrium value.

In the Landau theory of phase transitions, I" is treated
as a function of 4, where b, is an independent variable not
constrained by T, co, and N. ' ' The extrema of F'(6)
define the equilibrium or FTHFBC states. In the Landau
theory the entire surface F'(b, T,co) is constructed, and
not simply the equilibrium states.

The probability that the nucleus has any given value of
a is"
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—10

—12

—13

BL
1F

—14
0

I I I

0 2 0 4 0 6 0 8 1.0 1.2 1.4 1.6

Eqs. (2.13)—(2.17). Next calculate b, with Eq. (2.12) and
F' with Eqs. (2.19)—(2.22). For one value of 5 this pro-
cedure determines one point in the E'(b, ) plane. By vary-
ing 5 from zero to infinity, the function F (6) is mapped
out. The extrema of F'(6) are the FTHFBC equilibrium
solutions, where 5=6,. At all other states 5&6. Finally,
calculate P(b, ) from E'(5) using Eq. (3.22).

Consider the second-order phase transition produced by
heating a nonrotating nucleus. Figure 13 shows F'(b, ) for
various temperatures with co=0. As T increases from 0
to T,

' =0.55 MeV/k, the minimum in F'(6) shifts con-
tinuously from b, =1.0 MeV to 5=0. Also, the barrier
separating the superfluid and normal states decreases as
the nucleus is heated. From Fig. 13 and Eq. (3.22) the
probability distribution P(A) is calculated, as shown in
Fig. 14. Since the FTHFBC theory minimizes F (6), it
finds the 5 which maximizes P(b, ), i.e., the most prob-
able h. For kT =0.1 MeV, P(b, ) has a narrow peak, so
the fluctuations in 5 are small. Also P(b, ) is almost sym-
metric. For kT =0.3 MeV, P(h) is less symmetric and
broader, so the fluctuations are large. At kT,' =0.55
MeV the equilibrium b, is zero. However, there are large
fluctuations in 5 extending to b, =1.4 MeV. Even at
kT =2.0 MeV, which is four times the critical tempera-
ture, the fluctuations in b, are still large.

Define the average b, by

FIG. 13. The free energy I' versus the pair gap 6 for various
temperatures and co =0. The quantity Fhas units of MeV.

To evaluate P(h), first choose T, co, and N. Second,
diagonalize the HFB energy matrix (2.8),

(~—p —J„) —5
(3.23)—(e —p+~j„)

where 5 is an arbitrary multiple of the unit matrix. Use
the eigenvectors ( U, V) and eigenvalues E of Eq. (3.23) to
calculate the HFB densities p and t, which are defined in

(3.24)

Figure 15 compares the average b, with the BCS b„which
is the equilibrium or most probable b, . Whereas the BCS
6 exhibits a sharp second-order phase transition from su-
perfluid to normal, the average b, remains large even at
very high temperatures. The conclusion is that statistical
fluctuations in 6 wash out the second-order phase transi-
tion.

Next consider the first-order phase transition induced
by rotating the nucleus. Figure 16 shows E'(b, ) for vari-
ous co at T =0. For co =0 there is a large barrier between
the superfluid minimum at b, =1.0 MeV and the normal
maximum at b, =0. At fico,

' =0.126 MeV the normal state

1.0

0.8

0.6

I

j = 13/2
1.2

1.0

0.8

0.6

j = 13/2
N=6
Q) = 0
K=2
G = 0.448

0.4

0.2

0.4—

BCS

Average ~
0 0.2 0.4 0.6 0.8 1.0 1.2 1.6

I
i

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 14. The probability I' versus the pair gap 6 for various
temperatures and co =0.

T
FIG. 15. The pair gap 5 versus the temperature T for co=0.

The dashed curve is the BCS or most probable b„and the solid
curve is the average h.
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—11.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 16. The free energy I"versus the pair gap 6 for various
rotational frequencies at T =0. FIG. 17. See Fig. 16. The temperature is 0.1 MeV/k.

becomes an inflection point. For fun, =0.157 MeV there
are two degenerate minima, one superfluid and one nor-
mal, as well as a relative maximum. These three extrema
are self-consistent solutions of the FTHFBC equations.
For %co,"=0.181 MeV the superfluid minimum becomes
an inflection point.

How were ~„co,', and co,
" determined. The crossing

point of the loop in F'(co) defines co, (Ref. 6). The point
where 5—+0 in Fig. 2 defines co,'. The maximum co for
which b, &0 in Fig. 2 defines cu,". This explains the pecu-
liar backbending feature of h(co ). Why is it that
FTHFBC solutions exist with large 5 for frequencies up
to co,", but no paired solutions exist for co&co,". Because
at co,

" the superfluid minimum in F'(b, ) disappears.
There are two definitions for the critical frequency of a

first-order phase transition. In previous papers the author
used the Maxwell or Ehrenfest convention, which is co„
the frequency for which there are two degenerate minima.
The essential idea is that the system is always in the abso-
lute minimum. As co is varied past co, the absolute
minimum suddenly jumps from one minimum to the oth-
er producing a sudden discontinuity in the order parame-
ter b. This is the signature of a first-order phase transi-
tion.

An alternative definition of the critical frequency is
given by the delay convention. Imagine that the curves
F'(b, ) are physical surfaces and place a small sphere at the
minimum of the co=0 surface. As ~ increases past
Ace, =0.157 MeV the sphere remains in the same potential
well, which then becomes a relative minimum. It is not
until co reaches Ace,

"=0.181 MeV where the relative
minimum disappears that the sphere rolls down to the ab-

solute minimum at 6=0. Similarly, start with a rapidly
rotating system and place the sphere at 6=0. As co de-

creases below co„ the normal state becomes a relative
minimum, but the sphere remains there until ~ decreases
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I
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FIG. 18. See Fig. 16. The temperature is 0.2 MeV/k.

to ~,'=0. 126 MeV. Then the normal minimum disap-

pears and the sphere rolls down to the superfluid
minimum. So at each temperature there are three critical
frequencies co„co,', and co,".

The free energy for kT =0.1 MeV is shown in Fig. 17.
The differences from T =0 are that all minima shift to
smaller 5, all barrier heights decrease, and the three criti-
cal frequencies come closer together.

There is a critical point at k'r, =0.2 MeV and

Rcg, =0.1505 MeV. Figure 18 shows that F'(b, ) is hor-
izontal from 6=0 to b, =0.7 MeV. At the critical point
all minima and maxima disappear, and the three critical
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FIG. 19. The probabilitp I versus the pair gap 5 fol various

temperatures and critical rotational frequencies.
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FIG. 21. See Flg. 19,

flcqucllclcs coilvcl'gc to R slllglc valllc. Tllls is S11owll 111

the phase diagram of Fig. 4. The dashed lines are co,'(T)
and co,"(T),which define the first-order phase transition in

the delay convention.
The statistical fluctuations in b, are calculated with

F'(6) and Eq. (3.22). The probability P that the system
has a given value of 5 is shown in Fig. 19 for several
choices of T and co, For k. T =0.02 MeV, P(h) has two
well-defined peaks which correspond to the two degen
crate minima in F'(5). The probability P falls to a rela-
'tive 1111111111UI11of 0.05. CollscqUclltly, statistical flUctlla-

tions do not wash out the barrier in F'(b, ), which
sepa, rates the two deger crate phases.

For kT =0.05 MCV, the relative minimum in P(b, )

rises to 0.35. For kT =0.10 MCV the two peaks in P(b, )

are disappearing and the relative minimum in P(b, ) is
0.78. Then the probability that the system occupies the
relative maximum in F (6) is 78% of the probability that
it occupies one of the degenerate minima. The statistical

fluctuations in the pairing gap have almost eliminated the
effect of the barrier in F'(b, ). Consequently when

kT=0. 10 MeV, which is kT, /2, the first-order phase
transition is smoothed out by statistical fluctuations.

At the critical point, curve D in Fig. 19 shows that
there is equal probability for 5 to have any value between

0 and 0.7 MCV. Fluctuations in the order parameter are
unusually large at a critical point.

Finally, we consider second-order phase transitions in-

duced by rotatlIlg a system with T~ Q T Q T~ ~ &here

kT, =0.2 MeV and kT,' =0.545 MeV. The phase transi-
tion is second order in this temperature range because for
any rotational frequency E'(5) contains only one
minimum rather than two. This is shown in Fig. 20 for
kT=0.3 MCV. At the critical frequency of 0.143 MCV,
F'(b, ) rises very slowly. Figure 21 shows the correspond-

ing P(b, ). Although the most probable value of b, is zero,
thc probability distribution has a Iong tail. Thc average
value of b, is marked by the dot at 6=0.54 MeV. Conse-

quently, the second-order phase transitio~ induced by ro-
tations is also smoothed out by statistical fluctuations.

IV. CONCLUSIONS

-1O.2..—

—10.4—

—10.8-:

0.2

FICi. 20. See Fig. 16. The temperature is 0.3 MeV/k.

For the &l3~2 model, equilibrium statistical mechanics
predicts that (a) heating the nonrotating system induces a
second-order phase transition from superfluid to normal
at kT,' =0.55 MeV; (b) rotating the system at constant
temperature produces a first-order phase transition from
superfluid to normal if 0 & T & T„where kT, =0.2 MeV;
and (c) rotating the system at constant temperature creates
a second-order phase transition from superfluid to normal

if T, & T & T; . These transitions are all accompanied by
the alignment of two illzz nucleons along the rotation
axis. This rotation-aligned pair is unaffected by tempera-
tures up to 0.5 MCV.

When statistical fluctuations in the pair gap 6 are in-

cluded, then (a) the first-order phase transition is washed

out for temperatures in the range ,' T, & T & T„and (b)—
the second. -order phase transitions are also smoothed out.
For infinite systems statistical fluctuations are important
only at critical points. However, for finite systems, sta-

tistical fluctuations amund equilibrium states are impor-
tant even for states far from critical points. Descriptions
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of finite systems which ignore these fluctuations are not
adequate.

These conclusions are obtained for calculations restrict-
ed to a single j shell. Would the inclusion of many j
shells alter these conclusions? Fluctuations in the pair
gap b, occur in the vicinity of the chemical potential. In-
cluding j shells which lie below or above the chemical po-
tential would not affect the fluctuations. Only those few
shells which are near the chemical potential will change
the results. Therefore it is unlikely that extending the

model space from one j shell to many j shells would ap-
preciably alter the conclusions. The effect of statistical
fluctuations on second-order phase transitions has been
studied by Moretto using the uniform model, which con-
tains a large number of particles, and the results are simi-
lar to the i}3/2 model.
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